Contact Info
Stuart Chalk, Ph.D.
Department of Chemistry
University of North Florida
Phone: 1-904-620-1938
Fax: 1-904-620-3535
Email: schalk@unf.edu
Website: @unf
Spectrophotometry
Citations 5
"Determination Of Sulfur Anions By Flow Injection With A Molecular Emission Cavity Detector"
Anal. Chim. Acta
1984 Volume 157, Issue 1 Pages 177-181
Notice (8): Undefined variable: uid [APP/View/Elements/citation.ctp, line 40]J. L. Burguera and M. BurgueraCode Context?>
<?php
if($uid!='') {
$viewFile = '/home/stuchalk/public_html/fad/app/View/Elements/citation.ctp' $dataForView = array( 'data' => array( 'Technique' => array( 'id' => '0499', 'label' => 'Spectrophotometry', 'level1' => 'Spectrophotometry', 'level2' => 'molecular emission', 'level3' => 'cavity', 'level4' => '', 'level5' => '', 'synonyms' => '', 'champ' => '', 'total' => '5', 'updated' => '0000-00-00 00:00:00', 'name' => 'Spectrophotometry, molecular emission, cavity', 'nametotal' => 'Spectrophotometry, molecular emission, cavity**5', 'first' => 'S' ), 'Citation' => array( (int) 0 => array( [maximum depth reached] ), (int) 1 => array( [maximum depth reached] ), (int) 2 => array( [maximum depth reached] ), (int) 3 => array( [maximum depth reached] ), (int) 4 => array( [maximum depth reached] ) ) ), 'c' => array( 'id' => '004602', 'authors' => 'Burguera, J.L.;Burguera, M.', 'authorsweb' => 'J. L. Burguera and M. Burguera', 'title' => 'Determination of sulfur anions by flow injection with a molecular emission cavity detector', 'journal' => 'Anal. Chim. Acta', 'journal_id' => '0584', 'fadid' => 'ANCA1984V0157P00177', 'year' => '1984', 'volume' => '157', 'issue' => '1', 'startpage' => '177', 'endpage' => '181', 'type' => 'Journal Article', 'analytes' => ';2237;2242;2234;', 'matrices' => '', 'techniques' => ';0499;', 'keywords' => '', 'abstract' => 'A molecular-emission cavity detector is attached to a flow injection system for the determination of S2-, SO32- and SO42- in the ranges 2 to 130, 3 to 150 and 5 to 250 ng of S, respectively, in 3 µL samples. Experimental details are given. The effects of flow rate of solution into the cavity are discussed. For determinations of SO42-, the coefficient of variation is 2.0% for 3 ng of S. The analytical signal is available within 30 s after sample injection, permitting ~100 measurements in 1 h. If the carrier stream is changed from water to H2O2 solution, only one peak is obtained corresponding to total S. Recovery of SO32- and S2- ranges from 90 to 95%.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '2', 'urlcheck' => '2014-10-11 15:45:49', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => null, 'pauthor' => 'NA', 'address' => 'Univ. de Los Andes, Dept. Quim., Fac. Cienc., Merida 5101-A Venezuela', 'email' => 'NA', 'notes' => null, 'url' => '10.1016/S0003-2670(00)83619-3', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Determination of sulfur anions by flow injection with a molecular emission cavity detector', Anal. Chim. Acta, 1984 157(1) 177-181', 'firstchar' => 'D', 'twochars' => 'De', 'CitationsTechnique' => array( 'id' => '000892', 'citation_id' => '004602', 'technique_id' => '0499' ), 'Analyte' => array( (int) 0 => array( [maximum depth reached] ), (int) 1 => array( [maximum depth reached] ), (int) 2 => array( [maximum depth reached] ) ), 'Matrix' => array(), 'Keyword' => array() ), 'i' => (int) 0 ) $data = array( 'Technique' => array( 'id' => '0499', 'label' => 'Spectrophotometry', 'level1' => 'Spectrophotometry', 'level2' => 'molecular emission', 'level3' => 'cavity', 'level4' => '', 'level5' => '', 'synonyms' => '', 'champ' => '', 'total' => '5', 'updated' => '0000-00-00 00:00:00', 'name' => 'Spectrophotometry, molecular emission, cavity', 'nametotal' => 'Spectrophotometry, molecular emission, cavity**5', 'first' => 'S' ), 'Citation' => array( (int) 0 => array( 'id' => '004602', 'authors' => 'Burguera, J.L.;Burguera, M.', 'authorsweb' => 'J. L. Burguera and M. Burguera', 'title' => 'Determination of sulfur anions by flow injection with a molecular emission cavity detector', 'journal' => 'Anal. Chim. Acta', 'journal_id' => '0584', 'fadid' => 'ANCA1984V0157P00177', 'year' => '1984', 'volume' => '157', 'issue' => '1', 'startpage' => '177', 'endpage' => '181', 'type' => 'Journal Article', 'analytes' => ';2237;2242;2234;', 'matrices' => '', 'techniques' => ';0499;', 'keywords' => '', 'abstract' => 'A molecular-emission cavity detector is attached to a flow injection system for the determination of S2-, SO32- and SO42- in the ranges 2 to 130, 3 to 150 and 5 to 250 ng of S, respectively, in 3 µL samples. Experimental details are given. The effects of flow rate of solution into the cavity are discussed. For determinations of SO42-, the coefficient of variation is 2.0% for 3 ng of S. The analytical signal is available within 30 s after sample injection, permitting ~100 measurements in 1 h. If the carrier stream is changed from water to H2O2 solution, only one peak is obtained corresponding to total S. Recovery of SO32- and S2- ranges from 90 to 95%.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '2', 'urlcheck' => '2014-10-11 15:45:49', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => null, 'pauthor' => 'NA', 'address' => 'Univ. de Los Andes, Dept. Quim., Fac. Cienc., Merida 5101-A Venezuela', 'email' => 'NA', 'notes' => null, 'url' => '10.1016/S0003-2670(00)83619-3', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Determination of sulfur anions by flow injection with a molecular emission cavity detector', Anal. Chim. Acta, 1984 157(1) 177-181', 'firstchar' => 'D', 'twochars' => 'De', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array([maximum depth reached]) ), (int) 1 => array( 'id' => '004747', 'authors' => 'Burguera, J.L.;Burguera, M.;Flores, D.', 'authorsweb' => 'J. L. Burguera, M. Burguera and Daniel Flores', 'title' => 'Determination of some phosphorus-containing compounds by flow injection with a molecular emission cavity detector', 'journal' => 'Anal. Chim. Acta', 'journal_id' => '0584', 'fadid' => 'ANCA1985V0170P00331', 'year' => '1985', 'volume' => '170', 'issue' => '2', 'startpage' => '331', 'endpage' => '336', 'type' => 'Journal Article', 'analytes' => ';1876;1874;1877;1227;1860;1859;1856;', 'matrices' => '', 'techniques' => ';0499;0501;', 'keywords' => ';0302;', 'abstract' => 'Optimum conditions (e.g., flow rate, sample volume, dimensions of the tubing and flame composition) have been established for the determination of P-containing inorganic and organic compounds by the cited technique. The ranges of rectilinear response, detection limits and coefficient of variation (typical values being 10 to 200 ng, 2.5 and 3%, respectively) are tabulated for H3PO4, H3PO3, H3PO2, trimethyl phosphite, triethyl phosphite and tributylphosphine; sensitivity improved with decreasing O content of the compounds. The sample throughput was 20 h-1. As peaks were well separated, components of ternary mixtures could be determined.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '2', 'urlcheck' => '2014-10-11 15:47:40', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => null, 'pauthor' => 'NA', 'address' => 'Univ. Los Andes, Dept. Quim., Fac. Cienc., Merida 5101 Venezuela', 'email' => 'NA', 'notes' => null, 'url' => '10.1016/S0003-2670(00)81758-4', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Determination of some phosphorus-containing compounds by flow injection with a molecular emission cavity detector', Anal. Chim. Acta, 1985 170(2) 331-336', 'firstchar' => 'D', 'twochars' => 'De', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 2 => array( 'id' => '004887', 'authors' => 'Burguera, J.L.;Burguera, M.', 'authorsweb' => 'J. L. Burguera and M. Burguera', 'title' => 'Determination of some organophosphorus insecticides by flow injection with a molecular emission cavity detector', 'journal' => 'Anal. Chim. Acta', 'journal_id' => '0584', 'fadid' => 'ANCA1986V0179P00497', 'year' => '1986', 'volume' => '179', 'issue' => '1', 'startpage' => '497', 'endpage' => '502', 'type' => 'Journal Article', 'analytes' => ';1270;0785;0809;1419;1727;', 'matrices' => ';0372;', 'techniques' => ';0499;0417;', 'keywords' => ';0153;', 'abstract' => 'The insecticides are extracted from waters into hexane - CH2Cl2 (17:3) at pH <7 followed by measurement of the HPO emission at 528 nm vs. time in the system previously described (Ibid., 1985, 170, 331). Dicrotophos and dimethoate are measured in the range of 5 to 100 ng of P and malathion and parathion from 10 to 120 ng with detection limits between 0.8 and 2.5 ng. Recoveries are between 73.4 and 98.1% for 50 ng of P with coefficient of variation between 2.5 and 3.4% for 20 ng (n = 8).', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '3', 'urlcheck' => '2014-10-11 15:49:56', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '00059', 'pauthor' => '!Burguera, J.L.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1016/S0003-2670(00)84499-2', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Determination of some organophosphorus insecticides by flow injection with a molecular emission cavity detector', Anal. Chim. Acta, 1986 179(1) 497-502', 'firstchar' => 'D', 'twochars' => 'De', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array( [maximum depth reached] ), 'Keyword' => array( [maximum depth reached] ) ), (int) 3 => array( 'id' => '005057', 'authors' => 'Grekas, N.;Calokerinos, A.C.', 'authorsweb' => 'N. Grekas and A. C. Calokerinos', 'title' => 'Continuous-flow molecular emission cavity analysis for organic sulfur compounds by alkaline hydrolysis', 'journal' => 'Anal. Chim. Acta', 'journal_id' => '0584', 'fadid' => 'ANCA1988V0204P00285', 'year' => '1988', 'volume' => '204', 'issue' => '1-2', 'startpage' => '285', 'endpage' => '293', 'type' => 'Journal Article', 'analytes' => '', 'matrices' => '', 'techniques' => ';0499;', 'keywords' => ';0188;', 'abstract' => 'The alkaline hydrolysis (4 M NaOH) of thioacetamide, thiosemicarbazide, thiodiacetic acid and dithio-oxamide at 45°C in a continuous-flow automatic analyzer. is described. The S2- produced is removed from the solution after acidification with 4 M H3PO4 and the H2S evolved is purged with N and determined by MECA. The sampling rate is 30 h-1, and the coefficient of variation is 1 to 2.5%.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '2', 'urlcheck' => '2014-10-11 15:53:35', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '00063', 'pauthor' => '!Calokerinos, A.C.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1016/S0003-2670(00)86366-7', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Continuous-flow molecular emission cavity analysis for organic sulfur compounds by alkaline hydrolysis', Anal. Chim. Acta, 1988 204(1-2) 285-293', 'firstchar' => 'C', 'twochars' => 'Co', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array([maximum depth reached]), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 4 => array( 'id' => '010820', 'authors' => 'El Hag, I.H.', 'authorsweb' => 'I. H. El-Hag', 'title' => 'Automated determination of nanogram amounts of phosphorus by molecular emission cavity analysis', 'journal' => 'Anal. Proc.', 'journal_id' => '0866', 'fadid' => 'ANPR1982V0019P00320', 'year' => '1982', 'volume' => '19', 'issue' => '6', 'startpage' => '320', 'endpage' => '321', 'type' => 'Journal Article', 'analytes' => ';1876;', 'matrices' => '', 'techniques' => ';0499;0474;', 'keywords' => '', 'abstract' => 'Molecular emission cavity analysis (MECA)1 is a flame photometric technique that relies on a cool flame source to generate band emissions, such as those from S,, BO, and HPO. The conventional manual method involves depositing the microlitre-volume sample into a cavity cut into the end of a rod, which is introduced manually to the flame, so that the emission generated within the cavity is viewed by the detector. The reproducibility of this method is unsatisfactory for fast emitting species because variables such as the exact time of injection, cavity residence time in the flame and cooling time after analysis need precise control.', 'language' => 'English', 'updated' => '2020-12-28 11:11:09', 'sjccheck' => 'No', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '3', 'urlcheck' => '2014-10-11 21:46:56', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => null, 'pauthor' => 'El Hag, I.H.', 'address' => 'Department of Chemistry, University of Birmingham, P.O. Box 363, Birmingham, B15 2TT England', 'email' => 'NA', 'notes' => 'No abstract online', 'url' => '10.1039/AP9821900316', 'urltype' => 'doi', 'gotpdf' => 'no', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Automated determination of nanogram amounts of phosphorus by molecular emission cavity analysis', Anal. Proc., 1982 19(6) 320-321', 'firstchar' => 'A', 'twochars' => 'Au', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array([maximum depth reached]) ) ) ) $c = array( 'id' => '004602', 'authors' => 'Burguera, J.L.;Burguera, M.', 'authorsweb' => 'J. L. Burguera and M. Burguera', 'title' => 'Determination of sulfur anions by flow injection with a molecular emission cavity detector', 'journal' => 'Anal. Chim. Acta', 'journal_id' => '0584', 'fadid' => 'ANCA1984V0157P00177', 'year' => '1984', 'volume' => '157', 'issue' => '1', 'startpage' => '177', 'endpage' => '181', 'type' => 'Journal Article', 'analytes' => ';2237;2242;2234;', 'matrices' => '', 'techniques' => ';0499;', 'keywords' => '', 'abstract' => 'A molecular-emission cavity detector is attached to a flow injection system for the determination of S2-, SO32- and SO42- in the ranges 2 to 130, 3 to 150 and 5 to 250 ng of S, respectively, in 3 µL samples. Experimental details are given. The effects of flow rate of solution into the cavity are discussed. For determinations of SO42-, the coefficient of variation is 2.0% for 3 ng of S. The analytical signal is available within 30 s after sample injection, permitting ~100 measurements in 1 h. If the carrier stream is changed from water to H2O2 solution, only one peak is obtained corresponding to total S. Recovery of SO32- and S2- ranges from 90 to 95%.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '2', 'urlcheck' => '2014-10-11 15:45:49', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => null, 'pauthor' => 'NA', 'address' => 'Univ. de Los Andes, Dept. Quim., Fac. Cienc., Merida 5101-A Venezuela', 'email' => 'NA', 'notes' => null, 'url' => '10.1016/S0003-2670(00)83619-3', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Determination of sulfur anions by flow injection with a molecular emission cavity detector', Anal. Chim. Acta, 1984 157(1) 177-181', 'firstchar' => 'D', 'twochars' => 'De', 'CitationsTechnique' => array( 'id' => '000892', 'citation_id' => '004602', 'technique_id' => '0499' ), 'Analyte' => array( (int) 0 => array( 'id' => '02237', 'name' => 'Sulfide', 'iupac_name' => 'sulfide', 'casrn' => '18496-25-8', 'synonyms' => 'Sulfide', 'total' => '58', 'inchi' => 'InChI=1S/S/q-2', 'inchikey' => 'UCKMPCXJQFINFW-UHFFFAOYSA-N', 'formula' => 'S-2', 'oxstate' => '-2', 'url' => '', 'charge' => '-2', 'class1' => 'Element', 'class2' => 'Non-metal', 'class3' => 'NA', 'class4' => 'Anion', 'class5' => '', 'isgroup' => '', 'checked' => 'yes', 'citation_count' => '0', 'updated' => '2015-10-23 21:37:40', 'first' => 'S', 'nametotal' => 'Sulfide**58', 'AnalytesCitation' => array( [maximum depth reached] ) ), (int) 1 => array( 'id' => '02242', 'name' => 'Sulfite', 'iupac_name' => 'sulfite', 'casrn' => '14265-45-3', 'synonyms' => 'Sulfite; Sulfite anion; Sulfites', 'total' => '76', 'inchi' => 'InChI=1S/H2O3S/c1-4(2)3/h(H2,1,2,3)/p-2', 'inchikey' => 'LSNNMFCWUKXFEE-UHFFFAOYSA-L', 'formula' => 'O3S-2', 'oxstate' => '+4', 'url' => '', 'charge' => '-2', 'class1' => 'Inorganic compound', 'class2' => 'NA', 'class3' => 'NA', 'class4' => 'Anion', 'class5' => 'Acids', 'isgroup' => '', 'checked' => 'yes', 'citation_count' => '0', 'updated' => '2015-10-23 21:37:42', 'first' => 'S', 'nametotal' => 'Sulfite**76', 'AnalytesCitation' => array( [maximum depth reached] ) ), (int) 2 => array( 'id' => '02234', 'name' => 'Sulfate', 'iupac_name' => 'sulfate', 'casrn' => '14808-79-8', 'synonyms' => 'Sulfate; Sulfate anion; Sulfuric acid, ion(2-); ', 'total' => '98', 'inchi' => 'InChI=1S/H2O4S/c1-5(2,3)4/h(H2,1,2,3,4)/p-2', 'inchikey' => 'QAOWNCQODCNURD-UHFFFAOYSA-L', 'formula' => 'O4S-2', 'oxstate' => '+6', 'url' => '', 'charge' => '-2', 'class1' => 'Inorganic compound', 'class2' => 'NA', 'class3' => 'NA', 'class4' => 'Anion', 'class5' => '', 'isgroup' => '', 'checked' => 'yes', 'citation_count' => '0', 'updated' => '2015-12-11 16:18:02', 'first' => 'S', 'nametotal' => 'Sulfate**98', 'AnalytesCitation' => array( [maximum depth reached] ) ) ), 'Matrix' => array(), 'Keyword' => array() ) $i = (int) 0 $path = '' $a = '' $url = 'http://dx.doi.org/10.1016/S0003-2670(00)83619-3' $aus = 'J. L. Burguera and M. Burguera'include - APP/View/Elements/citation.ctp, line 40 View::_evaluate() - CORE/Cake/View/View.php, line 971 View::_render() - CORE/Cake/View/View.php, line 933 View::_renderElement() - CORE/Cake/View/View.php, line 1224 View::element() - CORE/Cake/View/View.php, line 418 include - APP/View/Techniques/view.ctp, line 52 View::_evaluate() - CORE/Cake/View/View.php, line 971 View::_render() - CORE/Cake/View/View.php, line 933 View::render() - CORE/Cake/View/View.php, line 473 Controller::render() - CORE/Cake/Controller/Controller.php, line 968 Dispatcher::_invoke() - CORE/Cake/Routing/Dispatcher.php, line 200 Dispatcher::dispatch() - CORE/Cake/Routing/Dispatcher.php, line 167 [main] - APP/webroot/index.php, line 109
"Determination Of Some Phosphorus-containing Compounds By Flow Injection With A Molecular Emission Cavity Detector"
Anal. Chim. Acta
1985 Volume 170, Issue 2 Pages 331-336
Notice (8): Undefined variable: uid [APP/View/Elements/citation.ctp, line 40]J. L. Burguera, M. Burguera and Daniel FloresCode Context?>
<?php
if($uid!='') {
$viewFile = '/home/stuchalk/public_html/fad/app/View/Elements/citation.ctp' $dataForView = array( 'data' => array( 'Technique' => array( 'id' => '0499', 'label' => 'Spectrophotometry', 'level1' => 'Spectrophotometry', 'level2' => 'molecular emission', 'level3' => 'cavity', 'level4' => '', 'level5' => '', 'synonyms' => '', 'champ' => '', 'total' => '5', 'updated' => '0000-00-00 00:00:00', 'name' => 'Spectrophotometry, molecular emission, cavity', 'nametotal' => 'Spectrophotometry, molecular emission, cavity**5', 'first' => 'S' ), 'Citation' => array( (int) 0 => array( [maximum depth reached] ), (int) 1 => array( [maximum depth reached] ), (int) 2 => array( [maximum depth reached] ), (int) 3 => array( [maximum depth reached] ), (int) 4 => array( [maximum depth reached] ) ) ), 'c' => array( 'id' => '004747', 'authors' => 'Burguera, J.L.;Burguera, M.;Flores, D.', 'authorsweb' => 'J. L. Burguera, M. Burguera and Daniel Flores', 'title' => 'Determination of some phosphorus-containing compounds by flow injection with a molecular emission cavity detector', 'journal' => 'Anal. Chim. Acta', 'journal_id' => '0584', 'fadid' => 'ANCA1985V0170P00331', 'year' => '1985', 'volume' => '170', 'issue' => '2', 'startpage' => '331', 'endpage' => '336', 'type' => 'Journal Article', 'analytes' => ';1876;1874;1877;1227;1860;1859;1856;', 'matrices' => '', 'techniques' => ';0499;0501;', 'keywords' => ';0302;', 'abstract' => 'Optimum conditions (e.g., flow rate, sample volume, dimensions of the tubing and flame composition) have been established for the determination of P-containing inorganic and organic compounds by the cited technique. The ranges of rectilinear response, detection limits and coefficient of variation (typical values being 10 to 200 ng, 2.5 and 3%, respectively) are tabulated for H3PO4, H3PO3, H3PO2, trimethyl phosphite, triethyl phosphite and tributylphosphine; sensitivity improved with decreasing O content of the compounds. The sample throughput was 20 h-1. As peaks were well separated, components of ternary mixtures could be determined.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '2', 'urlcheck' => '2014-10-11 15:47:40', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => null, 'pauthor' => 'NA', 'address' => 'Univ. Los Andes, Dept. Quim., Fac. Cienc., Merida 5101 Venezuela', 'email' => 'NA', 'notes' => null, 'url' => '10.1016/S0003-2670(00)81758-4', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Determination of some phosphorus-containing compounds by flow injection with a molecular emission cavity detector', Anal. Chim. Acta, 1985 170(2) 331-336', 'firstchar' => 'D', 'twochars' => 'De', 'CitationsTechnique' => array( 'id' => '001012', 'citation_id' => '004747', 'technique_id' => '0499' ), 'Analyte' => array( (int) 0 => array( [maximum depth reached] ), (int) 1 => array( [maximum depth reached] ), (int) 2 => array( [maximum depth reached] ), (int) 3 => array( [maximum depth reached] ), (int) 4 => array( [maximum depth reached] ), (int) 5 => array( [maximum depth reached] ), (int) 6 => array( [maximum depth reached] ) ), 'Matrix' => array(), 'Keyword' => array( (int) 0 => array( [maximum depth reached] ) ) ), 'i' => (int) 1 ) $data = array( 'Technique' => array( 'id' => '0499', 'label' => 'Spectrophotometry', 'level1' => 'Spectrophotometry', 'level2' => 'molecular emission', 'level3' => 'cavity', 'level4' => '', 'level5' => '', 'synonyms' => '', 'champ' => '', 'total' => '5', 'updated' => '0000-00-00 00:00:00', 'name' => 'Spectrophotometry, molecular emission, cavity', 'nametotal' => 'Spectrophotometry, molecular emission, cavity**5', 'first' => 'S' ), 'Citation' => array( (int) 0 => array( 'id' => '004602', 'authors' => 'Burguera, J.L.;Burguera, M.', 'authorsweb' => 'J. L. Burguera and M. Burguera', 'title' => 'Determination of sulfur anions by flow injection with a molecular emission cavity detector', 'journal' => 'Anal. Chim. Acta', 'journal_id' => '0584', 'fadid' => 'ANCA1984V0157P00177', 'year' => '1984', 'volume' => '157', 'issue' => '1', 'startpage' => '177', 'endpage' => '181', 'type' => 'Journal Article', 'analytes' => ';2237;2242;2234;', 'matrices' => '', 'techniques' => ';0499;', 'keywords' => '', 'abstract' => 'A molecular-emission cavity detector is attached to a flow injection system for the determination of S2-, SO32- and SO42- in the ranges 2 to 130, 3 to 150 and 5 to 250 ng of S, respectively, in 3 µL samples. Experimental details are given. The effects of flow rate of solution into the cavity are discussed. For determinations of SO42-, the coefficient of variation is 2.0% for 3 ng of S. The analytical signal is available within 30 s after sample injection, permitting ~100 measurements in 1 h. If the carrier stream is changed from water to H2O2 solution, only one peak is obtained corresponding to total S. Recovery of SO32- and S2- ranges from 90 to 95%.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '2', 'urlcheck' => '2014-10-11 15:45:49', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => null, 'pauthor' => 'NA', 'address' => 'Univ. de Los Andes, Dept. Quim., Fac. Cienc., Merida 5101-A Venezuela', 'email' => 'NA', 'notes' => null, 'url' => '10.1016/S0003-2670(00)83619-3', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Determination of sulfur anions by flow injection with a molecular emission cavity detector', Anal. Chim. Acta, 1984 157(1) 177-181', 'firstchar' => 'D', 'twochars' => 'De', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array([maximum depth reached]) ), (int) 1 => array( 'id' => '004747', 'authors' => 'Burguera, J.L.;Burguera, M.;Flores, D.', 'authorsweb' => 'J. L. Burguera, M. Burguera and Daniel Flores', 'title' => 'Determination of some phosphorus-containing compounds by flow injection with a molecular emission cavity detector', 'journal' => 'Anal. Chim. Acta', 'journal_id' => '0584', 'fadid' => 'ANCA1985V0170P00331', 'year' => '1985', 'volume' => '170', 'issue' => '2', 'startpage' => '331', 'endpage' => '336', 'type' => 'Journal Article', 'analytes' => ';1876;1874;1877;1227;1860;1859;1856;', 'matrices' => '', 'techniques' => ';0499;0501;', 'keywords' => ';0302;', 'abstract' => 'Optimum conditions (e.g., flow rate, sample volume, dimensions of the tubing and flame composition) have been established for the determination of P-containing inorganic and organic compounds by the cited technique. The ranges of rectilinear response, detection limits and coefficient of variation (typical values being 10 to 200 ng, 2.5 and 3%, respectively) are tabulated for H3PO4, H3PO3, H3PO2, trimethyl phosphite, triethyl phosphite and tributylphosphine; sensitivity improved with decreasing O content of the compounds. The sample throughput was 20 h-1. As peaks were well separated, components of ternary mixtures could be determined.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '2', 'urlcheck' => '2014-10-11 15:47:40', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => null, 'pauthor' => 'NA', 'address' => 'Univ. Los Andes, Dept. Quim., Fac. Cienc., Merida 5101 Venezuela', 'email' => 'NA', 'notes' => null, 'url' => '10.1016/S0003-2670(00)81758-4', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Determination of some phosphorus-containing compounds by flow injection with a molecular emission cavity detector', Anal. Chim. Acta, 1985 170(2) 331-336', 'firstchar' => 'D', 'twochars' => 'De', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 2 => array( 'id' => '004887', 'authors' => 'Burguera, J.L.;Burguera, M.', 'authorsweb' => 'J. L. Burguera and M. Burguera', 'title' => 'Determination of some organophosphorus insecticides by flow injection with a molecular emission cavity detector', 'journal' => 'Anal. Chim. Acta', 'journal_id' => '0584', 'fadid' => 'ANCA1986V0179P00497', 'year' => '1986', 'volume' => '179', 'issue' => '1', 'startpage' => '497', 'endpage' => '502', 'type' => 'Journal Article', 'analytes' => ';1270;0785;0809;1419;1727;', 'matrices' => ';0372;', 'techniques' => ';0499;0417;', 'keywords' => ';0153;', 'abstract' => 'The insecticides are extracted from waters into hexane - CH2Cl2 (17:3) at pH <7 followed by measurement of the HPO emission at 528 nm vs. time in the system previously described (Ibid., 1985, 170, 331). Dicrotophos and dimethoate are measured in the range of 5 to 100 ng of P and malathion and parathion from 10 to 120 ng with detection limits between 0.8 and 2.5 ng. Recoveries are between 73.4 and 98.1% for 50 ng of P with coefficient of variation between 2.5 and 3.4% for 20 ng (n = 8).', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '3', 'urlcheck' => '2014-10-11 15:49:56', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '00059', 'pauthor' => '!Burguera, J.L.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1016/S0003-2670(00)84499-2', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Determination of some organophosphorus insecticides by flow injection with a molecular emission cavity detector', Anal. Chim. Acta, 1986 179(1) 497-502', 'firstchar' => 'D', 'twochars' => 'De', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array( [maximum depth reached] ), 'Keyword' => array( [maximum depth reached] ) ), (int) 3 => array( 'id' => '005057', 'authors' => 'Grekas, N.;Calokerinos, A.C.', 'authorsweb' => 'N. Grekas and A. C. Calokerinos', 'title' => 'Continuous-flow molecular emission cavity analysis for organic sulfur compounds by alkaline hydrolysis', 'journal' => 'Anal. Chim. Acta', 'journal_id' => '0584', 'fadid' => 'ANCA1988V0204P00285', 'year' => '1988', 'volume' => '204', 'issue' => '1-2', 'startpage' => '285', 'endpage' => '293', 'type' => 'Journal Article', 'analytes' => '', 'matrices' => '', 'techniques' => ';0499;', 'keywords' => ';0188;', 'abstract' => 'The alkaline hydrolysis (4 M NaOH) of thioacetamide, thiosemicarbazide, thiodiacetic acid and dithio-oxamide at 45°C in a continuous-flow automatic analyzer. is described. The S2- produced is removed from the solution after acidification with 4 M H3PO4 and the H2S evolved is purged with N and determined by MECA. The sampling rate is 30 h-1, and the coefficient of variation is 1 to 2.5%.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '2', 'urlcheck' => '2014-10-11 15:53:35', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '00063', 'pauthor' => '!Calokerinos, A.C.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1016/S0003-2670(00)86366-7', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Continuous-flow molecular emission cavity analysis for organic sulfur compounds by alkaline hydrolysis', Anal. Chim. Acta, 1988 204(1-2) 285-293', 'firstchar' => 'C', 'twochars' => 'Co', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array([maximum depth reached]), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 4 => array( 'id' => '010820', 'authors' => 'El Hag, I.H.', 'authorsweb' => 'I. H. El-Hag', 'title' => 'Automated determination of nanogram amounts of phosphorus by molecular emission cavity analysis', 'journal' => 'Anal. Proc.', 'journal_id' => '0866', 'fadid' => 'ANPR1982V0019P00320', 'year' => '1982', 'volume' => '19', 'issue' => '6', 'startpage' => '320', 'endpage' => '321', 'type' => 'Journal Article', 'analytes' => ';1876;', 'matrices' => '', 'techniques' => ';0499;0474;', 'keywords' => '', 'abstract' => 'Molecular emission cavity analysis (MECA)1 is a flame photometric technique that relies on a cool flame source to generate band emissions, such as those from S,, BO, and HPO. The conventional manual method involves depositing the microlitre-volume sample into a cavity cut into the end of a rod, which is introduced manually to the flame, so that the emission generated within the cavity is viewed by the detector. The reproducibility of this method is unsatisfactory for fast emitting species because variables such as the exact time of injection, cavity residence time in the flame and cooling time after analysis need precise control.', 'language' => 'English', 'updated' => '2020-12-28 11:11:09', 'sjccheck' => 'No', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '3', 'urlcheck' => '2014-10-11 21:46:56', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => null, 'pauthor' => 'El Hag, I.H.', 'address' => 'Department of Chemistry, University of Birmingham, P.O. Box 363, Birmingham, B15 2TT England', 'email' => 'NA', 'notes' => 'No abstract online', 'url' => '10.1039/AP9821900316', 'urltype' => 'doi', 'gotpdf' => 'no', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Automated determination of nanogram amounts of phosphorus by molecular emission cavity analysis', Anal. Proc., 1982 19(6) 320-321', 'firstchar' => 'A', 'twochars' => 'Au', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array([maximum depth reached]) ) ) ) $c = array( 'id' => '004747', 'authors' => 'Burguera, J.L.;Burguera, M.;Flores, D.', 'authorsweb' => 'J. L. Burguera, M. Burguera and Daniel Flores', 'title' => 'Determination of some phosphorus-containing compounds by flow injection with a molecular emission cavity detector', 'journal' => 'Anal. Chim. Acta', 'journal_id' => '0584', 'fadid' => 'ANCA1985V0170P00331', 'year' => '1985', 'volume' => '170', 'issue' => '2', 'startpage' => '331', 'endpage' => '336', 'type' => 'Journal Article', 'analytes' => ';1876;1874;1877;1227;1860;1859;1856;', 'matrices' => '', 'techniques' => ';0499;0501;', 'keywords' => ';0302;', 'abstract' => 'Optimum conditions (e.g., flow rate, sample volume, dimensions of the tubing and flame composition) have been established for the determination of P-containing inorganic and organic compounds by the cited technique. The ranges of rectilinear response, detection limits and coefficient of variation (typical values being 10 to 200 ng, 2.5 and 3%, respectively) are tabulated for H3PO4, H3PO3, H3PO2, trimethyl phosphite, triethyl phosphite and tributylphosphine; sensitivity improved with decreasing O content of the compounds. The sample throughput was 20 h-1. As peaks were well separated, components of ternary mixtures could be determined.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '2', 'urlcheck' => '2014-10-11 15:47:40', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => null, 'pauthor' => 'NA', 'address' => 'Univ. Los Andes, Dept. Quim., Fac. Cienc., Merida 5101 Venezuela', 'email' => 'NA', 'notes' => null, 'url' => '10.1016/S0003-2670(00)81758-4', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Determination of some phosphorus-containing compounds by flow injection with a molecular emission cavity detector', Anal. Chim. Acta, 1985 170(2) 331-336', 'firstchar' => 'D', 'twochars' => 'De', 'CitationsTechnique' => array( 'id' => '001012', 'citation_id' => '004747', 'technique_id' => '0499' ), 'Analyte' => array( (int) 0 => array( 'id' => '01876', 'name' => 'Phosphorus', 'iupac_name' => 'phosphane', 'casrn' => '12185-10-3', 'synonyms' => 'Phosphorus tetramer; White phosphorus;', 'total' => '85', 'inchi' => 'InChI=1S/H2P/h1H2', 'inchikey' => 'XYFCBTPGUUZFHI-UHFFFAOYSA-N', 'formula' => 'P4', 'oxstate' => '', 'url' => '', 'charge' => '0', 'class1' => 'Element', 'class2' => 'NA', 'class3' => 'NA', 'class4' => 'Molecule', 'class5' => '', 'isgroup' => '', 'checked' => 'yes', 'citation_count' => '0', 'updated' => '2015-10-23 21:34:51', 'first' => 'P', 'nametotal' => 'Phosphorus**85', 'AnalytesCitation' => array( [maximum depth reached] ) ), (int) 1 => array( 'id' => '01874', 'name' => 'Phosphoric acid', 'iupac_name' => 'phosphoric acid', 'casrn' => '7664-38-2', 'synonyms' => 'Phosphoric acid, ORTHOPHOSPHORIC ACID, Phosphorsaeure, Sonac, 7664-38-2, Acidum phosphoricum, Evits, Wc-reiniger, Acide phosphorique, o-Phosphoric acid, White phosphoric acid, Phosphorsaeureloesungen, Acido fosforico, POLYPHOSPHORIC ACID, Acido fosforico [Italian], Fosforzuuroplossingen, Fosforzuuroplossingen [Dutch], Phosphorsaeureloesungen [German], Caswell No. 662, Phosphoric acid, ortho-, Acide phosphorique [French], H3PO4, UNII-E4GA8884NN, FEMA No. 2900, CCRIS 2949, CHEBI:26078, HSDB 1187, NBIIXXVUZAFLBC-UHFFFAOYSA-N, EINECS 231-633-2, NSC 80804, UN1805, EPA Pesticide Chemical Code 076001, NCGC00091005-01, Phosphoric acid solution, DSSTox_CID_4263, DSSTox_RID_77346, DSSTox_GSID_24263, acide phosphorique (FRENCH), CAS-7664-38-2, Phospholeum, Marphos, OyAxEa, Orthophosphoricacid, phosphate monoesters, Superphosphoric acid, ortho phosphoric acid, ortho-phosphoric acid, diphosphate tetrasodium, poly(phosphoric acid), tetraoxophosphoric acid, ortho- phosphoric acid, Phosphoric acid (NF), ACMC-20heq4, Phosphoric acid, 85%, Orthophosphoric monoester, phosphoric acid monoester, Condensed phosphoric acid, orthophosphoric monoesters, phosphate monoester (0), AC1L1AIN, trihydroxidooxidophosphorus, tetra-Sodium pyrophosphate, PO4-PHS, Phosphate Ionphosphate Ion, AC1Q7DL7, CHEMBL1187, PHOSPHORIC ACID, ACS, PHOSPHORIC ACID- D3, 40266_ALDRICH, 40278_ALDRICH, 40297_ALDRICH, 40299_ALDRICH, P5811_SIGMA, W290017_ALDRICH, D-Mannan, dihydrogen phosphate, 04102_RIEDEL, 04107_RIEDEL, 30417_RIEDEL, 345245_ALDRICH, 40266_RIEDEL, 40278_RIEDEL, 40297_RIEDEL, 40299_RIEDEL, 452289_ALDRICH, 466123_ALDRICH, 612162_ALDRICH, CHEBI:7794, E4GA8884NN, [PO(OH)3], 03366_FLUKA, 03367_FLUKA, 64957_FLUKA, 79606_FLUKA, 79607_FLUKA, 79614_FLUKA, 79617_FLUKA, 79617_SIGMA, 79621_FLUKA, 79623_FLUKA, 79626_FLUKA, BDBM14671, CHEBI:52641, CTK2H7098, HMDB02142, trihydrogen tetraoxophosphate(3-), MolPort-003-925-287, 04102_SIAL, 04107_SIAL, 30417_SIAL, 79621_SIAL, 79623_SIAL, phosphoric acid (ACD/Name 4.0), 215104_SIAL, 438081_SIAL, NSC80804, Tetrasodium pyrophosphate 10-hydrate, Tox21_111053, Tox21_202285, Tox21_303246, ANW-44010, NSC-80804, Buffer concentrate from phosphoric acid, LS-2425, MCULE-5726619687, RP18632, TRA0024659, TRA0037531, NCGC00091005-02, NCGC00257071-01, NCGC00259834-01, Phosphoric acid [UN1805] [Corrosive], E338, Phosphoric acid [UN1805] [Corrosive], Sodium pyrophosphate decahydrate BioChemica, P1745, Phosphate standard concentrate 1.00 g PO43-, D05467, Phosphate standard concentrate 10.00 g PO43-, 3B4-1603, 3B4-1628, 730A9101-D5DE-4668-97CA-7B6178B84417, 1339-32-8, 178560-73-1, 28602-75-7, 68891-72-5, 9044-08-0, Isooctanol, reaction products with phosphorus oxide (P2O5) and polyethylene glycol monotridecyl ether', 'total' => '6', 'inchi' => 'InChI=1S/H3O4P/c1-5(2,3)4/h(H3,1,2,3,4)', 'inchikey' => 'NBIIXXVUZAFLBC-UHFFFAOYSA-N', 'formula' => 'H3O4P', 'oxstate' => 'Zero', 'url' => '', 'charge' => '0', 'class1' => '', 'class2' => '', 'class3' => '', 'class4' => '', 'class5' => '', 'isgroup' => 'no', 'checked' => 'no', 'citation_count' => '0', 'updated' => '2015-12-11 16:18:02', 'first' => 'P', 'nametotal' => 'Phosphoric acid**6', 'AnalytesCitation' => array( [maximum depth reached] ) ), (int) 2 => array( 'id' => '01877', 'name' => 'Phosphorus acid', 'iupac_name' => '', 'casrn' => '', 'synonyms' => '', 'total' => '1', 'inchi' => 'InChI=1S/H3O3P/c1-4(2)3/h1-3H', 'inchikey' => '', 'formula' => '', 'oxstate' => null, 'url' => '', 'charge' => null, 'class1' => '', 'class2' => '', 'class3' => '', 'class4' => '', 'class5' => '', 'isgroup' => 'no', 'checked' => 'no', 'citation_count' => '0', 'updated' => '2015-12-11 09:53:17', 'first' => 'P', 'nametotal' => 'Phosphorus acid**1', 'AnalytesCitation' => array( [maximum depth reached] ) ), (int) 3 => array( 'id' => '01227', 'name' => 'Hypophosphorus acid', 'iupac_name' => 'phosphenous acid', 'casrn' => '6303-21-5', 'synonyms' => 'Hypophosphorous Acid; Phosphinic Acid; ', 'total' => '1', 'inchi' => 'InChI=1S/HO2P/c1-3-2/h(H,1,2)', 'inchikey' => 'GQZXNSPRSGFJLY-UHFFFAOYSA-N', 'formula' => 'H3O2P', 'oxstate' => 'Zero', 'url' => '', 'charge' => '0', 'class1' => 'Inorganic compound', 'class2' => 'NA', 'class3' => 'NA', 'class4' => 'Molecule', 'class5' => 'Acids', 'isgroup' => '', 'checked' => 'yes', 'citation_count' => '0', 'updated' => '2015-10-23 10:00:17', 'first' => 'H', 'nametotal' => 'Hypophosphorus acid**1', 'AnalytesCitation' => array( [maximum depth reached] ) ), (int) 4 => array( 'id' => '01860', 'name' => 'Trimethylphosphite', 'iupac_name' => 'trimethyl phosphite', 'casrn' => '121-45-9', 'synonyms' => 'TRIMETHYL PHOSPHITE, Trimethoxyphosphine, 121-45-9, Phosphorous acid, trimethyl ester, Methyl phosphite, Trimethylphosphite, Trimethylfosfit, Trimethoxyfosfin, Trimethylfosfit [Czech], NSC 6513, Trimethoxyfosfin [Czech], Fosforyn trojmetylowy [Czech], Methyl phosphite ((MeO)3P), HSDB 1007, CYTQBVOFDCPGCX-UHFFFAOYSA-N, EINECS 204-471-5, UN2329, PHOSPHOROUS ACID TRIMETHYL ESTER, PHOSPHOROUS ACID,TRIMETHYL ESTER, AI3-60394, trimethyl-phosphite, Fosforyn trojmetylowy, Trimethyl phosphite(TMP), DSSTox_CID_6979, AC1L1R2G, DSSTox_RID_78272, DSSTox_GSID_26979, SCHEMBL58775, T79707_ALDRICH, KSC489Q7J, UNII-26Q0321ZDG, 240907_ALDRICH, 326321_ALDRICH, 431249_ALDRICH, P(OCH3)3, Trimethyl phosphite, Redistilled, CHEMBL3186364, WLN: 1OPO1 & O1, CTK3I9874, NSC6513, 26Q0321ZDG, Trimethyl ester of phosphorous acid, NSC-6513, Tox21_200440, ANW-17635, ZINC01693569, AKOS000121918, RP19561, RTR-003503, TRA0054993, UN 2329, NCGC00257994-01, AN-22846, BP-21379, CAS-121-45-9, CJ-28346, KB-62108, S688, LS-109024, TR-003503, FT-0655759, Trimethyl phosphite [UN2329] [Flammable liquid], 3B4-1463, I14-4540, Trimethyl phosphite [UN2329] [Flammable liquid], InChI=1/C3H9O3P/c1-4-7(5-2)6-3/h1-3H', 'total' => '1', 'inchi' => 'InChI=1S/C3H9O3P/c1-4-7(5-2)6-3/h1-3H3', 'inchikey' => 'CYTQBVOFDCPGCX-UHFFFAOYSA-N', 'formula' => 'C3H9O3P', 'oxstate' => 'Zero', 'url' => '', 'charge' => '0', 'class1' => '', 'class2' => '', 'class3' => '', 'class4' => '', 'class5' => '', 'isgroup' => 'no', 'checked' => 'no', 'citation_count' => '0', 'updated' => '2015-12-11 16:18:02', 'first' => 'T', 'nametotal' => 'Trimethylphosphite**1', 'AnalytesCitation' => array( [maximum depth reached] ) ), (int) 5 => array( 'id' => '01859', 'name' => 'Triethylphosphite', 'iupac_name' => 'triethyl phosphite', 'casrn' => '122-52-1', 'synonyms' => 'TRIETHYL PHOSPHITE, 122-52-1, Triethoxyphosphine, Phosphorous acid, triethyl ester, Ethyl phosphite, (EtO)3P, Phosphorous Acid Triethyl Ester, triethylphosphite, Fosforyn trojetylowy [Czech], HSDB 895, BDZBKCUKTQZUTL-UHFFFAOYSA-N, NSC 5284, EINECS 204-552-5, UN2323, BRN 0956578, AI3-15624, DSSTox_CID_6991, DSSTox_RID_78275, DSSTox_GSID_26991, CAS-122-52-1, Phosphorus ether, triethyl-phosphite, tri ethyl phosphite, Fosforyn trojetylowy, AC1L1L5P, SCHEMBL6102, T61204_ALDRICH, KSC489Q6H, UNII-6B2R04S55G, SCHEMBL6509618, Jsp001508, CHEMBL3186349, (C2H5O)3P, 90540_FLUKA, CTK3I9863, NSC5284, 6B2R04S55G, AC1Q5977, NSC-5284, Tox21_201603, Tox21_303083, ANW-17989, ZINC00391966, AKOS000119964, RTR-003600, TRA0065727, UN 2323, NCGC00164018-01, NCGC00164018-02, NCGC00257080-01, NCGC00259152-01, AK109377, AN-15520, BC209245, CJ-03556, H473, ZB012152, LS-109021, TR-003600, FT-0653260, ST51052623, 47367-EP2269992A1, 47367-EP2270014A1, 47367-EP2280012A2, 47367-EP2287147A2, 47367-EP2298778A1, 47367-EP2305769A2, 47367-EP2308839A1, 47367-EP2311822A1, Triethyl phosphite [UN2323] [Flammable liquid], 4-01-00-01333 (Beilstein Handbook Reference), A804911, Triethyl phosphite [UN2323] [Flammable liquid], 3B4-1008, I04-0221, InChI=1/C6H15O3P/c1-4-7-10(8-5-2)9-6-3/h4-6H2,1-3H', 'total' => '1', 'inchi' => 'InChI=1S/C6H15O3P/c1-4-7-10(8-5-2)9-6-3/h4-6H2,1-3H3', 'inchikey' => 'BDZBKCUKTQZUTL-UHFFFAOYSA-N', 'formula' => 'C6H15O3P', 'oxstate' => 'Zero', 'url' => '', 'charge' => '0', 'class1' => '', 'class2' => '', 'class3' => '', 'class4' => '', 'class5' => '', 'isgroup' => 'no', 'checked' => 'no', 'citation_count' => '0', 'updated' => '2015-12-11 16:18:02', 'first' => 'T', 'nametotal' => 'Triethylphosphite**1', 'AnalytesCitation' => array( [maximum depth reached] ) ), (int) 6 => array( 'id' => '01856', 'name' => 'Tributylphosphine', 'iupac_name' => 'tributylphosphane', 'casrn' => '998-40-3', 'synonyms' => 'Tributylphosphine, Tributylphosphane, Tri-n-butylphosphine, 998-40-3, Phosphine, tributyl-, Tris(butyl)phosphine, Tributylfosfin, tributyl-phosphane, Tri-n-butyl phosphine, Tributylfosfin [Czech], TUQOTMZNTHZOKS-UHFFFAOYSA-N, EINECS 213-651-2, NSC 91700, SBB058500, UN3254, BRN 1738261, AI3-28071, Tributylphosphane [UN3254] [Spontaneously combustible], Tributylphosphorus, tri-butylphosphine, tributy-lphosphine, tributyl phosphine, Tributyl-phosphine, tri n-butylphosphine, Tri-n-butylphosphane, TBUP, PubChem6462, tri n-butyl phosphine, tri(n-butyl)phosphine, tri-n-butyl-phosphine, tris n-butyl phosphine, tri-(n-butyl)phosphine, PHOSPHINE,TRIBUTYL, PBu(n)3, Tributylphosphine solution, ACMC-209se7, UNII-0O52FJR7WN, AC1L22KN, SCHEMBL6033, 0O52FJR7WN, DSSTox_CID_26998, DSSTox_RID_82042, NCIOpen2_005716, DSSTox_GSID_46998, T49484_ALDRICH, KSC486M8N, 90827_ALDRICH, T7567_SIGMA, AMOT0224, P(N-BU)3, SCHEMBL3173609, (n-C4H9)3P, CHEMBL3185473, 90827_FLUKA, CTK3I6686, MolPort-003-928-509, ACT08937, NSC91700, Tox21_301600, ANW-41069, NSC-91700, RW2121, AKOS009128712, AM85995, GC10082, MCULE-2762367375, RP25958, RTR-030488, TRA0051408, NCGC00256212-01, AK-86027, AN-17357, BC203386, BP-10599, CAS-998-40-3, KB-61997, AB0007868, DB-009882, LS-106081, TL8006082, TR-030488, FT-0652241, ST51023413, A22090, 3B4-1782, I14-0295, S14-2834, InChI=1/C12H27P/c1-4-7-10-13(11-8-5-2)12-9-6-3/h4-12H2,1-3H, 141898-63-7', 'total' => '1', 'inchi' => 'InChI=1S/C12H27P/c1-4-7-10-13(11-8-5-2)12-9-6-3/h4-12H2,1-3H3', 'inchikey' => 'TUQOTMZNTHZOKS-UHFFFAOYSA-N', 'formula' => 'C12H27P', 'oxstate' => 'Zero', 'url' => '', 'charge' => '0', 'class1' => '', 'class2' => '', 'class3' => '', 'class4' => '', 'class5' => '', 'isgroup' => 'no', 'checked' => 'no', 'citation_count' => '0', 'updated' => '2015-10-23 21:34:43', 'first' => 'T', 'nametotal' => 'Tributylphosphine**1', 'AnalytesCitation' => array( [maximum depth reached] ) ) ), 'Matrix' => array(), 'Keyword' => array( (int) 0 => array( 'id' => '0302', 'type' => 'Feature', 'keyword' => 'Optimization', 'newKeyword' => '', 'synonyms' => '', 'fao' => '', 'total' => '1069', 'first' => 'O', 'keytotal' => 'Optimization**1069', 'CitationsKeyword' => array( [maximum depth reached] ) ) ) ) $i = (int) 1 $path = '' $a = '' $url = 'http://dx.doi.org/10.1016/S0003-2670(00)81758-4' $aus = 'J. L. Burguera, M. Burguera and Daniel Flores'include - APP/View/Elements/citation.ctp, line 40 View::_evaluate() - CORE/Cake/View/View.php, line 971 View::_render() - CORE/Cake/View/View.php, line 933 View::_renderElement() - CORE/Cake/View/View.php, line 1224 View::element() - CORE/Cake/View/View.php, line 418 include - APP/View/Techniques/view.ctp, line 52 View::_evaluate() - CORE/Cake/View/View.php, line 971 View::_render() - CORE/Cake/View/View.php, line 933 View::render() - CORE/Cake/View/View.php, line 473 Controller::render() - CORE/Cake/Controller/Controller.php, line 968 Dispatcher::_invoke() - CORE/Cake/Routing/Dispatcher.php, line 200 Dispatcher::dispatch() - CORE/Cake/Routing/Dispatcher.php, line 167 [main] - APP/webroot/index.php, line 109
"Determination Of Some Organophosphorus Insecticides By Flow Injection With A Molecular Emission Cavity Detector"
Anal. Chim. Acta
1986 Volume 179, Issue 1 Pages 497-502
Notice (8): Undefined variable: uid [APP/View/Elements/citation.ctp, line 40]J. L. Burguera and M. BurgueraCode Context?>
<?php
if($uid!='') {
$viewFile = '/home/stuchalk/public_html/fad/app/View/Elements/citation.ctp' $dataForView = array( 'data' => array( 'Technique' => array( 'id' => '0499', 'label' => 'Spectrophotometry', 'level1' => 'Spectrophotometry', 'level2' => 'molecular emission', 'level3' => 'cavity', 'level4' => '', 'level5' => '', 'synonyms' => '', 'champ' => '', 'total' => '5', 'updated' => '0000-00-00 00:00:00', 'name' => 'Spectrophotometry, molecular emission, cavity', 'nametotal' => 'Spectrophotometry, molecular emission, cavity**5', 'first' => 'S' ), 'Citation' => array( (int) 0 => array( [maximum depth reached] ), (int) 1 => array( [maximum depth reached] ), (int) 2 => array( [maximum depth reached] ), (int) 3 => array( [maximum depth reached] ), (int) 4 => array( [maximum depth reached] ) ) ), 'c' => array( 'id' => '004887', 'authors' => 'Burguera, J.L.;Burguera, M.', 'authorsweb' => 'J. L. Burguera and M. Burguera', 'title' => 'Determination of some organophosphorus insecticides by flow injection with a molecular emission cavity detector', 'journal' => 'Anal. Chim. Acta', 'journal_id' => '0584', 'fadid' => 'ANCA1986V0179P00497', 'year' => '1986', 'volume' => '179', 'issue' => '1', 'startpage' => '497', 'endpage' => '502', 'type' => 'Journal Article', 'analytes' => ';1270;0785;0809;1419;1727;', 'matrices' => ';0372;', 'techniques' => ';0499;0417;', 'keywords' => ';0153;', 'abstract' => 'The insecticides are extracted from waters into hexane - CH2Cl2 (17:3) at pH <7 followed by measurement of the HPO emission at 528 nm vs. time in the system previously described (Ibid., 1985, 170, 331). Dicrotophos and dimethoate are measured in the range of 5 to 100 ng of P and malathion and parathion from 10 to 120 ng with detection limits between 0.8 and 2.5 ng. Recoveries are between 73.4 and 98.1% for 50 ng of P with coefficient of variation between 2.5 and 3.4% for 20 ng (n = 8).', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '3', 'urlcheck' => '2014-10-11 15:49:56', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '00059', 'pauthor' => '!Burguera, J.L.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1016/S0003-2670(00)84499-2', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Determination of some organophosphorus insecticides by flow injection with a molecular emission cavity detector', Anal. Chim. Acta, 1986 179(1) 497-502', 'firstchar' => 'D', 'twochars' => 'De', 'CitationsTechnique' => array( 'id' => '001130', 'citation_id' => '004887', 'technique_id' => '0499' ), 'Analyte' => array( (int) 0 => array( [maximum depth reached] ), (int) 1 => array( [maximum depth reached] ), (int) 2 => array( [maximum depth reached] ), (int) 3 => array( [maximum depth reached] ), (int) 4 => array( [maximum depth reached] ) ), 'Matrix' => array( (int) 0 => array( [maximum depth reached] ) ), 'Keyword' => array( (int) 0 => array( [maximum depth reached] ) ) ), 'i' => (int) 2 ) $data = array( 'Technique' => array( 'id' => '0499', 'label' => 'Spectrophotometry', 'level1' => 'Spectrophotometry', 'level2' => 'molecular emission', 'level3' => 'cavity', 'level4' => '', 'level5' => '', 'synonyms' => '', 'champ' => '', 'total' => '5', 'updated' => '0000-00-00 00:00:00', 'name' => 'Spectrophotometry, molecular emission, cavity', 'nametotal' => 'Spectrophotometry, molecular emission, cavity**5', 'first' => 'S' ), 'Citation' => array( (int) 0 => array( 'id' => '004602', 'authors' => 'Burguera, J.L.;Burguera, M.', 'authorsweb' => 'J. L. Burguera and M. Burguera', 'title' => 'Determination of sulfur anions by flow injection with a molecular emission cavity detector', 'journal' => 'Anal. Chim. Acta', 'journal_id' => '0584', 'fadid' => 'ANCA1984V0157P00177', 'year' => '1984', 'volume' => '157', 'issue' => '1', 'startpage' => '177', 'endpage' => '181', 'type' => 'Journal Article', 'analytes' => ';2237;2242;2234;', 'matrices' => '', 'techniques' => ';0499;', 'keywords' => '', 'abstract' => 'A molecular-emission cavity detector is attached to a flow injection system for the determination of S2-, SO32- and SO42- in the ranges 2 to 130, 3 to 150 and 5 to 250 ng of S, respectively, in 3 µL samples. Experimental details are given. The effects of flow rate of solution into the cavity are discussed. For determinations of SO42-, the coefficient of variation is 2.0% for 3 ng of S. The analytical signal is available within 30 s after sample injection, permitting ~100 measurements in 1 h. If the carrier stream is changed from water to H2O2 solution, only one peak is obtained corresponding to total S. Recovery of SO32- and S2- ranges from 90 to 95%.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '2', 'urlcheck' => '2014-10-11 15:45:49', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => null, 'pauthor' => 'NA', 'address' => 'Univ. de Los Andes, Dept. Quim., Fac. Cienc., Merida 5101-A Venezuela', 'email' => 'NA', 'notes' => null, 'url' => '10.1016/S0003-2670(00)83619-3', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Determination of sulfur anions by flow injection with a molecular emission cavity detector', Anal. Chim. Acta, 1984 157(1) 177-181', 'firstchar' => 'D', 'twochars' => 'De', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array([maximum depth reached]) ), (int) 1 => array( 'id' => '004747', 'authors' => 'Burguera, J.L.;Burguera, M.;Flores, D.', 'authorsweb' => 'J. L. Burguera, M. Burguera and Daniel Flores', 'title' => 'Determination of some phosphorus-containing compounds by flow injection with a molecular emission cavity detector', 'journal' => 'Anal. Chim. Acta', 'journal_id' => '0584', 'fadid' => 'ANCA1985V0170P00331', 'year' => '1985', 'volume' => '170', 'issue' => '2', 'startpage' => '331', 'endpage' => '336', 'type' => 'Journal Article', 'analytes' => ';1876;1874;1877;1227;1860;1859;1856;', 'matrices' => '', 'techniques' => ';0499;0501;', 'keywords' => ';0302;', 'abstract' => 'Optimum conditions (e.g., flow rate, sample volume, dimensions of the tubing and flame composition) have been established for the determination of P-containing inorganic and organic compounds by the cited technique. The ranges of rectilinear response, detection limits and coefficient of variation (typical values being 10 to 200 ng, 2.5 and 3%, respectively) are tabulated for H3PO4, H3PO3, H3PO2, trimethyl phosphite, triethyl phosphite and tributylphosphine; sensitivity improved with decreasing O content of the compounds. The sample throughput was 20 h-1. As peaks were well separated, components of ternary mixtures could be determined.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '2', 'urlcheck' => '2014-10-11 15:47:40', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => null, 'pauthor' => 'NA', 'address' => 'Univ. Los Andes, Dept. Quim., Fac. Cienc., Merida 5101 Venezuela', 'email' => 'NA', 'notes' => null, 'url' => '10.1016/S0003-2670(00)81758-4', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Determination of some phosphorus-containing compounds by flow injection with a molecular emission cavity detector', Anal. Chim. Acta, 1985 170(2) 331-336', 'firstchar' => 'D', 'twochars' => 'De', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 2 => array( 'id' => '004887', 'authors' => 'Burguera, J.L.;Burguera, M.', 'authorsweb' => 'J. L. Burguera and M. Burguera', 'title' => 'Determination of some organophosphorus insecticides by flow injection with a molecular emission cavity detector', 'journal' => 'Anal. Chim. Acta', 'journal_id' => '0584', 'fadid' => 'ANCA1986V0179P00497', 'year' => '1986', 'volume' => '179', 'issue' => '1', 'startpage' => '497', 'endpage' => '502', 'type' => 'Journal Article', 'analytes' => ';1270;0785;0809;1419;1727;', 'matrices' => ';0372;', 'techniques' => ';0499;0417;', 'keywords' => ';0153;', 'abstract' => 'The insecticides are extracted from waters into hexane - CH2Cl2 (17:3) at pH <7 followed by measurement of the HPO emission at 528 nm vs. time in the system previously described (Ibid., 1985, 170, 331). Dicrotophos and dimethoate are measured in the range of 5 to 100 ng of P and malathion and parathion from 10 to 120 ng with detection limits between 0.8 and 2.5 ng. Recoveries are between 73.4 and 98.1% for 50 ng of P with coefficient of variation between 2.5 and 3.4% for 20 ng (n = 8).', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '3', 'urlcheck' => '2014-10-11 15:49:56', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '00059', 'pauthor' => '!Burguera, J.L.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1016/S0003-2670(00)84499-2', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Determination of some organophosphorus insecticides by flow injection with a molecular emission cavity detector', Anal. Chim. Acta, 1986 179(1) 497-502', 'firstchar' => 'D', 'twochars' => 'De', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array( [maximum depth reached] ), 'Keyword' => array( [maximum depth reached] ) ), (int) 3 => array( 'id' => '005057', 'authors' => 'Grekas, N.;Calokerinos, A.C.', 'authorsweb' => 'N. Grekas and A. C. Calokerinos', 'title' => 'Continuous-flow molecular emission cavity analysis for organic sulfur compounds by alkaline hydrolysis', 'journal' => 'Anal. Chim. Acta', 'journal_id' => '0584', 'fadid' => 'ANCA1988V0204P00285', 'year' => '1988', 'volume' => '204', 'issue' => '1-2', 'startpage' => '285', 'endpage' => '293', 'type' => 'Journal Article', 'analytes' => '', 'matrices' => '', 'techniques' => ';0499;', 'keywords' => ';0188;', 'abstract' => 'The alkaline hydrolysis (4 M NaOH) of thioacetamide, thiosemicarbazide, thiodiacetic acid and dithio-oxamide at 45°C in a continuous-flow automatic analyzer. is described. The S2- produced is removed from the solution after acidification with 4 M H3PO4 and the H2S evolved is purged with N and determined by MECA. The sampling rate is 30 h-1, and the coefficient of variation is 1 to 2.5%.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '2', 'urlcheck' => '2014-10-11 15:53:35', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '00063', 'pauthor' => '!Calokerinos, A.C.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1016/S0003-2670(00)86366-7', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Continuous-flow molecular emission cavity analysis for organic sulfur compounds by alkaline hydrolysis', Anal. Chim. Acta, 1988 204(1-2) 285-293', 'firstchar' => 'C', 'twochars' => 'Co', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array([maximum depth reached]), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 4 => array( 'id' => '010820', 'authors' => 'El Hag, I.H.', 'authorsweb' => 'I. H. El-Hag', 'title' => 'Automated determination of nanogram amounts of phosphorus by molecular emission cavity analysis', 'journal' => 'Anal. Proc.', 'journal_id' => '0866', 'fadid' => 'ANPR1982V0019P00320', 'year' => '1982', 'volume' => '19', 'issue' => '6', 'startpage' => '320', 'endpage' => '321', 'type' => 'Journal Article', 'analytes' => ';1876;', 'matrices' => '', 'techniques' => ';0499;0474;', 'keywords' => '', 'abstract' => 'Molecular emission cavity analysis (MECA)1 is a flame photometric technique that relies on a cool flame source to generate band emissions, such as those from S,, BO, and HPO. The conventional manual method involves depositing the microlitre-volume sample into a cavity cut into the end of a rod, which is introduced manually to the flame, so that the emission generated within the cavity is viewed by the detector. The reproducibility of this method is unsatisfactory for fast emitting species because variables such as the exact time of injection, cavity residence time in the flame and cooling time after analysis need precise control.', 'language' => 'English', 'updated' => '2020-12-28 11:11:09', 'sjccheck' => 'No', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '3', 'urlcheck' => '2014-10-11 21:46:56', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => null, 'pauthor' => 'El Hag, I.H.', 'address' => 'Department of Chemistry, University of Birmingham, P.O. Box 363, Birmingham, B15 2TT England', 'email' => 'NA', 'notes' => 'No abstract online', 'url' => '10.1039/AP9821900316', 'urltype' => 'doi', 'gotpdf' => 'no', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Automated determination of nanogram amounts of phosphorus by molecular emission cavity analysis', Anal. Proc., 1982 19(6) 320-321', 'firstchar' => 'A', 'twochars' => 'Au', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array([maximum depth reached]) ) ) ) $c = array( 'id' => '004887', 'authors' => 'Burguera, J.L.;Burguera, M.', 'authorsweb' => 'J. L. Burguera and M. Burguera', 'title' => 'Determination of some organophosphorus insecticides by flow injection with a molecular emission cavity detector', 'journal' => 'Anal. Chim. Acta', 'journal_id' => '0584', 'fadid' => 'ANCA1986V0179P00497', 'year' => '1986', 'volume' => '179', 'issue' => '1', 'startpage' => '497', 'endpage' => '502', 'type' => 'Journal Article', 'analytes' => ';1270;0785;0809;1419;1727;', 'matrices' => ';0372;', 'techniques' => ';0499;0417;', 'keywords' => ';0153;', 'abstract' => 'The insecticides are extracted from waters into hexane - CH2Cl2 (17:3) at pH <7 followed by measurement of the HPO emission at 528 nm vs. time in the system previously described (Ibid., 1985, 170, 331). Dicrotophos and dimethoate are measured in the range of 5 to 100 ng of P and malathion and parathion from 10 to 120 ng with detection limits between 0.8 and 2.5 ng. Recoveries are between 73.4 and 98.1% for 50 ng of P with coefficient of variation between 2.5 and 3.4% for 20 ng (n = 8).', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '3', 'urlcheck' => '2014-10-11 15:49:56', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '00059', 'pauthor' => '!Burguera, J.L.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1016/S0003-2670(00)84499-2', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Determination of some organophosphorus insecticides by flow injection with a molecular emission cavity detector', Anal. Chim. Acta, 1986 179(1) 497-502', 'firstchar' => 'D', 'twochars' => 'De', 'CitationsTechnique' => array( 'id' => '001130', 'citation_id' => '004887', 'technique_id' => '0499' ), 'Analyte' => array( (int) 0 => array( 'id' => '01270', 'name' => 'Insecticides', 'iupac_name' => '', 'casrn' => '', 'synonyms' => '', 'total' => '4', 'inchi' => '', 'inchikey' => '', 'formula' => '', 'oxstate' => null, 'url' => '', 'charge' => null, 'class1' => '', 'class2' => '', 'class3' => '', 'class4' => '', 'class5' => '', 'isgroup' => 'no', 'checked' => 'no', 'citation_count' => '0', 'updated' => '2015-12-11 09:53:17', 'first' => 'I', 'nametotal' => 'Insecticides**4', 'AnalytesCitation' => array( [maximum depth reached] ) ), (int) 1 => array( 'id' => '00785', 'name' => 'Dicrotophos', 'iupac_name' => '[(E)-4-(dimethylamino)-4-oxobut-2-en-2-yl] dimethyl phosphate', 'casrn' => '141-66-2', 'synonyms' => 'Phosphoric acid, 3-(dimethylamino)-1-methyl-3-oxo-1-propenyl dimethyl ester, (E)-; Phosphoric acid, dimethyl ester, ester with 3-hydroxy-N,N-dimethylcrotonamide, (E)-; trans-Bidrin; Bidrin; C 709; Carbicron; Carbomicron; Dimethyl 2-Dimethylcarbamoyl-1-methylvinyl phosphate; Ektafos; ENT 24,482; Karbicron; Oleobidrin; SD 3562; Phosphoric acid, dimethyl ester, ester with (E)-3-hydroxy-N,N-dimethylcrotonamide; Bidirl; Ciba 709; Crotonamide, 3-hydroxy-N,N-dimethyl-, cis-, dimethyl phosphate; Crotonamide, 3-hydroxy-N-N-dimethyl-, dimethyl phosphate, cis-; Crotonamide, 3-hydroxy-N-N-dimethyl-, dimethyl phosphate, (E)-; Diapadrin; Dicrotofos; 3-(Dimethoxyphosphinyloxy)-N,N-dimethyl-cis-crotonamide; 3-(Dimethoxyphosphinyloxy)-N,N dimethylisocrotonamide; 3-(Dimethylamino)-1-methyl-3-oxo-1-propenyl dimethyl phosphate; cis-2-Dimethylcarbamoyl-1-methylvinyl dimethylphosphate; O,O-Dimethyl-O-(2-dimethyl-carbamoyl-1-methyl-vinyl)phosphate; 2-Dimethyl cis-2-dimethyl-carbamoyl-1-methylvinyl phosphate; O,O-Dimethyl O-(N,N-dimethylcarbamoyl-1-methylvinyl) phosphate; O,O-Dimethyl-O-(1,4-dimethyl-3-oxo-4-aza-pent-1-enyl)fosfaat; O,O-Dimethyl-O-(1,4-dimethyl-3-oxo-4-aza-pent-1-enyl)phosphate; O,O-Dimethyl-O-(1-methyl-2-N,N-dimethyl-carbamoyl)-vinyl-phosphat; Dimethyl phosphate of 3-hydroxy-N,N-dimethyl-cis-crotonamide; Dimethyl phosphate ester with 3-hydroxy-N,N-dimethyl-cis-crotonamide; O,O-Dimetil-O-(1,4-dimetil-3-oxo-4-aza-pent-1-enil)-fosfato; 3-Hydroxydimethyl crotonamide dimethyl phosphate; 3-Hydroxy-N,N-dimethyl-cis-crotonamide dimethyl phosphate; OMS 253; Phosphate de dimethyle et de 2-dimethylcarbamoyl 1-methyl vinyle; Phosphoric acid 3-(dimethylamino)-1-methyl-3-oxo-1-propenyl dimethyl ester; Phosphoric acid, dimethyl ester, ester with cis-3-hydroxy-N,N-dimethylcrotonamide; Phosphoric acid, dimethyl 1-methyl-N,N-(dimethylamino)-3-oxo-1-propenyl ester, (E)-; Shell sd-3562; (1E)-3-(Dimethylamino)-1-methyl-3-oxo-1-propenyl dimethyl phosphate', 'total' => '1', 'inchi' => 'InChI=1S/C8H16NO5P/c1-7(6-8(10)9(2)3)14-15(11,12-4)13-5/h6H,1-5H3/b7-6+', 'inchikey' => 'VEENJGZXVHKXNB-VOTSOKGWSA-N', 'formula' => 'C8H16NO5P', 'oxstate' => 'Zero', 'url' => '', 'charge' => '0', 'class1' => 'Organic compound', 'class2' => 'NA', 'class3' => 'NA', 'class4' => 'Molecule', 'class5' => '', 'isgroup' => '', 'checked' => 'yes', 'citation_count' => '0', 'updated' => '2015-12-11 16:18:02', 'first' => 'D', 'nametotal' => 'Dicrotophos**1', 'AnalytesCitation' => array( [maximum depth reached] ) ), (int) 2 => array( 'id' => '00809', 'name' => 'Dimethoate', 'iupac_name' => '2-dimethoxyphosphinothioylsulfanyl-N-methylacetamide', 'casrn' => '60-51-5', 'synonyms' => 'Phosphorodithioic acid, O,O-dimethyl S-[2-(methylamino)-2-oxoethyl] ester; Phosphorodithioic acid, O,O-dimethyl ester, S-ester with 2-mercapto-N-methylacetamide; American Cyanamid 12,880; BI 58; Cygon; Cygon Insecticide; Cygon 4E; CL 12880; Daphene; De-Fend; Dimeton; Dimevur; Experimental Insecticide 12,880; ENT-24650; Fosfatox R; Fosfotox; Fosfotox R; Fosfotox R 35; Fostion MM; FIP; Lurgo; Maxima Phlanzenschutz; O,O-Dimethyl S-(N-methylcarbamoylmethyl) dithiophosphate; O,O-Dimethyl S-(N-methylcarbamoylmethyl) phosphorodithioate; Perfecthion; Perfekthion; Phosphamid; Phosphamide; PEI 75; Racusan; Rogor; Rogor L; Rogor P; Rogor 20 L; Rogor 40; Roxion; S-Methylcarbamoylmethyl O,O-Dimethyl phosphorodithioate; Sinoratox; 8014 Bis HC; Phosphorodithioic acid, O,O-dimethyl S-*2-(methylamino)-2-oxoethyl; Dimethoate bayer; Fosfamid; Rebelate; Systemic insecticide; Turbair; o,o-Dimethyl S-[2-(methylamino)-2-oxoethyl] dithiophosphate', 'total' => '1', 'inchi' => 'InChI=1S/C5H12NO3PS2/c1-6-5(7)4-12-10(11,8-2)9-3/h4H2,1-3H3,(H,6,7)', 'inchikey' => 'MCWXGJITAZMZEV-UHFFFAOYSA-N', 'formula' => 'C5H12NO3PS2', 'oxstate' => 'Zero', 'url' => '', 'charge' => '0', 'class1' => 'Organic compound', 'class2' => 'NA', 'class3' => 'NA', 'class4' => 'Molecule', 'class5' => 'Pesticides', 'isgroup' => '', 'checked' => 'yes', 'citation_count' => '0', 'updated' => '2015-12-11 16:18:02', 'first' => 'D', 'nametotal' => 'Dimethoate**1', 'AnalytesCitation' => array( [maximum depth reached] ) ), (int) 3 => array( 'id' => '01419', 'name' => 'Malathion', 'iupac_name' => 'diethyl 2-dimethoxyphosphinothioylsulfanylbutanedioate', 'casrn' => '121-75-5', 'synonyms' => 'malathion, Carbophos, Mercaptothion, Carbofos, Karbofos, Prioderm, Phosphothion, Cythion, Maldison, Sadophos, Carbetox, Chemathion, Ethiolacar, Oleophosphothion, Fosfothion, Fosfotion, Malagran, Malakill, Malaphos, Malaspray, Malathon, Moscarda, Fyfanon, Malafor, Malamar, Malatol, Malatox, Malphos, Sadofos, Sumitox, Taskil, Etiol, Ovide, Emmatos extra, Ortho Malathion, Siptox I, Carbetovur, Extermathion, Malathion E50, Cimexan, Emmatos, Forthion, Hilthion, Malacide, Malasol, Malation, Kypfos, Malmed, Carbethoxy malathion, Malamar 50, Kop-thion, Compound 4049, Detmol MA, 121-75-5, Mercaptotion, Calmathion, Celthion, Cleensheen, Fosfotion 550, Malathione, Malathyl, Malataf, Malathion LV Concentrate, Zithiol, Insecticide no. 4049, Staeubol-Puder, Derbac-M, Malathiazol, Malathiozoo, American cyanamid 4,049, Camathion, Carbafos, Dorthion, Malaphele, Organoderm, Paladin, Maltox, Vetiol, Flair, Vegfru malatox, Lice Rid, Hilthion 25wdp, Latka 4049, Maltox MLT, Kill-A-Mite, Malation [Polish], Sadofos 30, Mercaptosuccinic acid diethyl ester, NCI-C00215, SF 60, Kop-Thionkypfosmalacide, Experimental insecticide 4049, Fog 3, Mercaptotion [Spanish], Four thousand forty-nine, TM-4049, AC 26691, detm ol ma, Latka 4049 [Czech], Suleo-M, Malathion 60, OMS 1, Malathion (USP), Malathion [USP], CCRIS 368, EL 4049, CHEBI:6651, HSDB 665, Ovide (TN), O,O-Dimethyldithiophosphate diethylmercaptosuccinate, Spectrum_001795, Malathion-2,3-14C, SpecPlus_000386, Diethyl (dimethoxyphosphinothioylthio)succinate, MET86C_SUPELCO, NSC 6524, PS86_SUPELCO, Spectrum2_001228, Spectrum3_000813, Spectrum4_000653, Spectrum5_001936, EINECS 204-497-7, IFO 13140, Dicarboethoxyethyl O,O-dimethyl phosphorodithioate, ENT 17,034, MALATHION, 96%, BRN 1804525, UNII-U5N7SU872W, diethyl 2-dimethoxyphosphinothioylsulfanylbutanedioate, NCGC00091902-05, BSPBio_002305, KBioGR_001025, KBioSS_002288, DivK1c_006482, M1912_SIGMA, O,O-Dimethyl S-(1,2-dicarbethoxyethyl) dithiophosphate, SPBio_001076, AI3-17034, 36143_RIEDEL, AC1L1H72, TAK, CHEMBL1200468, 36143_FLUKA, C10H19O6PS2, JXSJBGJIGXNWCI-UHFFFAOYSA-, KBio1_001426, KBio2_002286, KBio2_004854, KBio2_007422, KBio3_001805, NSC6524, JXSJBGJIGXNWCI-UHFFFAOYSA-N, malathion ,s-(1,2-dicarbethoxyl), 8059HC, LS-654, Succinic acid, mercapto-, diethyl ester, S-ester with O,O-dimethyl phosphorodithioate, S-(1,2-Dicarbethoxyethyl) O,O-dimethyldithiophosphate, DB00772, O,O-Dimethyl S-(1,2-dicarbethoxyethyl)phosphorodithioate, S-1,2-Bis(ethoxycarbonyl)ethyl-O,O-dimethyl thiophosphate, NCGC00091902-01, NCGC00091902-02, NCGC00091902-03, NCGC00091902-06, NCGC00091902-07, NCGC00091902-08, Diethyl mercaptosuccinate, O,O-dimethyl dithiophosphate, S-ester, O,O-Dimethyl S-1,2-di(ethoxycarbamyl)ethyl phosphorodithioate, Butanedioic acid, ((dimethoxyphosphinothioyl)thio)-, diethyl ester, Butanedioic acid, [(dimethoxyphosphinothioyl)thio]-, diethyl ester, Diethyl(dimethoxythiophosphorylthio)succinate, DSSTox_CID_791, S-(1,2-Di(ethoxycarbonyl)ethyl) dimethyl phosphorothiolothionate, C07497, D00534, WLN: 2OV1YVO2 & SPS & O1 & O1, Diethyl 2-(dimethoxyphosphinothioylthio)succinate, O,O-Dimethyl-S-1,2-dikarbetoxylethylditiofosfat, DSSTox_RID_75791, Phosphorodithioic acid, O,O-dimethyl ester, S-ester with diethyl mercaptosuccinate, DSSTox_GSID_20791, L001138, 11096-67-6, Diethyl ((dimethoxyphosphinothioyl)thio)butanedioate, diethyl 2-[(dimethoxyphosphorothioyl)thio]succinate, Diethyl mercaptosuccinate, O,O-dimethyl thiophosphate, I09-0505, O,O-Dimethyl-S-1,2-dikarbetoxylethylditiofosfat [Czech], Diethyl mercaptosuccinate, O,O-dimethyl phosphorodithioate, O,O-Dwumetylo-S-1,2-bis(karboetoksyetylo)-dwutiofosforan, S-(1,2-Bis(carbethoxy)ethyl) O,O-dimethyl dithiophosphate, S-(1,2-Dicarbethoxyethyl) O,O-dimethylphosphorodithioate, ((Dimethoxyphosphinothioyl)thio)butanedioic acid diethyl ester, [(dimethoxyphosphinothioyl)thio]butanedioic acid diethyl ester, 1,2-Di(ethoxycarbonyl)ethyl O,O-dimethyl phosphorodithioate, Diethyl mercaptosuccinic acid O,O-dimethyl phosphorodithioate, S-(1,2-Bis(etossi-carbonil)-etil)-O,O-dimetil-ditiofosfato, [(Dimethoxyphosphinothioyl)thio]butanedioic acid, diethyl ester, O,O-Dimethyl S-(1,2-bis(ethoxycarbonyl)ethyl) dithiophosphate, O,O-Dimethyl-S-1,2-(dicarbaethoxyaethyl)-dithiophosphat [German], S-(1,2-Bis(ethoxy-carbonyl)-ethyl)-O,O-dimethyl-dithiofosfaat, S-(1,2-Bis(ethoxycarbonyl)ethyl) O,O-dimethyl phosphorodithioate, S-(1,O-dimethyl phosphorodithioate, S-[1,O-dimethyl phosphorodithioate, Diethyl mercaptosuccinate S-ester with O,O-dimethylphosphorodithioate, Dithiophosphate de O,O-dimethyle et de S-(1,2-dicarboethoxyethyle), O,O-Dwumetylo-S-1,2-bis(karboetoksyetylo)-dwutiofosforan [Polish], S-(1,2-Bis(etossi-carbonil)-etil)-O,O-dimetil-ditiofosfato [Italian], Butanedioic acid, ((dimethoxyphosphinothioyl)-thio)-, diethyl ester, (+-)-, Diethyl (+-)-mercaptosuccinate, S-ester with O,O-dimethyl phosphorodithioate, Diethyl mercaptosuccinic acid, S-ester of O,O-dimethyl phosphorodithioate, Dithiophosphate de O,O-dimethyle et de S-(1,2-dicarboethoxyethyle) [French], S-(1,2-Bis(aethoxy-carbonyl)-aethyl)-O,O-dimethyl-dithiophosphat [German], S-(1,2-Bis(ethoxy-carbonyl)-ethyl)-O,O-dimethyl-dithiofosfaat [Dutch], Succinic acid, mercapto-, diethyl ester, S-ester with O,O-dimethylphosphorodithioate, CAS-121-75-5, diethyl [(dimethoxyphosphinothioyl)thio]butanedioate, S-[1,2-Bis(carbethoxy)ethyl] O,O-dimethyl dithiophosphate, Gammaxine, Malathyne, Radotion, S-[1,2-Bis(ethoxycarbonyl)ethyl] O,O-dimethyl phosphorodithioate, Quellada-M, Malathion ULV, CID4004, Suleo M, Malathion (old ID), ACMC-20n0ay, Malathion [USP:BAN], D008294, SCHEMBL27358, S-(1,O-dimetil-ditiofosfato, S-1,O-dimethyl thiophosphate, S-(1,O-dimethyl-dithiofosfaat, 1,O-dimethyl phosphordithioates, O,2-dikarbetoxylethylditiofosfat, S-(1,O-dimethyl-dithiophasphat, Butanedioic acid, [(dimethoxyphosphinothioyl)thio]-, diethyl ester, (R)-, BDBM85372, CTK8E8095, S-[1,O-dimethyl dithiophosphate, MolPort-003-665-439, HMS3264A04, Pharmakon1600-00330021, 141318-03-8, NSC-6524, Tox21_111175, Tox21_400048, CCG-39152, DAP000895, NSC755848, AKOS015897264, O,2-dicarbethoxyethyl) dithiophosphate, Tox21_111175_1, NSC-755848, NCGC00091902-09, NCGC00091902-11, O,2-dicarbethoxyethyl) phosphorodithioate, AN-22853, BC203973, CAS_121-75-5, O,2-dicarbethoxyethyl) thiothionophosphate, Dithiophosphate de O,2-dicarboethoxyethyle), TR-003531, Dicarbethoxyethyl-O,O-dimethyldithiophosphate, FT-0603323, O,2-di(ethoxycarbamyl)ethyl phosphorothioate, O,O-Dimethyl S-1,2-di(ethoxycarbamyl)ethyl, 0,2-bis(ethoxycarbonyl)ethyl] dithiophosphate, K-1631, O,O-Dimethyl S-(1,2-bis(ethoxycarbonyl)ethyl), Diethyl (dimethoxyphosphinothioylthio) butanedioate, Diethyl mercaptosuccinate,O-dimethyl thiophosphate, 3B2-2211, diethyl [(dimethox yphosphinothioyl)thio]butanedioate, Diethyl [(dimethoxyphosphinothoiyl)thio]butanedioate, Dimethyl dithiophosphate of diethyl mercaptosuccinate, O,O-Dimethyl dithiophosphate diethylmercaptosuccinate, O,O-dimethyldithiophosphate diethyl mercaptosuccinate, 1,2-D.(ethoxycarbonyl)dimethyl phosphorothiolothionate, Diethyl mercaptosuccinate,O-dimethyl phosphorodithioate, Dimeth yl phosphorodithioate of diethyl mercaptosuccinate, Dimethyl phosphorodithioate of diethyl mercaptosuccinate, O,O-Dimethyl dithiophosphate of diethyl mercaptosuccinate, O,O-dimethyl S-( 1,2-dicarbethoxyethyl) dithiophosphate, O,O-Dimethyl-S-1,2-(dicarbaethoxyaethyl)-dithiophosphat, 1,2-Di(ethoxycarbonyl)ethyl O,O-dimethyl phosphordithioate, diethyl 2-[(dimethoxyphosphorothioyl)sulfanyl]butanedioate, Diethyl 2-[(dimethoxyphosphorothioyl)sulfanyl]succinate #, Diethyl mercaptosuccinate, O,O-dimethyl phosphoro dithioate, Diethyl mercaptosuccinic acid,O-dimethyl phosphorodithioate, O,O-Dimethyl S-(1,2-dicarbethoxyethyl) phosphorodithioate, O,O-Dimethyl S-(1,2-dicarbethoxyethyl) thiothionophosphate, O,O-Dimethyl S-1,2-di(ethoxycarbamyl)ethyl phosphorothioate, O,O-dimethyl-S-(1,2-dicarbethoxyethyl) thiothionophosphate, S-(1,2-bis(carbethoxy)ethyl) O,O-dimethyl d ithiophosphate, S-(1,2-Dicarbethoxyethyl) O,O-dimethyl phosphorodithioate, S-1,2-bis(ethoxycarbonyl)ethyl O,O-dimethyl dithiophosphate, 2-(dimethoxyphosphinothioylthio) butanedioic acid diethyl ester, Diethyl mercaptosuccinate,O-dimethyl dithiophosphate, S-ester, Mercaptosuccinic acid diethyl ester,O-dimethyl phosphorothioate, O,O-dimethyl S-1,2-di(ethoxycarbonyl)ethyl phosphorodithioate, O,O-dimethyl-S-(1,2-bis(ethoxycarbonyl)eth yl)dithiophosphate, O,O-dimethyl-S-(1,2-bis(ethoxycarbonyl)ethyl)dithiophosphate, S-(1,2-di(ethoxycarbonyl)ethyl) dimethylphosphorothiolothionate, O,O-dimethyl phosphorodithioate ester of diethyl mercaptosuccinate, o,o-Dimethyl-S-(1,2-di(ethoxycarbonyl)ethyl) phosphorodithioate, S-(1,2-Bis(aethoxy-carbonyl)-aethyl)-O,O-dimethyl-dithiophasphat, S-(1,2-Bis(aethoxy-carbonyl)-aethyl)-O,O-dimethyl-dithiophosphat, [(DIMETHOXYPHOPHINOTHIOYL)THIO]BUTANEDIOIC ACID, DIETHYL ESTER, Diethyl mercaptosuccinate S-ester with O,O-dimethyl phosphorodithioate, Succinic acid, diethyl ester, S-ester with 0,0-dimethyl phosphorodithioate, Succinic acid, diethyl ester, S-ester with O,O-dimethyl phosphorodithioate, 1,4-diethyl 2-{[dimethoxy(sulfanylidene)-|E?-phosphanyl]sulfanyl}butanedioate, 1,4-diethyl 2-{[dimethoxy(sulfanylidene)-|E5-phosphanyl]sulfanyl}butanedioate, mercaptosuccinic acid diethyl ester S-est er with O,O-dimethyl phosphorothioate, mercaptosuccinic acid diethyl ester S-ester with O,O-dimethyl phosphorothioate, Mercaptosuccinic acid diethyl ester, S-ester with O,O-dimethyl phosphorothioate, Phosphorodithioic acid,0-dimethyl ester, S-ester with diethyl mercaptosuccinate, 11130-60-2, 12737-19-8, 12767-62-3, 141263-96-9, 75513-83-6, InChI=1/C10H19O6PS2/c1-5-15-9(11)7-8(10(12)16-6-2)19-17(18,13-3)14-4/h8H,5-7H2,1-4H3', 'total' => '3', 'inchi' => 'InChI=1S/C10H19O6PS2/c1-5-15-9(11)7-8(10(12)16-6-2)19-17(18,13-3)14-4/h8H,5-7H2,1-4H3', 'inchikey' => 'JXSJBGJIGXNWCI-UHFFFAOYSA-N', 'formula' => 'C10H19O6PS2', 'oxstate' => 'Zero', 'url' => '', 'charge' => '0', 'class1' => '', 'class2' => '', 'class3' => '', 'class4' => '', 'class5' => '', 'isgroup' => 'no', 'checked' => 'no', 'citation_count' => '0', 'updated' => '2015-10-23 21:31:08', 'first' => 'M', 'nametotal' => 'Malathion**3', 'AnalytesCitation' => array( [maximum depth reached] ) ), (int) 4 => array( 'id' => '01727', 'name' => 'Parathion', 'iupac_name' => 'diethoxy-(4-nitrophenoxy)-sulfanylidene-$l^{5}-phosphane', 'casrn' => '56-38-2', 'synonyms' => 'Parathion; Phosphorothioic acid, O,O-diethyl O-(4-nitrophenyl) ester; Phosphorothioic acid, O,O-diethyl O-(p-nitrophenyl) ester; Alkron; Alleron; American Cyanamid 3422; Aphamite; Aralo; AAT; AATP; Bayer E-605; Bladan F; Diethyl p-Nitrophenyl phosphorothionate; Diethyl p-nitrophenyl thionophosphate; Diethyl parathion; Diethyl 4-nitrophenyl phosphorothionate; DNTP; E 605; E 605 f; Ekatox; Ethyl Parathion; Etilon; ENT 15,108; Folidol; Folidol Oil; Folidol E; Folidol E-605; Fosferno; Fostox; Gearphos; Lirothion; Niran; Nitrostigmine; Nourithion; NIUIF 100; O,O-Diethyl O-(p-Nitrophenyl) phosphorothioate; O,O-Diethyl O-(p-nitrophenyl) thiophosphate; Oleofos 20; Oleoparaphene; Oleoparathion; Pacol; Paramar 50; Paraphos; Parathion-ethyl; Penncap E; Rhodiasol; Rhodiatox; RB; Super Rodiatox; SNP; Thiophos; Thiophos Parathion 4 E.C.; Thiophos 3422; Vitrex; AC 3422; B 404; Bladan; BAY E-605; Compound 3422; Corothion; Corthione; Danthion; Diethyl p-nitrophenyl thiophosphate; DPP; Ecatox; Etylparation; Fosfex; Fosfive; Fosova; Fostern; Genithion; Kolphos; Kypthion; Lethalaire G-54; Murfos; NCI-C00226; O,O-diaethyl-O-(4-nitro-phenyl)-monothiophosphat; O,O-diethyl-O-(4-nitro-fenil)monothiofosfaat; O,O-Diethyl O-(p-nitrophenyl) thionophosphate; O,O-Diethyl O-(4-nitrophenyl) thiophosphate; O,O-Diethyl-O-p-nitrofenylester kyseliny thiofosforecne; O,O-Dietil-O-(4-nitro-fenil)-monotiofosfato; Orthophos; Pac; Panthion; Paramar; Parathene; Parawet; Pestox plus; Pethion; Phoskil; Phosphemol; Phosphenol; Phosphostigmine; Stabilized ethyl parathion; Stathion; Strathion; Sulphos; T-47; Thiophosphate de O,O-diethyle et de O-(4-nitrophenyle); Tiofos; TOX 47; Vapophos; ACC 3422; Corthion; Diethyl para-nitrophenol thiophosphate; Drexel parathion 8E; E 605 FORTE; Ethlon; Folidol E & E 605; Fosfermo; NA 2783; Niran E-4; Nitrostigmin; Nitrostygmine; OMS 19; Paradust; Parathion-aethyl; Parathion mixture; Phenol, p-nitro-, O-ester with O,O-diethylphosphorothioate; Rcra waste number P089; Rhodiatrox; Selephos; Sixty-three special E.C. insecticide; Soprathion; Thiofos; Thiomex; Kwell; Isotox; Jacutin; Kokotine; Vitrex HGI; Oleoparathene; Diethoxy, nitro-phenoxy phosphorothioate; Murphos; O,O-Diethyl-O-(4-nitrophenyl) phosphorothioate; Rodiatox; S.N.P.; Ethyle-parathion', 'total' => '3', 'inchi' => 'InChI=1S/C10H14NO5PS/c1-3-14-17(18,15-4-2)16-10-7-5-9(6-8-10)11(12)13/h5-8H,3-4H2,1-2H3', 'inchikey' => 'LCCNCVORNKJIRZ-UHFFFAOYSA-N', 'formula' => 'C10H14NO5PS', 'oxstate' => 'Zero', 'url' => '', 'charge' => '0', 'class1' => 'Organic compound', 'class2' => 'NA', 'class3' => 'NA', 'class4' => 'Molecule', 'class5' => 'Pesticides', 'isgroup' => '', 'checked' => 'yes', 'citation_count' => '0', 'updated' => '2015-12-11 16:18:02', 'first' => 'P', 'nametotal' => 'Parathion**3', 'AnalytesCitation' => array( [maximum depth reached] ) ) ), 'Matrix' => array( (int) 0 => array( 'id' => '0372', 'label' => 'Environmental', 'level1' => 'Environmental', 'level2' => 'water', 'level3' => '', 'level4' => '', 'level5' => '', 'synonyms' => '', 'total' => '490', 'url' => '', 'updated' => '2015-12-09 21:04:43', 'name' => 'Environmental, water', 'nametotal' => 'Environmental, water**490', 'first' => 'E', 'CitationsMatrix' => array( [maximum depth reached] ) ) ), 'Keyword' => array( (int) 0 => array( 'id' => '0153', 'type' => 'Manifold process', 'keyword' => 'Extraction', 'newKeyword' => '', 'synonyms' => '', 'fao' => '', 'total' => '347', 'first' => 'E', 'keytotal' => 'Extraction**347', 'CitationsKeyword' => array( [maximum depth reached] ) ) ) ) $i = (int) 2 $path = '' $a = '' $url = 'http://dx.doi.org/10.1016/S0003-2670(00)84499-2' $aus = 'J. L. Burguera and M. Burguera'include - APP/View/Elements/citation.ctp, line 40 View::_evaluate() - CORE/Cake/View/View.php, line 971 View::_render() - CORE/Cake/View/View.php, line 933 View::_renderElement() - CORE/Cake/View/View.php, line 1224 View::element() - CORE/Cake/View/View.php, line 418 include - APP/View/Techniques/view.ctp, line 52 View::_evaluate() - CORE/Cake/View/View.php, line 971 View::_render() - CORE/Cake/View/View.php, line 933 View::render() - CORE/Cake/View/View.php, line 473 Controller::render() - CORE/Cake/Controller/Controller.php, line 968 Dispatcher::_invoke() - CORE/Cake/Routing/Dispatcher.php, line 200 Dispatcher::dispatch() - CORE/Cake/Routing/Dispatcher.php, line 167 [main] - APP/webroot/index.php, line 109
"Continuous-flow Molecular Emission Cavity Analysis For Organic Sulfur Compounds By Alkaline Hydrolysis"
Anal. Chim. Acta
1988 Volume 204, Issue 1-2 Pages 285-293
Notice (8): Undefined variable: uid [APP/View/Elements/citation.ctp, line 40]N. Grekas and A. C. CalokerinosCode Context?>
<?php
if($uid!='') {
$viewFile = '/home/stuchalk/public_html/fad/app/View/Elements/citation.ctp' $dataForView = array( 'data' => array( 'Technique' => array( 'id' => '0499', 'label' => 'Spectrophotometry', 'level1' => 'Spectrophotometry', 'level2' => 'molecular emission', 'level3' => 'cavity', 'level4' => '', 'level5' => '', 'synonyms' => '', 'champ' => '', 'total' => '5', 'updated' => '0000-00-00 00:00:00', 'name' => 'Spectrophotometry, molecular emission, cavity', 'nametotal' => 'Spectrophotometry, molecular emission, cavity**5', 'first' => 'S' ), 'Citation' => array( (int) 0 => array( [maximum depth reached] ), (int) 1 => array( [maximum depth reached] ), (int) 2 => array( [maximum depth reached] ), (int) 3 => array( [maximum depth reached] ), (int) 4 => array( [maximum depth reached] ) ) ), 'c' => array( 'id' => '005057', 'authors' => 'Grekas, N.;Calokerinos, A.C.', 'authorsweb' => 'N. Grekas and A. C. Calokerinos', 'title' => 'Continuous-flow molecular emission cavity analysis for organic sulfur compounds by alkaline hydrolysis', 'journal' => 'Anal. Chim. Acta', 'journal_id' => '0584', 'fadid' => 'ANCA1988V0204P00285', 'year' => '1988', 'volume' => '204', 'issue' => '1-2', 'startpage' => '285', 'endpage' => '293', 'type' => 'Journal Article', 'analytes' => '', 'matrices' => '', 'techniques' => ';0499;', 'keywords' => ';0188;', 'abstract' => 'The alkaline hydrolysis (4 M NaOH) of thioacetamide, thiosemicarbazide, thiodiacetic acid and dithio-oxamide at 45°C in a continuous-flow automatic analyzer. is described. The S2- produced is removed from the solution after acidification with 4 M H3PO4 and the H2S evolved is purged with N and determined by MECA. The sampling rate is 30 h-1, and the coefficient of variation is 1 to 2.5%.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '2', 'urlcheck' => '2014-10-11 15:53:35', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '00063', 'pauthor' => '!Calokerinos, A.C.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1016/S0003-2670(00)86366-7', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Continuous-flow molecular emission cavity analysis for organic sulfur compounds by alkaline hydrolysis', Anal. Chim. Acta, 1988 204(1-2) 285-293', 'firstchar' => 'C', 'twochars' => 'Co', 'CitationsTechnique' => array( 'id' => '001397', 'citation_id' => '005057', 'technique_id' => '0499' ), 'Analyte' => array(), 'Matrix' => array(), 'Keyword' => array( (int) 0 => array( [maximum depth reached] ) ) ), 'i' => (int) 3 ) $data = array( 'Technique' => array( 'id' => '0499', 'label' => 'Spectrophotometry', 'level1' => 'Spectrophotometry', 'level2' => 'molecular emission', 'level3' => 'cavity', 'level4' => '', 'level5' => '', 'synonyms' => '', 'champ' => '', 'total' => '5', 'updated' => '0000-00-00 00:00:00', 'name' => 'Spectrophotometry, molecular emission, cavity', 'nametotal' => 'Spectrophotometry, molecular emission, cavity**5', 'first' => 'S' ), 'Citation' => array( (int) 0 => array( 'id' => '004602', 'authors' => 'Burguera, J.L.;Burguera, M.', 'authorsweb' => 'J. L. Burguera and M. Burguera', 'title' => 'Determination of sulfur anions by flow injection with a molecular emission cavity detector', 'journal' => 'Anal. Chim. Acta', 'journal_id' => '0584', 'fadid' => 'ANCA1984V0157P00177', 'year' => '1984', 'volume' => '157', 'issue' => '1', 'startpage' => '177', 'endpage' => '181', 'type' => 'Journal Article', 'analytes' => ';2237;2242;2234;', 'matrices' => '', 'techniques' => ';0499;', 'keywords' => '', 'abstract' => 'A molecular-emission cavity detector is attached to a flow injection system for the determination of S2-, SO32- and SO42- in the ranges 2 to 130, 3 to 150 and 5 to 250 ng of S, respectively, in 3 µL samples. Experimental details are given. The effects of flow rate of solution into the cavity are discussed. For determinations of SO42-, the coefficient of variation is 2.0% for 3 ng of S. The analytical signal is available within 30 s after sample injection, permitting ~100 measurements in 1 h. If the carrier stream is changed from water to H2O2 solution, only one peak is obtained corresponding to total S. Recovery of SO32- and S2- ranges from 90 to 95%.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '2', 'urlcheck' => '2014-10-11 15:45:49', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => null, 'pauthor' => 'NA', 'address' => 'Univ. de Los Andes, Dept. Quim., Fac. Cienc., Merida 5101-A Venezuela', 'email' => 'NA', 'notes' => null, 'url' => '10.1016/S0003-2670(00)83619-3', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Determination of sulfur anions by flow injection with a molecular emission cavity detector', Anal. Chim. Acta, 1984 157(1) 177-181', 'firstchar' => 'D', 'twochars' => 'De', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array([maximum depth reached]) ), (int) 1 => array( 'id' => '004747', 'authors' => 'Burguera, J.L.;Burguera, M.;Flores, D.', 'authorsweb' => 'J. L. Burguera, M. Burguera and Daniel Flores', 'title' => 'Determination of some phosphorus-containing compounds by flow injection with a molecular emission cavity detector', 'journal' => 'Anal. Chim. Acta', 'journal_id' => '0584', 'fadid' => 'ANCA1985V0170P00331', 'year' => '1985', 'volume' => '170', 'issue' => '2', 'startpage' => '331', 'endpage' => '336', 'type' => 'Journal Article', 'analytes' => ';1876;1874;1877;1227;1860;1859;1856;', 'matrices' => '', 'techniques' => ';0499;0501;', 'keywords' => ';0302;', 'abstract' => 'Optimum conditions (e.g., flow rate, sample volume, dimensions of the tubing and flame composition) have been established for the determination of P-containing inorganic and organic compounds by the cited technique. The ranges of rectilinear response, detection limits and coefficient of variation (typical values being 10 to 200 ng, 2.5 and 3%, respectively) are tabulated for H3PO4, H3PO3, H3PO2, trimethyl phosphite, triethyl phosphite and tributylphosphine; sensitivity improved with decreasing O content of the compounds. The sample throughput was 20 h-1. As peaks were well separated, components of ternary mixtures could be determined.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '2', 'urlcheck' => '2014-10-11 15:47:40', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => null, 'pauthor' => 'NA', 'address' => 'Univ. Los Andes, Dept. Quim., Fac. Cienc., Merida 5101 Venezuela', 'email' => 'NA', 'notes' => null, 'url' => '10.1016/S0003-2670(00)81758-4', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Determination of some phosphorus-containing compounds by flow injection with a molecular emission cavity detector', Anal. Chim. Acta, 1985 170(2) 331-336', 'firstchar' => 'D', 'twochars' => 'De', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 2 => array( 'id' => '004887', 'authors' => 'Burguera, J.L.;Burguera, M.', 'authorsweb' => 'J. L. Burguera and M. Burguera', 'title' => 'Determination of some organophosphorus insecticides by flow injection with a molecular emission cavity detector', 'journal' => 'Anal. Chim. Acta', 'journal_id' => '0584', 'fadid' => 'ANCA1986V0179P00497', 'year' => '1986', 'volume' => '179', 'issue' => '1', 'startpage' => '497', 'endpage' => '502', 'type' => 'Journal Article', 'analytes' => ';1270;0785;0809;1419;1727;', 'matrices' => ';0372;', 'techniques' => ';0499;0417;', 'keywords' => ';0153;', 'abstract' => 'The insecticides are extracted from waters into hexane - CH2Cl2 (17:3) at pH <7 followed by measurement of the HPO emission at 528 nm vs. time in the system previously described (Ibid., 1985, 170, 331). Dicrotophos and dimethoate are measured in the range of 5 to 100 ng of P and malathion and parathion from 10 to 120 ng with detection limits between 0.8 and 2.5 ng. Recoveries are between 73.4 and 98.1% for 50 ng of P with coefficient of variation between 2.5 and 3.4% for 20 ng (n = 8).', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '3', 'urlcheck' => '2014-10-11 15:49:56', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '00059', 'pauthor' => '!Burguera, J.L.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1016/S0003-2670(00)84499-2', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Determination of some organophosphorus insecticides by flow injection with a molecular emission cavity detector', Anal. Chim. Acta, 1986 179(1) 497-502', 'firstchar' => 'D', 'twochars' => 'De', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array( [maximum depth reached] ), 'Keyword' => array( [maximum depth reached] ) ), (int) 3 => array( 'id' => '005057', 'authors' => 'Grekas, N.;Calokerinos, A.C.', 'authorsweb' => 'N. Grekas and A. C. Calokerinos', 'title' => 'Continuous-flow molecular emission cavity analysis for organic sulfur compounds by alkaline hydrolysis', 'journal' => 'Anal. Chim. Acta', 'journal_id' => '0584', 'fadid' => 'ANCA1988V0204P00285', 'year' => '1988', 'volume' => '204', 'issue' => '1-2', 'startpage' => '285', 'endpage' => '293', 'type' => 'Journal Article', 'analytes' => '', 'matrices' => '', 'techniques' => ';0499;', 'keywords' => ';0188;', 'abstract' => 'The alkaline hydrolysis (4 M NaOH) of thioacetamide, thiosemicarbazide, thiodiacetic acid and dithio-oxamide at 45°C in a continuous-flow automatic analyzer. is described. The S2- produced is removed from the solution after acidification with 4 M H3PO4 and the H2S evolved is purged with N and determined by MECA. The sampling rate is 30 h-1, and the coefficient of variation is 1 to 2.5%.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '2', 'urlcheck' => '2014-10-11 15:53:35', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '00063', 'pauthor' => '!Calokerinos, A.C.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1016/S0003-2670(00)86366-7', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Continuous-flow molecular emission cavity analysis for organic sulfur compounds by alkaline hydrolysis', Anal. Chim. Acta, 1988 204(1-2) 285-293', 'firstchar' => 'C', 'twochars' => 'Co', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array([maximum depth reached]), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 4 => array( 'id' => '010820', 'authors' => 'El Hag, I.H.', 'authorsweb' => 'I. H. El-Hag', 'title' => 'Automated determination of nanogram amounts of phosphorus by molecular emission cavity analysis', 'journal' => 'Anal. Proc.', 'journal_id' => '0866', 'fadid' => 'ANPR1982V0019P00320', 'year' => '1982', 'volume' => '19', 'issue' => '6', 'startpage' => '320', 'endpage' => '321', 'type' => 'Journal Article', 'analytes' => ';1876;', 'matrices' => '', 'techniques' => ';0499;0474;', 'keywords' => '', 'abstract' => 'Molecular emission cavity analysis (MECA)1 is a flame photometric technique that relies on a cool flame source to generate band emissions, such as those from S,, BO, and HPO. The conventional manual method involves depositing the microlitre-volume sample into a cavity cut into the end of a rod, which is introduced manually to the flame, so that the emission generated within the cavity is viewed by the detector. The reproducibility of this method is unsatisfactory for fast emitting species because variables such as the exact time of injection, cavity residence time in the flame and cooling time after analysis need precise control.', 'language' => 'English', 'updated' => '2020-12-28 11:11:09', 'sjccheck' => 'No', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '3', 'urlcheck' => '2014-10-11 21:46:56', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => null, 'pauthor' => 'El Hag, I.H.', 'address' => 'Department of Chemistry, University of Birmingham, P.O. Box 363, Birmingham, B15 2TT England', 'email' => 'NA', 'notes' => 'No abstract online', 'url' => '10.1039/AP9821900316', 'urltype' => 'doi', 'gotpdf' => 'no', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Automated determination of nanogram amounts of phosphorus by molecular emission cavity analysis', Anal. Proc., 1982 19(6) 320-321', 'firstchar' => 'A', 'twochars' => 'Au', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array([maximum depth reached]) ) ) ) $c = array( 'id' => '005057', 'authors' => 'Grekas, N.;Calokerinos, A.C.', 'authorsweb' => 'N. Grekas and A. C. Calokerinos', 'title' => 'Continuous-flow molecular emission cavity analysis for organic sulfur compounds by alkaline hydrolysis', 'journal' => 'Anal. Chim. Acta', 'journal_id' => '0584', 'fadid' => 'ANCA1988V0204P00285', 'year' => '1988', 'volume' => '204', 'issue' => '1-2', 'startpage' => '285', 'endpage' => '293', 'type' => 'Journal Article', 'analytes' => '', 'matrices' => '', 'techniques' => ';0499;', 'keywords' => ';0188;', 'abstract' => 'The alkaline hydrolysis (4 M NaOH) of thioacetamide, thiosemicarbazide, thiodiacetic acid and dithio-oxamide at 45°C in a continuous-flow automatic analyzer. is described. The S2- produced is removed from the solution after acidification with 4 M H3PO4 and the H2S evolved is purged with N and determined by MECA. The sampling rate is 30 h-1, and the coefficient of variation is 1 to 2.5%.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '2', 'urlcheck' => '2014-10-11 15:53:35', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '00063', 'pauthor' => '!Calokerinos, A.C.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1016/S0003-2670(00)86366-7', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Continuous-flow molecular emission cavity analysis for organic sulfur compounds by alkaline hydrolysis', Anal. Chim. Acta, 1988 204(1-2) 285-293', 'firstchar' => 'C', 'twochars' => 'Co', 'CitationsTechnique' => array( 'id' => '001397', 'citation_id' => '005057', 'technique_id' => '0499' ), 'Analyte' => array(), 'Matrix' => array(), 'Keyword' => array( (int) 0 => array( 'id' => '0188', 'type' => 'Manifold process', 'keyword' => 'Heated reaction', 'newKeyword' => '', 'synonyms' => '', 'fao' => '', 'total' => '504', 'first' => 'H', 'keytotal' => 'Heated reaction**504', 'CitationsKeyword' => array( [maximum depth reached] ) ) ) ) $i = (int) 3 $path = '' $a = '' $url = 'http://dx.doi.org/10.1016/S0003-2670(00)86366-7' $aus = 'N. Grekas and A. C. Calokerinos'include - APP/View/Elements/citation.ctp, line 40 View::_evaluate() - CORE/Cake/View/View.php, line 971 View::_render() - CORE/Cake/View/View.php, line 933 View::_renderElement() - CORE/Cake/View/View.php, line 1224 View::element() - CORE/Cake/View/View.php, line 418 include - APP/View/Techniques/view.ctp, line 52 View::_evaluate() - CORE/Cake/View/View.php, line 971 View::_render() - CORE/Cake/View/View.php, line 933 View::render() - CORE/Cake/View/View.php, line 473 Controller::render() - CORE/Cake/Controller/Controller.php, line 968 Dispatcher::_invoke() - CORE/Cake/Routing/Dispatcher.php, line 200 Dispatcher::dispatch() - CORE/Cake/Routing/Dispatcher.php, line 167 [main] - APP/webroot/index.php, line 109
"Automated Determination Of Nanogram Amounts Of Phosphorus By Molecular Emission Cavity Analysis"
Anal. Proc.
1982 Volume 19, Issue 6 Pages 320-321
Notice (8): Undefined variable: uid [APP/View/Elements/citation.ctp, line 40]I. H. El-HagCode Context?>
<?php
if($uid!='') {
$viewFile = '/home/stuchalk/public_html/fad/app/View/Elements/citation.ctp' $dataForView = array( 'data' => array( 'Technique' => array( 'id' => '0499', 'label' => 'Spectrophotometry', 'level1' => 'Spectrophotometry', 'level2' => 'molecular emission', 'level3' => 'cavity', 'level4' => '', 'level5' => '', 'synonyms' => '', 'champ' => '', 'total' => '5', 'updated' => '0000-00-00 00:00:00', 'name' => 'Spectrophotometry, molecular emission, cavity', 'nametotal' => 'Spectrophotometry, molecular emission, cavity**5', 'first' => 'S' ), 'Citation' => array( (int) 0 => array( [maximum depth reached] ), (int) 1 => array( [maximum depth reached] ), (int) 2 => array( [maximum depth reached] ), (int) 3 => array( [maximum depth reached] ), (int) 4 => array( [maximum depth reached] ) ) ), 'c' => array( 'id' => '010820', 'authors' => 'El Hag, I.H.', 'authorsweb' => 'I. H. El-Hag', 'title' => 'Automated determination of nanogram amounts of phosphorus by molecular emission cavity analysis', 'journal' => 'Anal. Proc.', 'journal_id' => '0866', 'fadid' => 'ANPR1982V0019P00320', 'year' => '1982', 'volume' => '19', 'issue' => '6', 'startpage' => '320', 'endpage' => '321', 'type' => 'Journal Article', 'analytes' => ';1876;', 'matrices' => '', 'techniques' => ';0499;0474;', 'keywords' => '', 'abstract' => 'Molecular emission cavity analysis (MECA)1 is a flame photometric technique that relies on a cool flame source to generate band emissions, such as those from S,, BO, and HPO. The conventional manual method involves depositing the microlitre-volume sample into a cavity cut into the end of a rod, which is introduced manually to the flame, so that the emission generated within the cavity is viewed by the detector. The reproducibility of this method is unsatisfactory for fast emitting species because variables such as the exact time of injection, cavity residence time in the flame and cooling time after analysis need precise control.', 'language' => 'English', 'updated' => '2020-12-28 11:11:09', 'sjccheck' => 'No', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '3', 'urlcheck' => '2014-10-11 21:46:56', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => null, 'pauthor' => 'El Hag, I.H.', 'address' => 'Department of Chemistry, University of Birmingham, P.O. Box 363, Birmingham, B15 2TT England', 'email' => 'NA', 'notes' => 'No abstract online', 'url' => '10.1039/AP9821900316', 'urltype' => 'doi', 'gotpdf' => 'no', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Automated determination of nanogram amounts of phosphorus by molecular emission cavity analysis', Anal. Proc., 1982 19(6) 320-321', 'firstchar' => 'A', 'twochars' => 'Au', 'CitationsTechnique' => array( 'id' => '010307', 'citation_id' => '010820', 'technique_id' => '0499' ), 'Analyte' => array( (int) 0 => array( [maximum depth reached] ) ), 'Matrix' => array(), 'Keyword' => array() ), 'i' => (int) 4 ) $data = array( 'Technique' => array( 'id' => '0499', 'label' => 'Spectrophotometry', 'level1' => 'Spectrophotometry', 'level2' => 'molecular emission', 'level3' => 'cavity', 'level4' => '', 'level5' => '', 'synonyms' => '', 'champ' => '', 'total' => '5', 'updated' => '0000-00-00 00:00:00', 'name' => 'Spectrophotometry, molecular emission, cavity', 'nametotal' => 'Spectrophotometry, molecular emission, cavity**5', 'first' => 'S' ), 'Citation' => array( (int) 0 => array( 'id' => '004602', 'authors' => 'Burguera, J.L.;Burguera, M.', 'authorsweb' => 'J. L. Burguera and M. Burguera', 'title' => 'Determination of sulfur anions by flow injection with a molecular emission cavity detector', 'journal' => 'Anal. Chim. Acta', 'journal_id' => '0584', 'fadid' => 'ANCA1984V0157P00177', 'year' => '1984', 'volume' => '157', 'issue' => '1', 'startpage' => '177', 'endpage' => '181', 'type' => 'Journal Article', 'analytes' => ';2237;2242;2234;', 'matrices' => '', 'techniques' => ';0499;', 'keywords' => '', 'abstract' => 'A molecular-emission cavity detector is attached to a flow injection system for the determination of S2-, SO32- and SO42- in the ranges 2 to 130, 3 to 150 and 5 to 250 ng of S, respectively, in 3 µL samples. Experimental details are given. The effects of flow rate of solution into the cavity are discussed. For determinations of SO42-, the coefficient of variation is 2.0% for 3 ng of S. The analytical signal is available within 30 s after sample injection, permitting ~100 measurements in 1 h. If the carrier stream is changed from water to H2O2 solution, only one peak is obtained corresponding to total S. Recovery of SO32- and S2- ranges from 90 to 95%.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '2', 'urlcheck' => '2014-10-11 15:45:49', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => null, 'pauthor' => 'NA', 'address' => 'Univ. de Los Andes, Dept. Quim., Fac. Cienc., Merida 5101-A Venezuela', 'email' => 'NA', 'notes' => null, 'url' => '10.1016/S0003-2670(00)83619-3', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Determination of sulfur anions by flow injection with a molecular emission cavity detector', Anal. Chim. Acta, 1984 157(1) 177-181', 'firstchar' => 'D', 'twochars' => 'De', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array([maximum depth reached]) ), (int) 1 => array( 'id' => '004747', 'authors' => 'Burguera, J.L.;Burguera, M.;Flores, D.', 'authorsweb' => 'J. L. Burguera, M. Burguera and Daniel Flores', 'title' => 'Determination of some phosphorus-containing compounds by flow injection with a molecular emission cavity detector', 'journal' => 'Anal. Chim. Acta', 'journal_id' => '0584', 'fadid' => 'ANCA1985V0170P00331', 'year' => '1985', 'volume' => '170', 'issue' => '2', 'startpage' => '331', 'endpage' => '336', 'type' => 'Journal Article', 'analytes' => ';1876;1874;1877;1227;1860;1859;1856;', 'matrices' => '', 'techniques' => ';0499;0501;', 'keywords' => ';0302;', 'abstract' => 'Optimum conditions (e.g., flow rate, sample volume, dimensions of the tubing and flame composition) have been established for the determination of P-containing inorganic and organic compounds by the cited technique. The ranges of rectilinear response, detection limits and coefficient of variation (typical values being 10 to 200 ng, 2.5 and 3%, respectively) are tabulated for H3PO4, H3PO3, H3PO2, trimethyl phosphite, triethyl phosphite and tributylphosphine; sensitivity improved with decreasing O content of the compounds. The sample throughput was 20 h-1. As peaks were well separated, components of ternary mixtures could be determined.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '2', 'urlcheck' => '2014-10-11 15:47:40', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => null, 'pauthor' => 'NA', 'address' => 'Univ. Los Andes, Dept. Quim., Fac. Cienc., Merida 5101 Venezuela', 'email' => 'NA', 'notes' => null, 'url' => '10.1016/S0003-2670(00)81758-4', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Determination of some phosphorus-containing compounds by flow injection with a molecular emission cavity detector', Anal. Chim. Acta, 1985 170(2) 331-336', 'firstchar' => 'D', 'twochars' => 'De', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 2 => array( 'id' => '004887', 'authors' => 'Burguera, J.L.;Burguera, M.', 'authorsweb' => 'J. L. Burguera and M. Burguera', 'title' => 'Determination of some organophosphorus insecticides by flow injection with a molecular emission cavity detector', 'journal' => 'Anal. Chim. Acta', 'journal_id' => '0584', 'fadid' => 'ANCA1986V0179P00497', 'year' => '1986', 'volume' => '179', 'issue' => '1', 'startpage' => '497', 'endpage' => '502', 'type' => 'Journal Article', 'analytes' => ';1270;0785;0809;1419;1727;', 'matrices' => ';0372;', 'techniques' => ';0499;0417;', 'keywords' => ';0153;', 'abstract' => 'The insecticides are extracted from waters into hexane - CH2Cl2 (17:3) at pH <7 followed by measurement of the HPO emission at 528 nm vs. time in the system previously described (Ibid., 1985, 170, 331). Dicrotophos and dimethoate are measured in the range of 5 to 100 ng of P and malathion and parathion from 10 to 120 ng with detection limits between 0.8 and 2.5 ng. Recoveries are between 73.4 and 98.1% for 50 ng of P with coefficient of variation between 2.5 and 3.4% for 20 ng (n = 8).', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '3', 'urlcheck' => '2014-10-11 15:49:56', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '00059', 'pauthor' => '!Burguera, J.L.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1016/S0003-2670(00)84499-2', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Determination of some organophosphorus insecticides by flow injection with a molecular emission cavity detector', Anal. Chim. Acta, 1986 179(1) 497-502', 'firstchar' => 'D', 'twochars' => 'De', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array( [maximum depth reached] ), 'Keyword' => array( [maximum depth reached] ) ), (int) 3 => array( 'id' => '005057', 'authors' => 'Grekas, N.;Calokerinos, A.C.', 'authorsweb' => 'N. Grekas and A. C. Calokerinos', 'title' => 'Continuous-flow molecular emission cavity analysis for organic sulfur compounds by alkaline hydrolysis', 'journal' => 'Anal. Chim. Acta', 'journal_id' => '0584', 'fadid' => 'ANCA1988V0204P00285', 'year' => '1988', 'volume' => '204', 'issue' => '1-2', 'startpage' => '285', 'endpage' => '293', 'type' => 'Journal Article', 'analytes' => '', 'matrices' => '', 'techniques' => ';0499;', 'keywords' => ';0188;', 'abstract' => 'The alkaline hydrolysis (4 M NaOH) of thioacetamide, thiosemicarbazide, thiodiacetic acid and dithio-oxamide at 45°C in a continuous-flow automatic analyzer. is described. The S2- produced is removed from the solution after acidification with 4 M H3PO4 and the H2S evolved is purged with N and determined by MECA. The sampling rate is 30 h-1, and the coefficient of variation is 1 to 2.5%.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '2', 'urlcheck' => '2014-10-11 15:53:35', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '00063', 'pauthor' => '!Calokerinos, A.C.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1016/S0003-2670(00)86366-7', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Continuous-flow molecular emission cavity analysis for organic sulfur compounds by alkaline hydrolysis', Anal. Chim. Acta, 1988 204(1-2) 285-293', 'firstchar' => 'C', 'twochars' => 'Co', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array([maximum depth reached]), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 4 => array( 'id' => '010820', 'authors' => 'El Hag, I.H.', 'authorsweb' => 'I. H. El-Hag', 'title' => 'Automated determination of nanogram amounts of phosphorus by molecular emission cavity analysis', 'journal' => 'Anal. Proc.', 'journal_id' => '0866', 'fadid' => 'ANPR1982V0019P00320', 'year' => '1982', 'volume' => '19', 'issue' => '6', 'startpage' => '320', 'endpage' => '321', 'type' => 'Journal Article', 'analytes' => ';1876;', 'matrices' => '', 'techniques' => ';0499;0474;', 'keywords' => '', 'abstract' => 'Molecular emission cavity analysis (MECA)1 is a flame photometric technique that relies on a cool flame source to generate band emissions, such as those from S,, BO, and HPO. The conventional manual method involves depositing the microlitre-volume sample into a cavity cut into the end of a rod, which is introduced manually to the flame, so that the emission generated within the cavity is viewed by the detector. The reproducibility of this method is unsatisfactory for fast emitting species because variables such as the exact time of injection, cavity residence time in the flame and cooling time after analysis need precise control.', 'language' => 'English', 'updated' => '2020-12-28 11:11:09', 'sjccheck' => 'No', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '3', 'urlcheck' => '2014-10-11 21:46:56', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => null, 'pauthor' => 'El Hag, I.H.', 'address' => 'Department of Chemistry, University of Birmingham, P.O. Box 363, Birmingham, B15 2TT England', 'email' => 'NA', 'notes' => 'No abstract online', 'url' => '10.1039/AP9821900316', 'urltype' => 'doi', 'gotpdf' => 'no', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Automated determination of nanogram amounts of phosphorus by molecular emission cavity analysis', Anal. Proc., 1982 19(6) 320-321', 'firstchar' => 'A', 'twochars' => 'Au', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array([maximum depth reached]) ) ) ) $c = array( 'id' => '010820', 'authors' => 'El Hag, I.H.', 'authorsweb' => 'I. H. El-Hag', 'title' => 'Automated determination of nanogram amounts of phosphorus by molecular emission cavity analysis', 'journal' => 'Anal. Proc.', 'journal_id' => '0866', 'fadid' => 'ANPR1982V0019P00320', 'year' => '1982', 'volume' => '19', 'issue' => '6', 'startpage' => '320', 'endpage' => '321', 'type' => 'Journal Article', 'analytes' => ';1876;', 'matrices' => '', 'techniques' => ';0499;0474;', 'keywords' => '', 'abstract' => 'Molecular emission cavity analysis (MECA)1 is a flame photometric technique that relies on a cool flame source to generate band emissions, such as those from S,, BO, and HPO. The conventional manual method involves depositing the microlitre-volume sample into a cavity cut into the end of a rod, which is introduced manually to the flame, so that the emission generated within the cavity is viewed by the detector. The reproducibility of this method is unsatisfactory for fast emitting species because variables such as the exact time of injection, cavity residence time in the flame and cooling time after analysis need precise control.', 'language' => 'English', 'updated' => '2020-12-28 11:11:09', 'sjccheck' => 'No', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '3', 'urlcheck' => '2014-10-11 21:46:56', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => null, 'pauthor' => 'El Hag, I.H.', 'address' => 'Department of Chemistry, University of Birmingham, P.O. Box 363, Birmingham, B15 2TT England', 'email' => 'NA', 'notes' => 'No abstract online', 'url' => '10.1039/AP9821900316', 'urltype' => 'doi', 'gotpdf' => 'no', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Automated determination of nanogram amounts of phosphorus by molecular emission cavity analysis', Anal. Proc., 1982 19(6) 320-321', 'firstchar' => 'A', 'twochars' => 'Au', 'CitationsTechnique' => array( 'id' => '010307', 'citation_id' => '010820', 'technique_id' => '0499' ), 'Analyte' => array( (int) 0 => array( 'id' => '01876', 'name' => 'Phosphorus', 'iupac_name' => 'phosphane', 'casrn' => '12185-10-3', 'synonyms' => 'Phosphorus tetramer; White phosphorus;', 'total' => '85', 'inchi' => 'InChI=1S/H2P/h1H2', 'inchikey' => 'XYFCBTPGUUZFHI-UHFFFAOYSA-N', 'formula' => 'P4', 'oxstate' => '', 'url' => '', 'charge' => '0', 'class1' => 'Element', 'class2' => 'NA', 'class3' => 'NA', 'class4' => 'Molecule', 'class5' => '', 'isgroup' => '', 'checked' => 'yes', 'citation_count' => '0', 'updated' => '2015-10-23 21:34:51', 'first' => 'P', 'nametotal' => 'Phosphorus**85', 'AnalytesCitation' => array( [maximum depth reached] ) ) ), 'Matrix' => array(), 'Keyword' => array() ) $i = (int) 4 $path = '' $a = '' $url = 'http://dx.doi.org/10.1039/AP9821900316' $aus = 'I. H. El-Hag'include - APP/View/Elements/citation.ctp, line 40 View::_evaluate() - CORE/Cake/View/View.php, line 971 View::_render() - CORE/Cake/View/View.php, line 933 View::_renderElement() - CORE/Cake/View/View.php, line 1224 View::element() - CORE/Cake/View/View.php, line 418 include - APP/View/Techniques/view.ctp, line 52 View::_evaluate() - CORE/Cake/View/View.php, line 971 View::_render() - CORE/Cake/View/View.php, line 933 View::render() - CORE/Cake/View/View.php, line 473 Controller::render() - CORE/Cake/Controller/Controller.php, line 968 Dispatcher::_invoke() - CORE/Cake/Routing/Dispatcher.php, line 200 Dispatcher::dispatch() - CORE/Cake/Routing/Dispatcher.php, line 167 [main] - APP/webroot/index.php, line 109