Contact Info
Stuart Chalk, Ph.D.
Department of Chemistry
University of North Florida
Phone: 1-904-620-1938
Fax: 1-904-620-3535
Email: schalk@unf.edu
Website: @unf
Spectrophotometry
Citations 3
"Flow Injection Determination Of Boron, Copper, Molybdenum, Tungsten, And Zinc In Organic Matrices With Direct-current Plasma Optical-emission Spectrometry"
Fresenius J. Anal. Chem.
1989 Volume 335, Issue 8 Pages 893-899
Notice (8): Undefined variable: uid [APP/View/Elements/citation.ctp, line 40]M. C. Brennan and G. SvehlaCode Context?>
<?php
if($uid!='') {
$viewFile = '/home/stuchalk/public_html/fad/app/View/Elements/citation.ctp' $dataForView = array( 'data' => array( 'Technique' => array( 'id' => '0471', 'label' => 'Spectrophotometry', 'level1' => 'Spectrophotometry', 'level2' => 'atomic emission', 'level3' => 'direct current plasma', 'level4' => '', 'level5' => '', 'synonyms' => 'DCP-AES,DCP-OES', 'champ' => '', 'total' => '3', 'updated' => '0000-00-00 00:00:00', 'name' => 'Spectrophotometry, atomic emission, direct current plasma', 'nametotal' => 'Spectrophotometry, atomic emission, direct current plasma**3', 'first' => 'S' ), 'Citation' => array( (int) 0 => array( [maximum depth reached] ), (int) 1 => array( [maximum depth reached] ), (int) 2 => array( [maximum depth reached] ) ) ), 'c' => array( 'id' => '008969', 'authors' => 'Brennan, M.C.;Svelha, G.', 'authorsweb' => 'M. C. Brennan and G. Svehla', 'title' => 'Flow injection determination of boron, copper, molybdenum, tungsten, and zinc in organic matrices with direct-current plasma optical-emission spectrometry', 'journal' => 'Fresenius J. Anal. Chem.', 'journal_id' => '0944', 'fadid' => 'FJAC1989V0335P00893', 'year' => '1989', 'volume' => '335', 'issue' => '8', 'startpage' => '893', 'endpage' => '899', 'type' => 'Journal Article', 'analytes' => ';0441;0684;1533;2446;2529;', 'matrices' => '', 'techniques' => ';0471;', 'keywords' => ';0285;0433;0118;0109;0260;', 'abstract' => 'The sample was dissolved in a suitable solvent, and the solution was diluted with isobutyl methyl ketone and introduced via a 600 µL loop into a stream of anhydrous acetic acid (4.5 mL min-1) and then to the nebulizer of the spectrometer via a 25-cm silicon rubber tube (0.8 mm i.d.). The line intensities were measured at 249.773, 324.754, 379.825, 400.875 and 202.548 nm for B, Cu, Mo, W and Zn, respectively. Calibration graphs were rectilinear up to 500 ng mL-1 of B, Cu, Mo and Zn and up to 1000 ng mL-1 of W with detection limits of 21, 14, 28, 120 and 20 ng mL-1 for B, Cu, Mo, W and Zn, respectively. The throughput was 100 samples h-1. The continuous introduction of the carrier liquid into the plasma cleaned out the nebulizer and reduced memory effects.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '8', 'urlcheck' => '2014-10-12 00:22:06', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => null, 'pauthor' => 'Svelha, G.', 'address' => 'Department of Chemistry, University College, Cork, Ireland', 'email' => 'NA', 'notes' => null, 'url' => '10.1007/BF00466377', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Flow injection determination of boron, copper, molybdenum, tungsten, and zinc in organic matrices with direct-current plasma optical-emission spectrometry', Fresenius J. Anal. Chem., 1989 335(8) 893-899', 'firstchar' => 'F', 'twochars' => 'Fl', 'CitationsTechnique' => array( 'id' => '006998', 'citation_id' => '008969', 'technique_id' => '0471' ), 'Analyte' => array( (int) 0 => array( [maximum depth reached] ), (int) 1 => array( [maximum depth reached] ), (int) 2 => array( [maximum depth reached] ), (int) 3 => array( [maximum depth reached] ), (int) 4 => array( [maximum depth reached] ) ), 'Matrix' => array(), 'Keyword' => array( (int) 0 => array( [maximum depth reached] ), (int) 1 => array( [maximum depth reached] ), (int) 2 => array( [maximum depth reached] ), (int) 3 => array( [maximum depth reached] ), (int) 4 => array( [maximum depth reached] ) ) ), 'i' => (int) 0 ) $data = array( 'Technique' => array( 'id' => '0471', 'label' => 'Spectrophotometry', 'level1' => 'Spectrophotometry', 'level2' => 'atomic emission', 'level3' => 'direct current plasma', 'level4' => '', 'level5' => '', 'synonyms' => 'DCP-AES,DCP-OES', 'champ' => '', 'total' => '3', 'updated' => '0000-00-00 00:00:00', 'name' => 'Spectrophotometry, atomic emission, direct current plasma', 'nametotal' => 'Spectrophotometry, atomic emission, direct current plasma**3', 'first' => 'S' ), 'Citation' => array( (int) 0 => array( 'id' => '008969', 'authors' => 'Brennan, M.C.;Svelha, G.', 'authorsweb' => 'M. C. Brennan and G. Svehla', 'title' => 'Flow injection determination of boron, copper, molybdenum, tungsten, and zinc in organic matrices with direct-current plasma optical-emission spectrometry', 'journal' => 'Fresenius J. Anal. Chem.', 'journal_id' => '0944', 'fadid' => 'FJAC1989V0335P00893', 'year' => '1989', 'volume' => '335', 'issue' => '8', 'startpage' => '893', 'endpage' => '899', 'type' => 'Journal Article', 'analytes' => ';0441;0684;1533;2446;2529;', 'matrices' => '', 'techniques' => ';0471;', 'keywords' => ';0285;0433;0118;0109;0260;', 'abstract' => 'The sample was dissolved in a suitable solvent, and the solution was diluted with isobutyl methyl ketone and introduced via a 600 µL loop into a stream of anhydrous acetic acid (4.5 mL min-1) and then to the nebulizer of the spectrometer via a 25-cm silicon rubber tube (0.8 mm i.d.). The line intensities were measured at 249.773, 324.754, 379.825, 400.875 and 202.548 nm for B, Cu, Mo, W and Zn, respectively. Calibration graphs were rectilinear up to 500 ng mL-1 of B, Cu, Mo and Zn and up to 1000 ng mL-1 of W with detection limits of 21, 14, 28, 120 and 20 ng mL-1 for B, Cu, Mo, W and Zn, respectively. The throughput was 100 samples h-1. The continuous introduction of the carrier liquid into the plasma cleaned out the nebulizer and reduced memory effects.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '8', 'urlcheck' => '2014-10-12 00:22:06', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => null, 'pauthor' => 'Svelha, G.', 'address' => 'Department of Chemistry, University College, Cork, Ireland', 'email' => 'NA', 'notes' => null, 'url' => '10.1007/BF00466377', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Flow injection determination of boron, copper, molybdenum, tungsten, and zinc in organic matrices with direct-current plasma optical-emission spectrometry', Fresenius J. Anal. Chem., 1989 335(8) 893-899', 'firstchar' => 'F', 'twochars' => 'Fl', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 1 => array( 'id' => '011830', 'authors' => 'Jarvis, I.;Jarvis, K.E.', 'authorsweb' => 'Ian Jarvis and Kym E. Jarvis', 'title' => 'Plasma spectrometry in the earth sciences: Techniques, applications, and future trends', 'journal' => 'Chem. Geol.', 'journal_id' => '0593', 'fadid' => 'CHGE1992V0095P00001', 'year' => '1992', 'volume' => '95', 'issue' => '1-2', 'startpage' => '1', 'endpage' => '33', 'type' => 'Journal Article', 'analytes' => ';1469;1470;', 'matrices' => '', 'techniques' => ';0348;0471;0481;', 'keywords' => ';0389;0278;0217;0475;', 'abstract' => 'A review with many references. Plasma spectrometry is one of the most popular and versatile techniques for the analysis of geological and environmental samples, including rocks and minerals, waters, dust, vegetation, soils, sewage sludges and sediments. Inductively coupled or DC argon plasmas are used as emission sources in ICP- and DCP-atomic emission spectrometry (ICP-AES, DCP-AES); an ICP provides an ion source in ICP-mass spectrometry (ICP-MS). Reviews of the two plasma sources sample introduction systems, and the instrumental and analytical performances of emission and mass spectrometers, demonstrates the superiority of higher-temperature, ICP-based systems. ICP-AES and ICP-MS are characterized by wide linear responses of more than five orders of magnitude. They are rapid and highly cost-effective multi-element techniques which can theoretical determine over 70 elements in <2 mL of sample solution in less than 2 min. In practice such performance is rarely possible because detection limits, and particularly in the case of ICP-AES, spectral interferences, limit the range of elements which may be quantified. Plasma spectrometry is primarily a solution-based technique, and the dissolution step ultimately controls both the range of elements quantifiable and the limits of determination which may be achieved. Limits of quantitative analysis for solid samples are typically in the order of a few µg g-1 for ICP-AES and a few hundred ng g-1 for ICP-MS. However, chemical separation and pre-concentration procedures are described for the rare-earth elements, precious metals and several other elemental groups, which enable determinations to be made at sub ng g-1 levels. The better precision of ICP-AES and the greater sensitivity, near-complete freedom from interferences, and isotopic capabilities of ICP-MS, mean that ICP-AES is best used for major- and minor-element determinations, while ICP-MS is reserved for trace- and ultratrace-element work. Comparisons with atomic absorption x-ray fluorescence and instrumental neutron activation demonstrate that plasma-based techniques compete well with more established instrumental methods. Further developments in sample preparation and presentation procedures, particularly in the area of solid sample analysis, will increase further the potential applications of plasma spectrometry in the earth sciences.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'No', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '6', 'urlcheck' => '2014-10-12 08:36:24', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => null, 'pauthor' => 'NA', 'address' => 'Sch. Geol. Sci., Kingston Polytech., Kingston-upon-Thames/Surrey, KT1 2EE, UK', 'email' => 'NA', 'notes' => null, 'url' => '10.1016/0009-2541(92)90041-3', 'urltype' => 'doi', 'gotpdf' => 'no', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Plasma spectrometry in the earth sciences: Techniques, applications, and future trends', Chem. Geol., 1992 95(1-2) 1-33', 'firstchar' => 'P', 'twochars' => 'Pl', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 2 => array( 'id' => '013141', 'authors' => 'Brennan, M.C.;Simons, R.A.;Svelha, G.;Stockwell, P.B.', 'authorsweb' => 'M. C. BRENNAN, R. A. SIMONS, G. SVEHLA, and P. B. STOCKWELL', 'title' => 'Computer assisted metal analyzer using flow injection coupled with direct current plasma optical emission spectroscopy', 'journal' => 'J. Autom. Methods Manag. Chem.', 'journal_id' => '0958', 'fadid' => 'JAMM1990V0012P00183', 'year' => '1990', 'volume' => '12', 'issue' => '5', 'startpage' => '183', 'endpage' => '188', 'type' => 'Journal Article', 'analytes' => '', 'matrices' => '', 'techniques' => ';0471;', 'keywords' => ';0044;0090;', 'abstract' => 'Details are given of the three-electrode DC plasma source fitted to a Beckman Spectrospan 4 emission spectrometer, which has been coupled with a flow injection - autosampler arrangment and a microcomputer running the Touchstone software (PS Analytical, Kemsing, Kent UK). A typical template of the experimental parameters as displayed by the input - output program is reproduced. The automated system allows the rapid routine determination of ~70 elements at trace or higher levels.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'No', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '2', 'urlcheck' => '2014-10-12 00:38:51', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '01310', 'pauthor' => '!Stockwell, P.B.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1155/S1463924690000232', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Computer assisted metal analyzer using flow injection coupled with direct current plasma optical emission spectroscopy', J. Autom. Methods Manag. Chem., 1990 12(5) 183-188', 'firstchar' => 'C', 'twochars' => 'Co', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array([maximum depth reached]), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ) ) ) $c = array( 'id' => '008969', 'authors' => 'Brennan, M.C.;Svelha, G.', 'authorsweb' => 'M. C. Brennan and G. Svehla', 'title' => 'Flow injection determination of boron, copper, molybdenum, tungsten, and zinc in organic matrices with direct-current plasma optical-emission spectrometry', 'journal' => 'Fresenius J. Anal. Chem.', 'journal_id' => '0944', 'fadid' => 'FJAC1989V0335P00893', 'year' => '1989', 'volume' => '335', 'issue' => '8', 'startpage' => '893', 'endpage' => '899', 'type' => 'Journal Article', 'analytes' => ';0441;0684;1533;2446;2529;', 'matrices' => '', 'techniques' => ';0471;', 'keywords' => ';0285;0433;0118;0109;0260;', 'abstract' => 'The sample was dissolved in a suitable solvent, and the solution was diluted with isobutyl methyl ketone and introduced via a 600 µL loop into a stream of anhydrous acetic acid (4.5 mL min-1) and then to the nebulizer of the spectrometer via a 25-cm silicon rubber tube (0.8 mm i.d.). The line intensities were measured at 249.773, 324.754, 379.825, 400.875 and 202.548 nm for B, Cu, Mo, W and Zn, respectively. Calibration graphs were rectilinear up to 500 ng mL-1 of B, Cu, Mo and Zn and up to 1000 ng mL-1 of W with detection limits of 21, 14, 28, 120 and 20 ng mL-1 for B, Cu, Mo, W and Zn, respectively. The throughput was 100 samples h-1. The continuous introduction of the carrier liquid into the plasma cleaned out the nebulizer and reduced memory effects.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '8', 'urlcheck' => '2014-10-12 00:22:06', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => null, 'pauthor' => 'Svelha, G.', 'address' => 'Department of Chemistry, University College, Cork, Ireland', 'email' => 'NA', 'notes' => null, 'url' => '10.1007/BF00466377', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Flow injection determination of boron, copper, molybdenum, tungsten, and zinc in organic matrices with direct-current plasma optical-emission spectrometry', Fresenius J. Anal. Chem., 1989 335(8) 893-899', 'firstchar' => 'F', 'twochars' => 'Fl', 'CitationsTechnique' => array( 'id' => '006998', 'citation_id' => '008969', 'technique_id' => '0471' ), 'Analyte' => array( (int) 0 => array( 'id' => '00441', 'name' => 'Boron', 'iupac_name' => 'boron', 'casrn' => '7440-42-8', 'synonyms' => 'Boron; Boron (boron and borates only) ; ', 'total' => '37', 'inchi' => 'InChI=1S/B', 'inchikey' => 'ZOXJGFHDIHLPTG-UHFFFAOYSA-N', 'formula' => 'B', 'oxstate' => '', 'url' => '', 'charge' => '0', 'class1' => 'Element', 'class2' => 'Metalloid', 'class3' => 'NA', 'class4' => 'Atom', 'class5' => '', 'isgroup' => '', 'checked' => 'yes', 'citation_count' => '0', 'updated' => '2015-10-23 09:53:41', 'first' => 'B', 'nametotal' => 'Boron**37', 'AnalytesCitation' => array( [maximum depth reached] ) ), (int) 1 => array( 'id' => '00684', 'name' => 'Copper', 'iupac_name' => 'copper', 'casrn' => '7440-50-8', 'synonyms' => 'ANAC 110; Arwood copper; CDA 102; CDA 122; C.I. 77400; Copper; Copper ; CuTEA; Cutrine-Plus; Komeen; Pigment metal 2; Raney Copper', 'total' => '369', 'inchi' => 'InChI=1S/Cu', 'inchikey' => 'RYGMFSIKBFXOCR-UHFFFAOYSA-N', 'formula' => 'Cu', 'oxstate' => '', 'url' => '', 'charge' => '0', 'class1' => 'Element', 'class2' => 'Metal', 'class3' => 'Transition metal', 'class4' => 'NA', 'class5' => '', 'isgroup' => '', 'checked' => 'yes', 'citation_count' => '0', 'updated' => '2015-10-23 09:55:44', 'first' => 'C', 'nametotal' => 'Copper**369', 'AnalytesCitation' => array( [maximum depth reached] ) ), (int) 2 => array( 'id' => '01533', 'name' => 'Molybdenum', 'iupac_name' => 'molybdenum', 'casrn' => '7439-98-7', 'synonyms' => 'Molybdenum', 'total' => '44', 'inchi' => 'InChI=1S/Mo', 'inchikey' => 'ZOKXTWBITQBERF-UHFFFAOYSA-N', 'formula' => 'Mo', 'oxstate' => '', 'url' => '', 'charge' => '0', 'class1' => 'Element', 'class2' => 'Metal', 'class3' => 'Transition metal', 'class4' => 'Atom', 'class5' => '', 'isgroup' => '', 'checked' => 'yes', 'citation_count' => '0', 'updated' => '2015-10-23 21:32:07', 'first' => 'M', 'nametotal' => 'Molybdenum**44', 'AnalytesCitation' => array( [maximum depth reached] ) ), (int) 3 => array( 'id' => '02446', 'name' => 'Tungsten', 'iupac_name' => 'tungsten', 'casrn' => '7440-33-7', 'synonyms' => 'Tungsten', 'total' => '14', 'inchi' => 'InChI=1S/W', 'inchikey' => 'WFKWXMTUELFFGS-UHFFFAOYSA-N', 'formula' => 'W', 'oxstate' => '', 'url' => '', 'charge' => '0', 'class1' => 'Element', 'class2' => 'Metal', 'class3' => 'Transition metal', 'class4' => 'Atom', 'class5' => '', 'isgroup' => '', 'checked' => 'yes', 'citation_count' => '0', 'updated' => '2015-10-23 21:39:17', 'first' => 'T', 'nametotal' => 'Tungsten**14', 'AnalytesCitation' => array( [maximum depth reached] ) ), (int) 4 => array( 'id' => '02529', 'name' => 'Zinc', 'iupac_name' => 'zinc', 'casrn' => '7440-66-6', 'synonyms' => 'Blue powder; Zinc; Zinc ; ZINC POWDER OR DUST', 'total' => '231', 'inchi' => 'InChI=1S/Zn', 'inchikey' => 'HCHKCACWOHOZIP-UHFFFAOYSA-N', 'formula' => 'Zn', 'oxstate' => '', 'url' => '', 'charge' => '0', 'class1' => 'Element', 'class2' => 'Metal', 'class3' => 'Transition metal', 'class4' => 'Atom', 'class5' => '', 'isgroup' => '', 'checked' => 'yes', 'citation_count' => '0', 'updated' => '2015-10-23 21:40:01', 'first' => 'Z', 'nametotal' => 'Zinc**231', 'AnalytesCitation' => array( [maximum depth reached] ) ) ), 'Matrix' => array(), 'Keyword' => array( (int) 0 => array( 'id' => '0285', 'type' => 'Manifold component', 'keyword' => 'Nebulizer', 'newKeyword' => '', 'synonyms' => '', 'fao' => '', 'total' => '86', 'first' => 'N', 'keytotal' => 'Nebulizer**86', 'CitationsKeyword' => array( [maximum depth reached] ) ), (int) 1 => array( 'id' => '0433', 'type' => 'Feature', 'keyword' => 'Solvent composition', 'newKeyword' => '', 'synonyms' => '', 'fao' => '', 'total' => '2', 'first' => 'S', 'keytotal' => 'Solvent composition**2', 'CitationsKeyword' => array( [maximum depth reached] ) ), (int) 2 => array( 'id' => '0118', 'type' => 'Manifold process', 'keyword' => 'Dilution', 'newKeyword' => '', 'synonyms' => '', 'fao' => '', 'total' => '117', 'first' => 'D', 'keytotal' => 'Dilution**117', 'CitationsKeyword' => array( [maximum depth reached] ) ), (int) 3 => array( 'id' => '0109', 'type' => 'Detection limit', 'keyword' => 'Detection limit', 'newKeyword' => '', 'synonyms' => '', 'fao' => '', 'total' => '296', 'first' => 'D', 'keytotal' => 'Detection limit**296', 'CitationsKeyword' => array( [maximum depth reached] ) ), (int) 4 => array( 'id' => '0260', 'type' => 'Reagent', 'keyword' => 'MIBK', 'newKeyword' => '', 'synonyms' => '', 'fao' => '', 'total' => '41', 'first' => 'M', 'keytotal' => 'MIBK**41', 'CitationsKeyword' => array( [maximum depth reached] ) ) ) ) $i = (int) 0 $path = '' $a = '' $url = 'http://dx.doi.org/10.1007/BF00466377' $aus = 'M. C. Brennan and G. Svehla'include - APP/View/Elements/citation.ctp, line 40 View::_evaluate() - CORE/Cake/View/View.php, line 971 View::_render() - CORE/Cake/View/View.php, line 933 View::_renderElement() - CORE/Cake/View/View.php, line 1224 View::element() - CORE/Cake/View/View.php, line 418 include - APP/View/Techniques/view.ctp, line 52 View::_evaluate() - CORE/Cake/View/View.php, line 971 View::_render() - CORE/Cake/View/View.php, line 933 View::render() - CORE/Cake/View/View.php, line 473 Controller::render() - CORE/Cake/Controller/Controller.php, line 968 Dispatcher::_invoke() - CORE/Cake/Routing/Dispatcher.php, line 200 Dispatcher::dispatch() - CORE/Cake/Routing/Dispatcher.php, line 167 [main] - APP/webroot/index.php, line 109
"Plasma Spectrometry In The Earth Sciences: Techniques, Applications, And Future Trends"
Chem. Geol.
1992 Volume 95, Issue 1-2 Pages 1-33
Notice (8): Undefined variable: uid [APP/View/Elements/citation.ctp, line 40]Ian Jarvis and Kym E. JarvisCode Context?>
<?php
if($uid!='') {
$viewFile = '/home/stuchalk/public_html/fad/app/View/Elements/citation.ctp' $dataForView = array( 'data' => array( 'Technique' => array( 'id' => '0471', 'label' => 'Spectrophotometry', 'level1' => 'Spectrophotometry', 'level2' => 'atomic emission', 'level3' => 'direct current plasma', 'level4' => '', 'level5' => '', 'synonyms' => 'DCP-AES,DCP-OES', 'champ' => '', 'total' => '3', 'updated' => '0000-00-00 00:00:00', 'name' => 'Spectrophotometry, atomic emission, direct current plasma', 'nametotal' => 'Spectrophotometry, atomic emission, direct current plasma**3', 'first' => 'S' ), 'Citation' => array( (int) 0 => array( [maximum depth reached] ), (int) 1 => array( [maximum depth reached] ), (int) 2 => array( [maximum depth reached] ) ) ), 'c' => array( 'id' => '011830', 'authors' => 'Jarvis, I.;Jarvis, K.E.', 'authorsweb' => 'Ian Jarvis and Kym E. Jarvis', 'title' => 'Plasma spectrometry in the earth sciences: Techniques, applications, and future trends', 'journal' => 'Chem. Geol.', 'journal_id' => '0593', 'fadid' => 'CHGE1992V0095P00001', 'year' => '1992', 'volume' => '95', 'issue' => '1-2', 'startpage' => '1', 'endpage' => '33', 'type' => 'Journal Article', 'analytes' => ';1469;1470;', 'matrices' => '', 'techniques' => ';0348;0471;0481;', 'keywords' => ';0389;0278;0217;0475;', 'abstract' => 'A review with many references. Plasma spectrometry is one of the most popular and versatile techniques for the analysis of geological and environmental samples, including rocks and minerals, waters, dust, vegetation, soils, sewage sludges and sediments. Inductively coupled or DC argon plasmas are used as emission sources in ICP- and DCP-atomic emission spectrometry (ICP-AES, DCP-AES); an ICP provides an ion source in ICP-mass spectrometry (ICP-MS). Reviews of the two plasma sources sample introduction systems, and the instrumental and analytical performances of emission and mass spectrometers, demonstrates the superiority of higher-temperature, ICP-based systems. ICP-AES and ICP-MS are characterized by wide linear responses of more than five orders of magnitude. They are rapid and highly cost-effective multi-element techniques which can theoretical determine over 70 elements in <2 mL of sample solution in less than 2 min. In practice such performance is rarely possible because detection limits, and particularly in the case of ICP-AES, spectral interferences, limit the range of elements which may be quantified. Plasma spectrometry is primarily a solution-based technique, and the dissolution step ultimately controls both the range of elements quantifiable and the limits of determination which may be achieved. Limits of quantitative analysis for solid samples are typically in the order of a few µg g-1 for ICP-AES and a few hundred ng g-1 for ICP-MS. However, chemical separation and pre-concentration procedures are described for the rare-earth elements, precious metals and several other elemental groups, which enable determinations to be made at sub ng g-1 levels. The better precision of ICP-AES and the greater sensitivity, near-complete freedom from interferences, and isotopic capabilities of ICP-MS, mean that ICP-AES is best used for major- and minor-element determinations, while ICP-MS is reserved for trace- and ultratrace-element work. Comparisons with atomic absorption x-ray fluorescence and instrumental neutron activation demonstrate that plasma-based techniques compete well with more established instrumental methods. Further developments in sample preparation and presentation procedures, particularly in the area of solid sample analysis, will increase further the potential applications of plasma spectrometry in the earth sciences.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'No', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '6', 'urlcheck' => '2014-10-12 08:36:24', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => null, 'pauthor' => 'NA', 'address' => 'Sch. Geol. Sci., Kingston Polytech., Kingston-upon-Thames/Surrey, KT1 2EE, UK', 'email' => 'NA', 'notes' => null, 'url' => '10.1016/0009-2541(92)90041-3', 'urltype' => 'doi', 'gotpdf' => 'no', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Plasma spectrometry in the earth sciences: Techniques, applications, and future trends', Chem. Geol., 1992 95(1-2) 1-33', 'firstchar' => 'P', 'twochars' => 'Pl', 'CitationsTechnique' => array( 'id' => '011719', 'citation_id' => '011830', 'technique_id' => '0471' ), 'Analyte' => array( (int) 0 => array( [maximum depth reached] ), (int) 1 => array( [maximum depth reached] ) ), 'Matrix' => array(), 'Keyword' => array( (int) 0 => array( [maximum depth reached] ), (int) 1 => array( [maximum depth reached] ), (int) 2 => array( [maximum depth reached] ), (int) 3 => array( [maximum depth reached] ) ) ), 'i' => (int) 1 ) $data = array( 'Technique' => array( 'id' => '0471', 'label' => 'Spectrophotometry', 'level1' => 'Spectrophotometry', 'level2' => 'atomic emission', 'level3' => 'direct current plasma', 'level4' => '', 'level5' => '', 'synonyms' => 'DCP-AES,DCP-OES', 'champ' => '', 'total' => '3', 'updated' => '0000-00-00 00:00:00', 'name' => 'Spectrophotometry, atomic emission, direct current plasma', 'nametotal' => 'Spectrophotometry, atomic emission, direct current plasma**3', 'first' => 'S' ), 'Citation' => array( (int) 0 => array( 'id' => '008969', 'authors' => 'Brennan, M.C.;Svelha, G.', 'authorsweb' => 'M. C. Brennan and G. Svehla', 'title' => 'Flow injection determination of boron, copper, molybdenum, tungsten, and zinc in organic matrices with direct-current plasma optical-emission spectrometry', 'journal' => 'Fresenius J. Anal. Chem.', 'journal_id' => '0944', 'fadid' => 'FJAC1989V0335P00893', 'year' => '1989', 'volume' => '335', 'issue' => '8', 'startpage' => '893', 'endpage' => '899', 'type' => 'Journal Article', 'analytes' => ';0441;0684;1533;2446;2529;', 'matrices' => '', 'techniques' => ';0471;', 'keywords' => ';0285;0433;0118;0109;0260;', 'abstract' => 'The sample was dissolved in a suitable solvent, and the solution was diluted with isobutyl methyl ketone and introduced via a 600 µL loop into a stream of anhydrous acetic acid (4.5 mL min-1) and then to the nebulizer of the spectrometer via a 25-cm silicon rubber tube (0.8 mm i.d.). The line intensities were measured at 249.773, 324.754, 379.825, 400.875 and 202.548 nm for B, Cu, Mo, W and Zn, respectively. Calibration graphs were rectilinear up to 500 ng mL-1 of B, Cu, Mo and Zn and up to 1000 ng mL-1 of W with detection limits of 21, 14, 28, 120 and 20 ng mL-1 for B, Cu, Mo, W and Zn, respectively. The throughput was 100 samples h-1. The continuous introduction of the carrier liquid into the plasma cleaned out the nebulizer and reduced memory effects.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '8', 'urlcheck' => '2014-10-12 00:22:06', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => null, 'pauthor' => 'Svelha, G.', 'address' => 'Department of Chemistry, University College, Cork, Ireland', 'email' => 'NA', 'notes' => null, 'url' => '10.1007/BF00466377', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Flow injection determination of boron, copper, molybdenum, tungsten, and zinc in organic matrices with direct-current plasma optical-emission spectrometry', Fresenius J. Anal. Chem., 1989 335(8) 893-899', 'firstchar' => 'F', 'twochars' => 'Fl', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 1 => array( 'id' => '011830', 'authors' => 'Jarvis, I.;Jarvis, K.E.', 'authorsweb' => 'Ian Jarvis and Kym E. Jarvis', 'title' => 'Plasma spectrometry in the earth sciences: Techniques, applications, and future trends', 'journal' => 'Chem. Geol.', 'journal_id' => '0593', 'fadid' => 'CHGE1992V0095P00001', 'year' => '1992', 'volume' => '95', 'issue' => '1-2', 'startpage' => '1', 'endpage' => '33', 'type' => 'Journal Article', 'analytes' => ';1469;1470;', 'matrices' => '', 'techniques' => ';0348;0471;0481;', 'keywords' => ';0389;0278;0217;0475;', 'abstract' => 'A review with many references. Plasma spectrometry is one of the most popular and versatile techniques for the analysis of geological and environmental samples, including rocks and minerals, waters, dust, vegetation, soils, sewage sludges and sediments. Inductively coupled or DC argon plasmas are used as emission sources in ICP- and DCP-atomic emission spectrometry (ICP-AES, DCP-AES); an ICP provides an ion source in ICP-mass spectrometry (ICP-MS). Reviews of the two plasma sources sample introduction systems, and the instrumental and analytical performances of emission and mass spectrometers, demonstrates the superiority of higher-temperature, ICP-based systems. ICP-AES and ICP-MS are characterized by wide linear responses of more than five orders of magnitude. They are rapid and highly cost-effective multi-element techniques which can theoretical determine over 70 elements in <2 mL of sample solution in less than 2 min. In practice such performance is rarely possible because detection limits, and particularly in the case of ICP-AES, spectral interferences, limit the range of elements which may be quantified. Plasma spectrometry is primarily a solution-based technique, and the dissolution step ultimately controls both the range of elements quantifiable and the limits of determination which may be achieved. Limits of quantitative analysis for solid samples are typically in the order of a few µg g-1 for ICP-AES and a few hundred ng g-1 for ICP-MS. However, chemical separation and pre-concentration procedures are described for the rare-earth elements, precious metals and several other elemental groups, which enable determinations to be made at sub ng g-1 levels. The better precision of ICP-AES and the greater sensitivity, near-complete freedom from interferences, and isotopic capabilities of ICP-MS, mean that ICP-AES is best used for major- and minor-element determinations, while ICP-MS is reserved for trace- and ultratrace-element work. Comparisons with atomic absorption x-ray fluorescence and instrumental neutron activation demonstrate that plasma-based techniques compete well with more established instrumental methods. Further developments in sample preparation and presentation procedures, particularly in the area of solid sample analysis, will increase further the potential applications of plasma spectrometry in the earth sciences.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'No', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '6', 'urlcheck' => '2014-10-12 08:36:24', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => null, 'pauthor' => 'NA', 'address' => 'Sch. Geol. Sci., Kingston Polytech., Kingston-upon-Thames/Surrey, KT1 2EE, UK', 'email' => 'NA', 'notes' => null, 'url' => '10.1016/0009-2541(92)90041-3', 'urltype' => 'doi', 'gotpdf' => 'no', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Plasma spectrometry in the earth sciences: Techniques, applications, and future trends', Chem. Geol., 1992 95(1-2) 1-33', 'firstchar' => 'P', 'twochars' => 'Pl', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 2 => array( 'id' => '013141', 'authors' => 'Brennan, M.C.;Simons, R.A.;Svelha, G.;Stockwell, P.B.', 'authorsweb' => 'M. C. BRENNAN, R. A. SIMONS, G. SVEHLA, and P. B. STOCKWELL', 'title' => 'Computer assisted metal analyzer using flow injection coupled with direct current plasma optical emission spectroscopy', 'journal' => 'J. Autom. Methods Manag. Chem.', 'journal_id' => '0958', 'fadid' => 'JAMM1990V0012P00183', 'year' => '1990', 'volume' => '12', 'issue' => '5', 'startpage' => '183', 'endpage' => '188', 'type' => 'Journal Article', 'analytes' => '', 'matrices' => '', 'techniques' => ';0471;', 'keywords' => ';0044;0090;', 'abstract' => 'Details are given of the three-electrode DC plasma source fitted to a Beckman Spectrospan 4 emission spectrometer, which has been coupled with a flow injection - autosampler arrangment and a microcomputer running the Touchstone software (PS Analytical, Kemsing, Kent UK). A typical template of the experimental parameters as displayed by the input - output program is reproduced. The automated system allows the rapid routine determination of ~70 elements at trace or higher levels.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'No', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '2', 'urlcheck' => '2014-10-12 00:38:51', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '01310', 'pauthor' => '!Stockwell, P.B.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1155/S1463924690000232', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Computer assisted metal analyzer using flow injection coupled with direct current plasma optical emission spectroscopy', J. Autom. Methods Manag. Chem., 1990 12(5) 183-188', 'firstchar' => 'C', 'twochars' => 'Co', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array([maximum depth reached]), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ) ) ) $c = array( 'id' => '011830', 'authors' => 'Jarvis, I.;Jarvis, K.E.', 'authorsweb' => 'Ian Jarvis and Kym E. Jarvis', 'title' => 'Plasma spectrometry in the earth sciences: Techniques, applications, and future trends', 'journal' => 'Chem. Geol.', 'journal_id' => '0593', 'fadid' => 'CHGE1992V0095P00001', 'year' => '1992', 'volume' => '95', 'issue' => '1-2', 'startpage' => '1', 'endpage' => '33', 'type' => 'Journal Article', 'analytes' => ';1469;1470;', 'matrices' => '', 'techniques' => ';0348;0471;0481;', 'keywords' => ';0389;0278;0217;0475;', 'abstract' => 'A review with many references. Plasma spectrometry is one of the most popular and versatile techniques for the analysis of geological and environmental samples, including rocks and minerals, waters, dust, vegetation, soils, sewage sludges and sediments. Inductively coupled or DC argon plasmas are used as emission sources in ICP- and DCP-atomic emission spectrometry (ICP-AES, DCP-AES); an ICP provides an ion source in ICP-mass spectrometry (ICP-MS). Reviews of the two plasma sources sample introduction systems, and the instrumental and analytical performances of emission and mass spectrometers, demonstrates the superiority of higher-temperature, ICP-based systems. ICP-AES and ICP-MS are characterized by wide linear responses of more than five orders of magnitude. They are rapid and highly cost-effective multi-element techniques which can theoretical determine over 70 elements in <2 mL of sample solution in less than 2 min. In practice such performance is rarely possible because detection limits, and particularly in the case of ICP-AES, spectral interferences, limit the range of elements which may be quantified. Plasma spectrometry is primarily a solution-based technique, and the dissolution step ultimately controls both the range of elements quantifiable and the limits of determination which may be achieved. Limits of quantitative analysis for solid samples are typically in the order of a few µg g-1 for ICP-AES and a few hundred ng g-1 for ICP-MS. However, chemical separation and pre-concentration procedures are described for the rare-earth elements, precious metals and several other elemental groups, which enable determinations to be made at sub ng g-1 levels. The better precision of ICP-AES and the greater sensitivity, near-complete freedom from interferences, and isotopic capabilities of ICP-MS, mean that ICP-AES is best used for major- and minor-element determinations, while ICP-MS is reserved for trace- and ultratrace-element work. Comparisons with atomic absorption x-ray fluorescence and instrumental neutron activation demonstrate that plasma-based techniques compete well with more established instrumental methods. Further developments in sample preparation and presentation procedures, particularly in the area of solid sample analysis, will increase further the potential applications of plasma spectrometry in the earth sciences.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'No', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '6', 'urlcheck' => '2014-10-12 08:36:24', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => null, 'pauthor' => 'NA', 'address' => 'Sch. Geol. Sci., Kingston Polytech., Kingston-upon-Thames/Surrey, KT1 2EE, UK', 'email' => 'NA', 'notes' => null, 'url' => '10.1016/0009-2541(92)90041-3', 'urltype' => 'doi', 'gotpdf' => 'no', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Plasma spectrometry in the earth sciences: Techniques, applications, and future trends', Chem. Geol., 1992 95(1-2) 1-33', 'firstchar' => 'P', 'twochars' => 'Pl', 'CitationsTechnique' => array( 'id' => '011719', 'citation_id' => '011830', 'technique_id' => '0471' ), 'Analyte' => array( (int) 0 => array( 'id' => '01469', 'name' => 'Metals, precious', 'iupac_name' => '', 'casrn' => '', 'synonyms' => '', 'total' => '3', 'inchi' => '', 'inchikey' => '', 'formula' => '', 'oxstate' => null, 'url' => '', 'charge' => null, 'class1' => 'Element', 'class2' => 'Metal', 'class3' => 'Precious metal', 'class4' => 'NA', 'class5' => 'NA', 'isgroup' => 'no', 'checked' => 'no', 'citation_count' => '0', 'updated' => '2015-12-11 09:53:17', 'first' => 'M', 'nametotal' => 'Metals, precious**3', 'AnalytesCitation' => array( [maximum depth reached] ) ), (int) 1 => array( 'id' => '01470', 'name' => 'Metals, rare earth', 'iupac_name' => '', 'casrn' => '', 'synonyms' => 'REE; Lanthanide; Duplicate; Lanthanum; Cerium; Praseodymium; Neodymium; Promethium;Samarium; Europium; Gadolinium; Terbium; Dysprosium; Holmium; Erbium; Thulium; Ytterbium; Lutetium; Actinium; Thorium; Protactinium; Uranium; Neptunium; Plutonium; Americium; Curium; Berkelium; Californium; Einsteinium; Fermium; Mendelevium; Nobelium; Lawrencium', 'total' => '40', 'inchi' => '', 'inchikey' => '', 'formula' => '', 'oxstate' => null, 'url' => '', 'charge' => null, 'class1' => 'Element', 'class2' => 'Metal', 'class3' => 'Rare earth metal', 'class4' => 'NA', 'class5' => '', 'isgroup' => '', 'checked' => 'yes', 'citation_count' => '0', 'updated' => '2015-12-11 09:54:00', 'first' => 'M', 'nametotal' => 'Metals, rare earth**40', 'AnalytesCitation' => array( [maximum depth reached] ) ) ), 'Matrix' => array(), 'Keyword' => array( (int) 0 => array( 'id' => '0389', 'type' => 'Application', 'keyword' => 'Review', 'newKeyword' => '', 'synonyms' => '', 'fao' => '', 'total' => '897', 'first' => 'R', 'keytotal' => 'Review**897', 'CitationsKeyword' => array( [maximum depth reached] ) ), (int) 1 => array( 'id' => '0278', 'type' => 'Feature', 'keyword' => 'Multicomponent', 'newKeyword' => '', 'synonyms' => '', 'fao' => '', 'total' => '62', 'first' => 'M', 'keytotal' => 'Multicomponent**62', 'CitationsKeyword' => array( [maximum depth reached] ) ), (int) 2 => array( 'id' => '0217', 'type' => 'Chemical Process', 'keyword' => 'Interferences', 'newKeyword' => '', 'synonyms' => '', 'fao' => '', 'total' => '1972', 'first' => 'I', 'keytotal' => 'Interferences**1972', 'CitationsKeyword' => array( [maximum depth reached] ) ), (int) 3 => array( 'id' => '0475', 'type' => 'Feature', 'keyword' => 'Ultratrace', 'newKeyword' => '', 'synonyms' => '', 'fao' => '', 'total' => '49', 'first' => 'U', 'keytotal' => 'Ultratrace**49', 'CitationsKeyword' => array( [maximum depth reached] ) ) ) ) $i = (int) 1 $path = '' $a = '' $url = 'http://dx.doi.org/10.1016/0009-2541(92)90041-3' $aus = 'Ian Jarvis and Kym E. Jarvis'include - APP/View/Elements/citation.ctp, line 40 View::_evaluate() - CORE/Cake/View/View.php, line 971 View::_render() - CORE/Cake/View/View.php, line 933 View::_renderElement() - CORE/Cake/View/View.php, line 1224 View::element() - CORE/Cake/View/View.php, line 418 include - APP/View/Techniques/view.ctp, line 52 View::_evaluate() - CORE/Cake/View/View.php, line 971 View::_render() - CORE/Cake/View/View.php, line 933 View::render() - CORE/Cake/View/View.php, line 473 Controller::render() - CORE/Cake/Controller/Controller.php, line 968 Dispatcher::_invoke() - CORE/Cake/Routing/Dispatcher.php, line 200 Dispatcher::dispatch() - CORE/Cake/Routing/Dispatcher.php, line 167 [main] - APP/webroot/index.php, line 109
"Computer Assisted Metal Analyzer Using Flow Injection Coupled With Direct Current Plasma Optical Emission Spectroscopy"
J. Autom. Methods Manag. Chem.
1990 Volume 12, Issue 5 Pages 183-188
Notice (8): Undefined variable: uid [APP/View/Elements/citation.ctp, line 40]M. C. BRENNAN, R. A. SIMONS, G. SVEHLA, and P. B. STOCKWELLCode Context?>
<?php
if($uid!='') {
$viewFile = '/home/stuchalk/public_html/fad/app/View/Elements/citation.ctp' $dataForView = array( 'data' => array( 'Technique' => array( 'id' => '0471', 'label' => 'Spectrophotometry', 'level1' => 'Spectrophotometry', 'level2' => 'atomic emission', 'level3' => 'direct current plasma', 'level4' => '', 'level5' => '', 'synonyms' => 'DCP-AES,DCP-OES', 'champ' => '', 'total' => '3', 'updated' => '0000-00-00 00:00:00', 'name' => 'Spectrophotometry, atomic emission, direct current plasma', 'nametotal' => 'Spectrophotometry, atomic emission, direct current plasma**3', 'first' => 'S' ), 'Citation' => array( (int) 0 => array( [maximum depth reached] ), (int) 1 => array( [maximum depth reached] ), (int) 2 => array( [maximum depth reached] ) ) ), 'c' => array( 'id' => '013141', 'authors' => 'Brennan, M.C.;Simons, R.A.;Svelha, G.;Stockwell, P.B.', 'authorsweb' => 'M. C. BRENNAN, R. A. SIMONS, G. SVEHLA, and P. B. STOCKWELL', 'title' => 'Computer assisted metal analyzer using flow injection coupled with direct current plasma optical emission spectroscopy', 'journal' => 'J. Autom. Methods Manag. Chem.', 'journal_id' => '0958', 'fadid' => 'JAMM1990V0012P00183', 'year' => '1990', 'volume' => '12', 'issue' => '5', 'startpage' => '183', 'endpage' => '188', 'type' => 'Journal Article', 'analytes' => '', 'matrices' => '', 'techniques' => ';0471;', 'keywords' => ';0044;0090;', 'abstract' => 'Details are given of the three-electrode DC plasma source fitted to a Beckman Spectrospan 4 emission spectrometer, which has been coupled with a flow injection - autosampler arrangment and a microcomputer running the Touchstone software (PS Analytical, Kemsing, Kent UK). A typical template of the experimental parameters as displayed by the input - output program is reproduced. The automated system allows the rapid routine determination of ~70 elements at trace or higher levels.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'No', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '2', 'urlcheck' => '2014-10-12 00:38:51', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '01310', 'pauthor' => '!Stockwell, P.B.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1155/S1463924690000232', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Computer assisted metal analyzer using flow injection coupled with direct current plasma optical emission spectroscopy', J. Autom. Methods Manag. Chem., 1990 12(5) 183-188', 'firstchar' => 'C', 'twochars' => 'Co', 'CitationsTechnique' => array( 'id' => '013551', 'citation_id' => '013141', 'technique_id' => '0471' ), 'Analyte' => array(), 'Matrix' => array(), 'Keyword' => array( (int) 0 => array( [maximum depth reached] ), (int) 1 => array( [maximum depth reached] ) ) ), 'i' => (int) 2 ) $data = array( 'Technique' => array( 'id' => '0471', 'label' => 'Spectrophotometry', 'level1' => 'Spectrophotometry', 'level2' => 'atomic emission', 'level3' => 'direct current plasma', 'level4' => '', 'level5' => '', 'synonyms' => 'DCP-AES,DCP-OES', 'champ' => '', 'total' => '3', 'updated' => '0000-00-00 00:00:00', 'name' => 'Spectrophotometry, atomic emission, direct current plasma', 'nametotal' => 'Spectrophotometry, atomic emission, direct current plasma**3', 'first' => 'S' ), 'Citation' => array( (int) 0 => array( 'id' => '008969', 'authors' => 'Brennan, M.C.;Svelha, G.', 'authorsweb' => 'M. C. Brennan and G. Svehla', 'title' => 'Flow injection determination of boron, copper, molybdenum, tungsten, and zinc in organic matrices with direct-current plasma optical-emission spectrometry', 'journal' => 'Fresenius J. Anal. Chem.', 'journal_id' => '0944', 'fadid' => 'FJAC1989V0335P00893', 'year' => '1989', 'volume' => '335', 'issue' => '8', 'startpage' => '893', 'endpage' => '899', 'type' => 'Journal Article', 'analytes' => ';0441;0684;1533;2446;2529;', 'matrices' => '', 'techniques' => ';0471;', 'keywords' => ';0285;0433;0118;0109;0260;', 'abstract' => 'The sample was dissolved in a suitable solvent, and the solution was diluted with isobutyl methyl ketone and introduced via a 600 µL loop into a stream of anhydrous acetic acid (4.5 mL min-1) and then to the nebulizer of the spectrometer via a 25-cm silicon rubber tube (0.8 mm i.d.). The line intensities were measured at 249.773, 324.754, 379.825, 400.875 and 202.548 nm for B, Cu, Mo, W and Zn, respectively. Calibration graphs were rectilinear up to 500 ng mL-1 of B, Cu, Mo and Zn and up to 1000 ng mL-1 of W with detection limits of 21, 14, 28, 120 and 20 ng mL-1 for B, Cu, Mo, W and Zn, respectively. The throughput was 100 samples h-1. The continuous introduction of the carrier liquid into the plasma cleaned out the nebulizer and reduced memory effects.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '8', 'urlcheck' => '2014-10-12 00:22:06', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => null, 'pauthor' => 'Svelha, G.', 'address' => 'Department of Chemistry, University College, Cork, Ireland', 'email' => 'NA', 'notes' => null, 'url' => '10.1007/BF00466377', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Flow injection determination of boron, copper, molybdenum, tungsten, and zinc in organic matrices with direct-current plasma optical-emission spectrometry', Fresenius J. Anal. Chem., 1989 335(8) 893-899', 'firstchar' => 'F', 'twochars' => 'Fl', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 1 => array( 'id' => '011830', 'authors' => 'Jarvis, I.;Jarvis, K.E.', 'authorsweb' => 'Ian Jarvis and Kym E. Jarvis', 'title' => 'Plasma spectrometry in the earth sciences: Techniques, applications, and future trends', 'journal' => 'Chem. Geol.', 'journal_id' => '0593', 'fadid' => 'CHGE1992V0095P00001', 'year' => '1992', 'volume' => '95', 'issue' => '1-2', 'startpage' => '1', 'endpage' => '33', 'type' => 'Journal Article', 'analytes' => ';1469;1470;', 'matrices' => '', 'techniques' => ';0348;0471;0481;', 'keywords' => ';0389;0278;0217;0475;', 'abstract' => 'A review with many references. Plasma spectrometry is one of the most popular and versatile techniques for the analysis of geological and environmental samples, including rocks and minerals, waters, dust, vegetation, soils, sewage sludges and sediments. Inductively coupled or DC argon plasmas are used as emission sources in ICP- and DCP-atomic emission spectrometry (ICP-AES, DCP-AES); an ICP provides an ion source in ICP-mass spectrometry (ICP-MS). Reviews of the two plasma sources sample introduction systems, and the instrumental and analytical performances of emission and mass spectrometers, demonstrates the superiority of higher-temperature, ICP-based systems. ICP-AES and ICP-MS are characterized by wide linear responses of more than five orders of magnitude. They are rapid and highly cost-effective multi-element techniques which can theoretical determine over 70 elements in <2 mL of sample solution in less than 2 min. In practice such performance is rarely possible because detection limits, and particularly in the case of ICP-AES, spectral interferences, limit the range of elements which may be quantified. Plasma spectrometry is primarily a solution-based technique, and the dissolution step ultimately controls both the range of elements quantifiable and the limits of determination which may be achieved. Limits of quantitative analysis for solid samples are typically in the order of a few µg g-1 for ICP-AES and a few hundred ng g-1 for ICP-MS. However, chemical separation and pre-concentration procedures are described for the rare-earth elements, precious metals and several other elemental groups, which enable determinations to be made at sub ng g-1 levels. The better precision of ICP-AES and the greater sensitivity, near-complete freedom from interferences, and isotopic capabilities of ICP-MS, mean that ICP-AES is best used for major- and minor-element determinations, while ICP-MS is reserved for trace- and ultratrace-element work. Comparisons with atomic absorption x-ray fluorescence and instrumental neutron activation demonstrate that plasma-based techniques compete well with more established instrumental methods. Further developments in sample preparation and presentation procedures, particularly in the area of solid sample analysis, will increase further the potential applications of plasma spectrometry in the earth sciences.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'No', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '6', 'urlcheck' => '2014-10-12 08:36:24', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => null, 'pauthor' => 'NA', 'address' => 'Sch. Geol. Sci., Kingston Polytech., Kingston-upon-Thames/Surrey, KT1 2EE, UK', 'email' => 'NA', 'notes' => null, 'url' => '10.1016/0009-2541(92)90041-3', 'urltype' => 'doi', 'gotpdf' => 'no', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Plasma spectrometry in the earth sciences: Techniques, applications, and future trends', Chem. Geol., 1992 95(1-2) 1-33', 'firstchar' => 'P', 'twochars' => 'Pl', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 2 => array( 'id' => '013141', 'authors' => 'Brennan, M.C.;Simons, R.A.;Svelha, G.;Stockwell, P.B.', 'authorsweb' => 'M. C. BRENNAN, R. A. SIMONS, G. SVEHLA, and P. B. STOCKWELL', 'title' => 'Computer assisted metal analyzer using flow injection coupled with direct current plasma optical emission spectroscopy', 'journal' => 'J. Autom. Methods Manag. Chem.', 'journal_id' => '0958', 'fadid' => 'JAMM1990V0012P00183', 'year' => '1990', 'volume' => '12', 'issue' => '5', 'startpage' => '183', 'endpage' => '188', 'type' => 'Journal Article', 'analytes' => '', 'matrices' => '', 'techniques' => ';0471;', 'keywords' => ';0044;0090;', 'abstract' => 'Details are given of the three-electrode DC plasma source fitted to a Beckman Spectrospan 4 emission spectrometer, which has been coupled with a flow injection - autosampler arrangment and a microcomputer running the Touchstone software (PS Analytical, Kemsing, Kent UK). A typical template of the experimental parameters as displayed by the input - output program is reproduced. The automated system allows the rapid routine determination of ~70 elements at trace or higher levels.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'No', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '2', 'urlcheck' => '2014-10-12 00:38:51', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '01310', 'pauthor' => '!Stockwell, P.B.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1155/S1463924690000232', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Computer assisted metal analyzer using flow injection coupled with direct current plasma optical emission spectroscopy', J. Autom. Methods Manag. Chem., 1990 12(5) 183-188', 'firstchar' => 'C', 'twochars' => 'Co', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array([maximum depth reached]), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ) ) ) $c = array( 'id' => '013141', 'authors' => 'Brennan, M.C.;Simons, R.A.;Svelha, G.;Stockwell, P.B.', 'authorsweb' => 'M. C. BRENNAN, R. A. SIMONS, G. SVEHLA, and P. B. STOCKWELL', 'title' => 'Computer assisted metal analyzer using flow injection coupled with direct current plasma optical emission spectroscopy', 'journal' => 'J. Autom. Methods Manag. Chem.', 'journal_id' => '0958', 'fadid' => 'JAMM1990V0012P00183', 'year' => '1990', 'volume' => '12', 'issue' => '5', 'startpage' => '183', 'endpage' => '188', 'type' => 'Journal Article', 'analytes' => '', 'matrices' => '', 'techniques' => ';0471;', 'keywords' => ';0044;0090;', 'abstract' => 'Details are given of the three-electrode DC plasma source fitted to a Beckman Spectrospan 4 emission spectrometer, which has been coupled with a flow injection - autosampler arrangment and a microcomputer running the Touchstone software (PS Analytical, Kemsing, Kent UK). A typical template of the experimental parameters as displayed by the input - output program is reproduced. The automated system allows the rapid routine determination of ~70 elements at trace or higher levels.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'No', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '2', 'urlcheck' => '2014-10-12 00:38:51', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '01310', 'pauthor' => '!Stockwell, P.B.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1155/S1463924690000232', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Computer assisted metal analyzer using flow injection coupled with direct current plasma optical emission spectroscopy', J. Autom. Methods Manag. Chem., 1990 12(5) 183-188', 'firstchar' => 'C', 'twochars' => 'Co', 'CitationsTechnique' => array( 'id' => '013551', 'citation_id' => '013141', 'technique_id' => '0471' ), 'Analyte' => array(), 'Matrix' => array(), 'Keyword' => array( (int) 0 => array( 'id' => '0044', 'type' => 'Feature', 'keyword' => 'Automation', 'newKeyword' => '', 'synonyms' => '', 'fao' => '', 'total' => '263', 'first' => 'A', 'keytotal' => 'Automation**263', 'CitationsKeyword' => array( [maximum depth reached] ) ), (int) 1 => array( 'id' => '0090', 'type' => 'Hardware', 'keyword' => 'Computer', 'newKeyword' => '', 'synonyms' => '', 'fao' => '', 'total' => '307', 'first' => 'C', 'keytotal' => 'Computer**307', 'CitationsKeyword' => array( [maximum depth reached] ) ) ) ) $i = (int) 2 $path = '' $a = '' $url = 'http://dx.doi.org/10.1155/S1463924690000232' $aus = 'M. C. BRENNAN, R. A. SIMONS, G. SVEHLA, and P. B. STOCKWELL'include - APP/View/Elements/citation.ctp, line 40 View::_evaluate() - CORE/Cake/View/View.php, line 971 View::_render() - CORE/Cake/View/View.php, line 933 View::_renderElement() - CORE/Cake/View/View.php, line 1224 View::element() - CORE/Cake/View/View.php, line 418 include - APP/View/Techniques/view.ctp, line 52 View::_evaluate() - CORE/Cake/View/View.php, line 971 View::_render() - CORE/Cake/View/View.php, line 933 View::render() - CORE/Cake/View/View.php, line 473 Controller::render() - CORE/Cake/Controller/Controller.php, line 968 Dispatcher::_invoke() - CORE/Cake/Routing/Dispatcher.php, line 200 Dispatcher::dispatch() - CORE/Cake/Routing/Dispatcher.php, line 167 [main] - APP/webroot/index.php, line 109