Contact Info
Stuart Chalk, Ph.D.
Department of Chemistry
University of North Florida
Phone: 1-904-620-1938
Fax: 1-904-620-3535
Email: schalk@unf.edu
Website: @unf
Spectrometry
Citations 3
"Real-time Thermal Lens Absorption Measurements With Application To Flow Injection Systems"
Anal. Chim. Acta
1984 Volume 164, Issue 1 Pages 91-101
Notice (8): Undefined variable: uid [APP/View/Elements/citation.ctp, line 40]R. A. Leach and J. M. HarrisCode Context?>
<?php
if($uid!='') {
$viewFile = '/home/stuchalk/public_html/fad/app/View/Elements/citation.ctp' $dataForView = array( 'data' => array( 'Technique' => array( 'id' => '0449', 'label' => 'Spectrometry', 'level1' => 'Spectrometry', 'level2' => 'thermal lens', 'level3' => 'laser induced', 'level4' => '', 'level5' => '', 'synonyms' => '', 'champ' => '', 'total' => '3', 'updated' => '0000-00-00 00:00:00', 'name' => 'Spectrometry, thermal lens, laser induced', 'nametotal' => 'Spectrometry, thermal lens, laser induced**3', 'first' => 'S' ), 'Citation' => array( (int) 0 => array( [maximum depth reached] ), (int) 1 => array( [maximum depth reached] ), (int) 2 => array( [maximum depth reached] ) ) ), 'c' => array( 'id' => '004645', 'authors' => 'Leach, R.A.;Harris, J.M.', 'authorsweb' => 'R. A. Leach and J. M. Harris', 'title' => 'Real-time thermal lens absorption measurements with application to flow injection systems', 'journal' => 'Anal. Chim. Acta', 'journal_id' => '0584', 'fadid' => 'ANCA1984V0164P00091', 'year' => '1984', 'volume' => '164', 'issue' => '1', 'startpage' => '91', 'endpage' => '101', 'type' => 'Journal Article', 'analytes' => ';1293;0343;2181;', 'matrices' => '', 'techniques' => ';0449;', 'keywords' => ';0342;', 'abstract' => 'The thermal-lens apparatus described previously (cf. Dovichi and Harris, Anal. Abstr., 1981, 41, 2J111) was used in conjunction with a microcomputer for real-time data processing. A 1-cm fused-silica flow-cell (1 mm deep) was used in which the carrier stream flowed vertically upwards, thereby minimizing problems due to convection. In the determination of Fe with 1,10-phenanthroline in aqueous methanol (1:1), the limit of detection was 37 pg in a 100 µL sample, while in the determination of azulene and C. I. Solvent Green 3 in CCl4 solution, respective absorbance detection limits of 8.5 x 10^-7 and 14 x 10^-7 were possible. The use of the flow injection procedure was found to minimize problems of photochemical instability frequently encountered in static thermal-lens measurements.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '4', 'urlcheck' => '2014-10-11 15:46:45', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '01002', 'pauthor' => '!Harris, J.M.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1016/S0003-2670(00)85620-2', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Real-time thermal lens absorption measurements with application to flow injection systems', Anal. Chim. Acta, 1984 164(1) 91-101', 'firstchar' => 'R', 'twochars' => 'Re', 'CitationsTechnique' => array( 'id' => '000966', 'citation_id' => '004645', 'technique_id' => '0449' ), 'Analyte' => array( (int) 0 => array( [maximum depth reached] ), (int) 1 => array( [maximum depth reached] ), (int) 2 => array( [maximum depth reached] ) ), 'Matrix' => array(), 'Keyword' => array( (int) 0 => array( [maximum depth reached] ) ) ), 'i' => (int) 0 ) $data = array( 'Technique' => array( 'id' => '0449', 'label' => 'Spectrometry', 'level1' => 'Spectrometry', 'level2' => 'thermal lens', 'level3' => 'laser induced', 'level4' => '', 'level5' => '', 'synonyms' => '', 'champ' => '', 'total' => '3', 'updated' => '0000-00-00 00:00:00', 'name' => 'Spectrometry, thermal lens, laser induced', 'nametotal' => 'Spectrometry, thermal lens, laser induced**3', 'first' => 'S' ), 'Citation' => array( (int) 0 => array( 'id' => '004645', 'authors' => 'Leach, R.A.;Harris, J.M.', 'authorsweb' => 'R. A. Leach and J. M. Harris', 'title' => 'Real-time thermal lens absorption measurements with application to flow injection systems', 'journal' => 'Anal. Chim. Acta', 'journal_id' => '0584', 'fadid' => 'ANCA1984V0164P00091', 'year' => '1984', 'volume' => '164', 'issue' => '1', 'startpage' => '91', 'endpage' => '101', 'type' => 'Journal Article', 'analytes' => ';1293;0343;2181;', 'matrices' => '', 'techniques' => ';0449;', 'keywords' => ';0342;', 'abstract' => 'The thermal-lens apparatus described previously (cf. Dovichi and Harris, Anal. Abstr., 1981, 41, 2J111) was used in conjunction with a microcomputer for real-time data processing. A 1-cm fused-silica flow-cell (1 mm deep) was used in which the carrier stream flowed vertically upwards, thereby minimizing problems due to convection. In the determination of Fe with 1,10-phenanthroline in aqueous methanol (1:1), the limit of detection was 37 pg in a 100 µL sample, while in the determination of azulene and C. I. Solvent Green 3 in CCl4 solution, respective absorbance detection limits of 8.5 x 10^-7 and 14 x 10^-7 were possible. The use of the flow injection procedure was found to minimize problems of photochemical instability frequently encountered in static thermal-lens measurements.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '4', 'urlcheck' => '2014-10-11 15:46:45', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '01002', 'pauthor' => '!Harris, J.M.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1016/S0003-2670(00)85620-2', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Real-time thermal lens absorption measurements with application to flow injection systems', Anal. Chim. Acta, 1984 164(1) 91-101', 'firstchar' => 'R', 'twochars' => 'Re', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 1 => array( 'id' => '008356', 'authors' => 'Leach, R.A.;Harris, J.M.', 'authorsweb' => 'R. A. Leach and J. M. Harris', 'title' => 'Thermal lens absorption measurements by flow injection into supercritical fluid solvents', 'journal' => 'Anal. Chem.', 'journal_id' => '0499', 'fadid' => 'ANCH1984V0056P02801', 'year' => '1984', 'volume' => '56', 'issue' => '14', 'startpage' => '2801', 'endpage' => '2805', 'type' => 'Journal Article', 'analytes' => ';0343;', 'matrices' => '', 'techniques' => ';0449;', 'keywords' => ';0449;', 'abstract' => 'The flow system consists of a reservoir of the supercritical fluid (CO2 near its critical point) that is used to fill a high-pressure syringe pump. The fluid is filtered and passed through a reversed-phase ODS chromatographic column (to remove the solvent for the analyte) to a flow cell and back-pressure regulator. The sample (a solution of azulene in hexane) is injected, via a valve, into the flowing supercritical fluid. Detection is by means of a thermal-lens absorption instrument, based on the Kr-ion laser previously described (cf. Anal. Abstr., 1985, 47, 4J100). Use of this technique enhances the sensitivity for azulene (relative to CCl4). Background absorption is low and permits low detection limits.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '2', 'urlcheck' => '2014-10-11 18:33:26', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '01002', 'pauthor' => '!Harris, J.M.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1021/ac00278a037', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Thermal lens absorption measurements by flow injection into supercritical fluid solvents', Anal. Chem., 1984 56(14) 2801-2805', 'firstchar' => 'T', 'twochars' => 'Th', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 2 => array( 'id' => '011705', 'authors' => 'Ando, M.;Okubo, M.;Kato, T.;Okada, K.;Tokumoto, J.;Okura, T.', 'authorsweb' => 'NA', 'title' => 'Application of a tubular liquid membrane to ethanol sensing by the flow injection technique', 'journal' => 'Bunseki Kagaku', 'journal_id' => '0965', 'fadid' => 'BUNK1995V0044P00961', 'year' => '1995', 'volume' => '44', 'issue' => '11', 'startpage' => '961', 'endpage' => '964', 'type' => 'Journal Article', 'analytes' => ';0931;', 'matrices' => '', 'techniques' => ';0449;', 'keywords' => ';0246;0115;', 'abstract' => 'The sample (3 ml) was injected into a carrier stream of water, which flowed (2 ml/min) round the outside of a porous ceramic tube (6.5 cm x 1 mm i.d., 2.1 mm o.d.) that was impregnated with methyl hydrogen polysiloxane to form a membrane. Ethanol from the sample diffused through the membrane into a stream of water that flowed through the tube in the opposite direction to the carrier stream, and the resulting defocusing of a laser beam transmitted through the tube was measured. Although the measured drop in optical power was roughly linearly correlated with the sample ethanol concentration [up to 30% (v/v)], the reproducibility was unsatisfactory. The application of tubular liquid membrane to an ethanol sensing device was tried using FIA. The membrane was formed by impregnating methyl hydrogene polysiloxan (MHPS) in the porous wall of a ceramic tube. When the tube containing water was immersed in an aqueous ethanol solution, the ethanol dissolved in MHPS and diffused into the water, forming a radial gradient of ethanol concentration. A laser beam transmitted through the tube was expanded by concave-lens effect. The drop in power density of the transmitted beam was roughly correlated with the ethanol concentration. However, reproducibility of data was unsatisfactory, possibly due to disturbance of the boundary between the ethanol solution and carrier water.', 'language' => 'Japanese', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'No', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '0', 'urlcheck' => '2014-10-12 09:18:50', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => null, 'pauthor' => 'NA', 'address' => 'NGK Spark Plug Co. Ltd., Res. and Dev. Dept., 2808 Iwaski, Komaki, Aichi 485 Japan', 'email' => 'NA', 'notes' => null, 'url' => '10.2116/bunsekikagaku.44.961', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Application of a tubular liquid membrane to ethanol sensing by the flow injection technique', Bunseki Kagaku, 1995 44(11) 961-964', 'firstchar' => 'A', 'twochars' => 'Ap', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ) ) ) $c = array( 'id' => '004645', 'authors' => 'Leach, R.A.;Harris, J.M.', 'authorsweb' => 'R. A. Leach and J. M. Harris', 'title' => 'Real-time thermal lens absorption measurements with application to flow injection systems', 'journal' => 'Anal. Chim. Acta', 'journal_id' => '0584', 'fadid' => 'ANCA1984V0164P00091', 'year' => '1984', 'volume' => '164', 'issue' => '1', 'startpage' => '91', 'endpage' => '101', 'type' => 'Journal Article', 'analytes' => ';1293;0343;2181;', 'matrices' => '', 'techniques' => ';0449;', 'keywords' => ';0342;', 'abstract' => 'The thermal-lens apparatus described previously (cf. Dovichi and Harris, Anal. Abstr., 1981, 41, 2J111) was used in conjunction with a microcomputer for real-time data processing. A 1-cm fused-silica flow-cell (1 mm deep) was used in which the carrier stream flowed vertically upwards, thereby minimizing problems due to convection. In the determination of Fe with 1,10-phenanthroline in aqueous methanol (1:1), the limit of detection was 37 pg in a 100 µL sample, while in the determination of azulene and C. I. Solvent Green 3 in CCl4 solution, respective absorbance detection limits of 8.5 x 10^-7 and 14 x 10^-7 were possible. The use of the flow injection procedure was found to minimize problems of photochemical instability frequently encountered in static thermal-lens measurements.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '4', 'urlcheck' => '2014-10-11 15:46:45', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '01002', 'pauthor' => '!Harris, J.M.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1016/S0003-2670(00)85620-2', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Real-time thermal lens absorption measurements with application to flow injection systems', Anal. Chim. Acta, 1984 164(1) 91-101', 'firstchar' => 'R', 'twochars' => 'Re', 'CitationsTechnique' => array( 'id' => '000966', 'citation_id' => '004645', 'technique_id' => '0449' ), 'Analyte' => array( (int) 0 => array( 'id' => '01293', 'name' => 'Iron', 'iupac_name' => 'iron', 'casrn' => '7439-89-6', 'synonyms' => 'Fe +++; Fe +++ ion; Fe(III) ion; Fe(II) ion; Iron; iron +++; IRON, POWDER; Stainless steel; Steel; ', 'total' => '208', 'inchi' => 'InChI=1S/Fe', 'inchikey' => 'XEEYBQQBJWHFJM-UHFFFAOYSA-N', 'formula' => 'Fe', 'oxstate' => '', 'url' => '', 'charge' => '0', 'class1' => 'Element', 'class2' => 'Metal', 'class3' => 'Transition metal', 'class4' => 'Atom', 'class5' => '', 'isgroup' => '', 'checked' => 'yes', 'citation_count' => '0', 'updated' => '2015-12-11 16:18:02', 'first' => 'I', 'nametotal' => 'Iron**208', 'AnalytesCitation' => array( [maximum depth reached] ) ), (int) 1 => array( 'id' => '00343', 'name' => 'Azulene', 'iupac_name' => 'azulene', 'casrn' => '275-51-4', 'synonyms' => 'Bicyclo[5.3.0]decapentaene; Cyclopentacycloheptene; Azunamic; Bicyclo(5.3.0)-1,3,5,7,9-decapentaene; Bicyclo(0.3.5)deca-1,3,5,7,9-pentaene; BICYCLO(5.3.0)-DECA-2,4,6,8,10-PENTAENE; Azusalen [as sodium sulfonate]', 'total' => '2', 'inchi' => 'InChI=1S/C10H8/c1-2-5-9-7-4-8-10(9)6-3-1/h1-8H', 'inchikey' => 'CUFNKYGDVFVPHO-UHFFFAOYSA-N', 'formula' => 'C10H8', 'oxstate' => 'Zero', 'url' => '', 'charge' => '0', 'class1' => 'Organic compound', 'class2' => 'NA', 'class3' => 'NA', 'class4' => 'Molecule', 'class5' => '', 'isgroup' => '', 'checked' => 'yes', 'citation_count' => '0', 'updated' => '2015-10-23 09:52:59', 'first' => 'A', 'nametotal' => 'Azulene**2', 'AnalytesCitation' => array( [maximum depth reached] ) ), (int) 2 => array( 'id' => '02181', 'name' => 'Solvent Green 3', 'iupac_name' => '1,4-bis(4-methylanilino)anthracene-9,10-dione', 'casrn' => '128-80-3', 'synonyms' => 'Solvent green 3, Quinizarin Green SS, 128-80-3, Quinazarin green, Cyanine Green G Base, Arlosol Green B, Organol Green J, Waxoline Green G, Arlosol Green BS, Sudan Green 4B, Amaplast Green OZ, Arlosol Green BSS, Macro-lex Green 5B, Nitro Fast Green GB, Organol Fast Green J, Quinizarine Green Base, Waxoline Green, D&C Green 6, C-Green 10, Alizarine Green G Base, Ahcoquinone Cyanine Green Base, Green No. 202, C.I. Solvent Green 3, 11091 Green, D and C Green No. 6, Toyo Oriental Oil Blue G, Anthraquinone Green G Base, Alizarine Cyanine Green Base, Fat Soluble Anthraquinone Green, Fat Soluble Green Anthraquinone, 1,4-Di-p-toluidinoanthraquinone, 1,4-Bis(p-toluidino)anthraquinone, D & C Green no. 6, 1,4-Bis(p-tolylamine)anthraquinone, 1,4-Di-(4'-toluidino)anthraquinone, Alizarine Cyanine Green G Fat Soluble, Fat-soluble Anthraquinone Green, Micro-lex Green 5B, Bis-1,4-p-tolylaminoanthrchinon, C.I. 61565, 1,4-Bis(p-tolylamino)anthracene-9,10-dione, NSC 84207, Zelen sudan 4B [Czech], Anthraquinone, 1,4-bis(p-tolylamino)-, UNII-4QP5U84YF7, Zelen rozpoustedlova 3 [Czech], Anthcoquinone Cyanine Green Base, 1,4-bis(4-methylanilino)anthracene-9,10-dione, 1,4-Bis(p-tolylamino)anthraquinone, 1,4-Di(4'-toluidino)anthraquinone, EINECS 204-909-5, Anthraquinone, 1,4-di-p-toluidino-, 1,4-bis[(4-methylphenyl)amino]anthracene-9,10-dione, BRN 2227927, 9,10-Anthracenedione, 1,4-bis[(4-methylphenyl)amino]-, Bis-1,4-p-tolylaminoanthrchinon [Czech], CI 61565, 1,4-Bis((4-methylphenyl)amino)-9,10-anthracenedione, 9,10-Anthracenedione, 1,4-bis((4-methylphenyl)amino)-, Zelen sudan 4B, Solvaperm Green GSB, Quinizarine Green SS, Waxoline Green 6GFW, D&C Green No 6, Zelen rozpoustedlova 3, D&C Green No. 6, AC1L1LKN, AC1Q6JUX, SCHEMBL35556, C.I. Disperse Green 6:1, D & C Green No.-?6, 4QP5U84YF7, CTK8B3185, MolPort-002-685-168, TVRGPOFMYCMNRB-UHFFFAOYSA-N, 211982_SIAL, Anthraquinone,4-bis(p-tolylamino)-, NSC84207, ANW-41923, NSC-84207, STK731664, ZINC03861500, AKOS001712259, Quinizarine Green SS, Technical grade, MCULE-3441174162, 9, 1,4-bis[(4-methylphenyl)amino]-, Anthraquinone, 1,4-bis(4'-toluidino)-, 1,4-DI(P-TOLUIDINO)ANTHRAQUINONE, AJ-46201, AK116011, AN-23029, LS-20642, Anthraquinone, 1,4-(4,4'-ditoluidino)-, KB-216523, TR-004025, 4412P, Anthraquinone, 1,4-di-p-toluidino- (8CI), FT-0606905, Q0021, ST24026776, ST50308436, 1,4-Di(4-toluidino)anthra-9,10-quinone #, WLN: L C666 BV IVJ DMR D1 & GMR D1, 1,4-Bis[(4-methylphenyl)amino]anthra-9,10-quinone, I14-43014, 201097-94-1, 54848-06-5, 60880-53-7, 64553-67-9, 95660-38-1', 'total' => '1', 'inchi' => 'InChI=1S/C28H22N2O2/c1-17-7-11-19(12-8-17)29-23-15-16-24(30-20-13-9-18(2)10-14-20)26-25(23)27(31)21-5-3-4-6-22(21)28(26)32/h3-16,29-30H,1-2H3', 'inchikey' => 'TVRGPOFMYCMNRB-UHFFFAOYSA-N', 'formula' => 'C28H22N2O2', 'oxstate' => 'Zero', 'url' => '', 'charge' => '0', 'class1' => '', 'class2' => '', 'class3' => '', 'class4' => '', 'class5' => '', 'isgroup' => 'no', 'checked' => 'no', 'citation_count' => '0', 'updated' => '2015-10-23 21:37:12', 'first' => 'S', 'nametotal' => 'Solvent Green 3**1', 'AnalytesCitation' => array( [maximum depth reached] ) ) ), 'Matrix' => array(), 'Keyword' => array( (int) 0 => array( 'id' => '0342', 'type' => 'Detection limit', 'keyword' => 'PPB', 'newKeyword' => '', 'synonyms' => '', 'fao' => '', 'total' => '57', 'first' => 'P', 'keytotal' => 'PPB**57', 'CitationsKeyword' => array( [maximum depth reached] ) ) ) ) $i = (int) 0 $path = '' $a = '' $url = 'http://dx.doi.org/10.1016/S0003-2670(00)85620-2' $aus = 'R. A. Leach and J. M. Harris'include - APP/View/Elements/citation.ctp, line 40 View::_evaluate() - CORE/Cake/View/View.php, line 971 View::_render() - CORE/Cake/View/View.php, line 933 View::_renderElement() - CORE/Cake/View/View.php, line 1224 View::element() - CORE/Cake/View/View.php, line 418 include - APP/View/Techniques/view.ctp, line 52 View::_evaluate() - CORE/Cake/View/View.php, line 971 View::_render() - CORE/Cake/View/View.php, line 933 View::render() - CORE/Cake/View/View.php, line 473 Controller::render() - CORE/Cake/Controller/Controller.php, line 968 Dispatcher::_invoke() - CORE/Cake/Routing/Dispatcher.php, line 200 Dispatcher::dispatch() - CORE/Cake/Routing/Dispatcher.php, line 167 [main] - APP/webroot/index.php, line 109
"Thermal Lens Absorption Measurements By Flow Injection Into Supercritical Fluid Solvents"
Anal. Chem.
1984 Volume 56, Issue 14 Pages 2801-2805
Notice (8): Undefined variable: uid [APP/View/Elements/citation.ctp, line 40]R. A. Leach and J. M. HarrisCode Context?>
<?php
if($uid!='') {
$viewFile = '/home/stuchalk/public_html/fad/app/View/Elements/citation.ctp' $dataForView = array( 'data' => array( 'Technique' => array( 'id' => '0449', 'label' => 'Spectrometry', 'level1' => 'Spectrometry', 'level2' => 'thermal lens', 'level3' => 'laser induced', 'level4' => '', 'level5' => '', 'synonyms' => '', 'champ' => '', 'total' => '3', 'updated' => '0000-00-00 00:00:00', 'name' => 'Spectrometry, thermal lens, laser induced', 'nametotal' => 'Spectrometry, thermal lens, laser induced**3', 'first' => 'S' ), 'Citation' => array( (int) 0 => array( [maximum depth reached] ), (int) 1 => array( [maximum depth reached] ), (int) 2 => array( [maximum depth reached] ) ) ), 'c' => array( 'id' => '008356', 'authors' => 'Leach, R.A.;Harris, J.M.', 'authorsweb' => 'R. A. Leach and J. M. Harris', 'title' => 'Thermal lens absorption measurements by flow injection into supercritical fluid solvents', 'journal' => 'Anal. Chem.', 'journal_id' => '0499', 'fadid' => 'ANCH1984V0056P02801', 'year' => '1984', 'volume' => '56', 'issue' => '14', 'startpage' => '2801', 'endpage' => '2805', 'type' => 'Journal Article', 'analytes' => ';0343;', 'matrices' => '', 'techniques' => ';0449;', 'keywords' => ';0449;', 'abstract' => 'The flow system consists of a reservoir of the supercritical fluid (CO2 near its critical point) that is used to fill a high-pressure syringe pump. The fluid is filtered and passed through a reversed-phase ODS chromatographic column (to remove the solvent for the analyte) to a flow cell and back-pressure regulator. The sample (a solution of azulene in hexane) is injected, via a valve, into the flowing supercritical fluid. Detection is by means of a thermal-lens absorption instrument, based on the Kr-ion laser previously described (cf. Anal. Abstr., 1985, 47, 4J100). Use of this technique enhances the sensitivity for azulene (relative to CCl4). Background absorption is low and permits low detection limits.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '2', 'urlcheck' => '2014-10-11 18:33:26', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '01002', 'pauthor' => '!Harris, J.M.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1021/ac00278a037', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Thermal lens absorption measurements by flow injection into supercritical fluid solvents', Anal. Chem., 1984 56(14) 2801-2805', 'firstchar' => 'T', 'twochars' => 'Th', 'CitationsTechnique' => array( 'id' => '005980', 'citation_id' => '008356', 'technique_id' => '0449' ), 'Analyte' => array( (int) 0 => array( [maximum depth reached] ) ), 'Matrix' => array(), 'Keyword' => array( (int) 0 => array( [maximum depth reached] ) ) ), 'i' => (int) 1 ) $data = array( 'Technique' => array( 'id' => '0449', 'label' => 'Spectrometry', 'level1' => 'Spectrometry', 'level2' => 'thermal lens', 'level3' => 'laser induced', 'level4' => '', 'level5' => '', 'synonyms' => '', 'champ' => '', 'total' => '3', 'updated' => '0000-00-00 00:00:00', 'name' => 'Spectrometry, thermal lens, laser induced', 'nametotal' => 'Spectrometry, thermal lens, laser induced**3', 'first' => 'S' ), 'Citation' => array( (int) 0 => array( 'id' => '004645', 'authors' => 'Leach, R.A.;Harris, J.M.', 'authorsweb' => 'R. A. Leach and J. M. Harris', 'title' => 'Real-time thermal lens absorption measurements with application to flow injection systems', 'journal' => 'Anal. Chim. Acta', 'journal_id' => '0584', 'fadid' => 'ANCA1984V0164P00091', 'year' => '1984', 'volume' => '164', 'issue' => '1', 'startpage' => '91', 'endpage' => '101', 'type' => 'Journal Article', 'analytes' => ';1293;0343;2181;', 'matrices' => '', 'techniques' => ';0449;', 'keywords' => ';0342;', 'abstract' => 'The thermal-lens apparatus described previously (cf. Dovichi and Harris, Anal. Abstr., 1981, 41, 2J111) was used in conjunction with a microcomputer for real-time data processing. A 1-cm fused-silica flow-cell (1 mm deep) was used in which the carrier stream flowed vertically upwards, thereby minimizing problems due to convection. In the determination of Fe with 1,10-phenanthroline in aqueous methanol (1:1), the limit of detection was 37 pg in a 100 µL sample, while in the determination of azulene and C. I. Solvent Green 3 in CCl4 solution, respective absorbance detection limits of 8.5 x 10^-7 and 14 x 10^-7 were possible. The use of the flow injection procedure was found to minimize problems of photochemical instability frequently encountered in static thermal-lens measurements.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '4', 'urlcheck' => '2014-10-11 15:46:45', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '01002', 'pauthor' => '!Harris, J.M.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1016/S0003-2670(00)85620-2', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Real-time thermal lens absorption measurements with application to flow injection systems', Anal. Chim. Acta, 1984 164(1) 91-101', 'firstchar' => 'R', 'twochars' => 'Re', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 1 => array( 'id' => '008356', 'authors' => 'Leach, R.A.;Harris, J.M.', 'authorsweb' => 'R. A. Leach and J. M. Harris', 'title' => 'Thermal lens absorption measurements by flow injection into supercritical fluid solvents', 'journal' => 'Anal. Chem.', 'journal_id' => '0499', 'fadid' => 'ANCH1984V0056P02801', 'year' => '1984', 'volume' => '56', 'issue' => '14', 'startpage' => '2801', 'endpage' => '2805', 'type' => 'Journal Article', 'analytes' => ';0343;', 'matrices' => '', 'techniques' => ';0449;', 'keywords' => ';0449;', 'abstract' => 'The flow system consists of a reservoir of the supercritical fluid (CO2 near its critical point) that is used to fill a high-pressure syringe pump. The fluid is filtered and passed through a reversed-phase ODS chromatographic column (to remove the solvent for the analyte) to a flow cell and back-pressure regulator. The sample (a solution of azulene in hexane) is injected, via a valve, into the flowing supercritical fluid. Detection is by means of a thermal-lens absorption instrument, based on the Kr-ion laser previously described (cf. Anal. Abstr., 1985, 47, 4J100). Use of this technique enhances the sensitivity for azulene (relative to CCl4). Background absorption is low and permits low detection limits.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '2', 'urlcheck' => '2014-10-11 18:33:26', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '01002', 'pauthor' => '!Harris, J.M.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1021/ac00278a037', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Thermal lens absorption measurements by flow injection into supercritical fluid solvents', Anal. Chem., 1984 56(14) 2801-2805', 'firstchar' => 'T', 'twochars' => 'Th', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 2 => array( 'id' => '011705', 'authors' => 'Ando, M.;Okubo, M.;Kato, T.;Okada, K.;Tokumoto, J.;Okura, T.', 'authorsweb' => 'NA', 'title' => 'Application of a tubular liquid membrane to ethanol sensing by the flow injection technique', 'journal' => 'Bunseki Kagaku', 'journal_id' => '0965', 'fadid' => 'BUNK1995V0044P00961', 'year' => '1995', 'volume' => '44', 'issue' => '11', 'startpage' => '961', 'endpage' => '964', 'type' => 'Journal Article', 'analytes' => ';0931;', 'matrices' => '', 'techniques' => ';0449;', 'keywords' => ';0246;0115;', 'abstract' => 'The sample (3 ml) was injected into a carrier stream of water, which flowed (2 ml/min) round the outside of a porous ceramic tube (6.5 cm x 1 mm i.d., 2.1 mm o.d.) that was impregnated with methyl hydrogen polysiloxane to form a membrane. Ethanol from the sample diffused through the membrane into a stream of water that flowed through the tube in the opposite direction to the carrier stream, and the resulting defocusing of a laser beam transmitted through the tube was measured. Although the measured drop in optical power was roughly linearly correlated with the sample ethanol concentration [up to 30% (v/v)], the reproducibility was unsatisfactory. The application of tubular liquid membrane to an ethanol sensing device was tried using FIA. The membrane was formed by impregnating methyl hydrogene polysiloxan (MHPS) in the porous wall of a ceramic tube. When the tube containing water was immersed in an aqueous ethanol solution, the ethanol dissolved in MHPS and diffused into the water, forming a radial gradient of ethanol concentration. A laser beam transmitted through the tube was expanded by concave-lens effect. The drop in power density of the transmitted beam was roughly correlated with the ethanol concentration. However, reproducibility of data was unsatisfactory, possibly due to disturbance of the boundary between the ethanol solution and carrier water.', 'language' => 'Japanese', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'No', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '0', 'urlcheck' => '2014-10-12 09:18:50', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => null, 'pauthor' => 'NA', 'address' => 'NGK Spark Plug Co. Ltd., Res. and Dev. Dept., 2808 Iwaski, Komaki, Aichi 485 Japan', 'email' => 'NA', 'notes' => null, 'url' => '10.2116/bunsekikagaku.44.961', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Application of a tubular liquid membrane to ethanol sensing by the flow injection technique', Bunseki Kagaku, 1995 44(11) 961-964', 'firstchar' => 'A', 'twochars' => 'Ap', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ) ) ) $c = array( 'id' => '008356', 'authors' => 'Leach, R.A.;Harris, J.M.', 'authorsweb' => 'R. A. Leach and J. M. Harris', 'title' => 'Thermal lens absorption measurements by flow injection into supercritical fluid solvents', 'journal' => 'Anal. Chem.', 'journal_id' => '0499', 'fadid' => 'ANCH1984V0056P02801', 'year' => '1984', 'volume' => '56', 'issue' => '14', 'startpage' => '2801', 'endpage' => '2805', 'type' => 'Journal Article', 'analytes' => ';0343;', 'matrices' => '', 'techniques' => ';0449;', 'keywords' => ';0449;', 'abstract' => 'The flow system consists of a reservoir of the supercritical fluid (CO2 near its critical point) that is used to fill a high-pressure syringe pump. The fluid is filtered and passed through a reversed-phase ODS chromatographic column (to remove the solvent for the analyte) to a flow cell and back-pressure regulator. The sample (a solution of azulene in hexane) is injected, via a valve, into the flowing supercritical fluid. Detection is by means of a thermal-lens absorption instrument, based on the Kr-ion laser previously described (cf. Anal. Abstr., 1985, 47, 4J100). Use of this technique enhances the sensitivity for azulene (relative to CCl4). Background absorption is low and permits low detection limits.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '2', 'urlcheck' => '2014-10-11 18:33:26', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '01002', 'pauthor' => '!Harris, J.M.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1021/ac00278a037', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Thermal lens absorption measurements by flow injection into supercritical fluid solvents', Anal. Chem., 1984 56(14) 2801-2805', 'firstchar' => 'T', 'twochars' => 'Th', 'CitationsTechnique' => array( 'id' => '005980', 'citation_id' => '008356', 'technique_id' => '0449' ), 'Analyte' => array( (int) 0 => array( 'id' => '00343', 'name' => 'Azulene', 'iupac_name' => 'azulene', 'casrn' => '275-51-4', 'synonyms' => 'Bicyclo[5.3.0]decapentaene; Cyclopentacycloheptene; Azunamic; Bicyclo(5.3.0)-1,3,5,7,9-decapentaene; Bicyclo(0.3.5)deca-1,3,5,7,9-pentaene; BICYCLO(5.3.0)-DECA-2,4,6,8,10-PENTAENE; Azusalen [as sodium sulfonate]', 'total' => '2', 'inchi' => 'InChI=1S/C10H8/c1-2-5-9-7-4-8-10(9)6-3-1/h1-8H', 'inchikey' => 'CUFNKYGDVFVPHO-UHFFFAOYSA-N', 'formula' => 'C10H8', 'oxstate' => 'Zero', 'url' => '', 'charge' => '0', 'class1' => 'Organic compound', 'class2' => 'NA', 'class3' => 'NA', 'class4' => 'Molecule', 'class5' => '', 'isgroup' => '', 'checked' => 'yes', 'citation_count' => '0', 'updated' => '2015-10-23 09:52:59', 'first' => 'A', 'nametotal' => 'Azulene**2', 'AnalytesCitation' => array( [maximum depth reached] ) ) ), 'Matrix' => array(), 'Keyword' => array( (int) 0 => array( 'id' => '0449', 'type' => 'Mobile Phase', 'keyword' => 'Supercritical fluid', 'newKeyword' => '', 'synonyms' => '', 'fao' => '', 'total' => '13', 'first' => 'S', 'keytotal' => 'Supercritical fluid**13', 'CitationsKeyword' => array( [maximum depth reached] ) ) ) ) $i = (int) 1 $path = '' $a = '' $url = 'http://dx.doi.org/10.1021/ac00278a037' $aus = 'R. A. Leach and J. M. Harris'include - APP/View/Elements/citation.ctp, line 40 View::_evaluate() - CORE/Cake/View/View.php, line 971 View::_render() - CORE/Cake/View/View.php, line 933 View::_renderElement() - CORE/Cake/View/View.php, line 1224 View::element() - CORE/Cake/View/View.php, line 418 include - APP/View/Techniques/view.ctp, line 52 View::_evaluate() - CORE/Cake/View/View.php, line 971 View::_render() - CORE/Cake/View/View.php, line 933 View::render() - CORE/Cake/View/View.php, line 473 Controller::render() - CORE/Cake/Controller/Controller.php, line 968 Dispatcher::_invoke() - CORE/Cake/Routing/Dispatcher.php, line 200 Dispatcher::dispatch() - CORE/Cake/Routing/Dispatcher.php, line 167 [main] - APP/webroot/index.php, line 109
"Application Of A Tubular Liquid Membrane To Ethanol Sensing By The Flow Injection Technique"
Bunseki Kagaku
1995 Volume 44, Issue 11 Pages 961-964
Notice (8): Undefined variable: uid [APP/View/Elements/citation.ctp, line 40]Ando, M.;Okubo, M.;Kato, T.;Okada, K.;Tokumoto, J.;Okura, T.Code Context?>
<?php
if($uid!='') {
$viewFile = '/home/stuchalk/public_html/fad/app/View/Elements/citation.ctp' $dataForView = array( 'data' => array( 'Technique' => array( 'id' => '0449', 'label' => 'Spectrometry', 'level1' => 'Spectrometry', 'level2' => 'thermal lens', 'level3' => 'laser induced', 'level4' => '', 'level5' => '', 'synonyms' => '', 'champ' => '', 'total' => '3', 'updated' => '0000-00-00 00:00:00', 'name' => 'Spectrometry, thermal lens, laser induced', 'nametotal' => 'Spectrometry, thermal lens, laser induced**3', 'first' => 'S' ), 'Citation' => array( (int) 0 => array( [maximum depth reached] ), (int) 1 => array( [maximum depth reached] ), (int) 2 => array( [maximum depth reached] ) ) ), 'c' => array( 'id' => '011705', 'authors' => 'Ando, M.;Okubo, M.;Kato, T.;Okada, K.;Tokumoto, J.;Okura, T.', 'authorsweb' => 'NA', 'title' => 'Application of a tubular liquid membrane to ethanol sensing by the flow injection technique', 'journal' => 'Bunseki Kagaku', 'journal_id' => '0965', 'fadid' => 'BUNK1995V0044P00961', 'year' => '1995', 'volume' => '44', 'issue' => '11', 'startpage' => '961', 'endpage' => '964', 'type' => 'Journal Article', 'analytes' => ';0931;', 'matrices' => '', 'techniques' => ';0449;', 'keywords' => ';0246;0115;', 'abstract' => 'The sample (3 ml) was injected into a carrier stream of water, which flowed (2 ml/min) round the outside of a porous ceramic tube (6.5 cm x 1 mm i.d., 2.1 mm o.d.) that was impregnated with methyl hydrogen polysiloxane to form a membrane. Ethanol from the sample diffused through the membrane into a stream of water that flowed through the tube in the opposite direction to the carrier stream, and the resulting defocusing of a laser beam transmitted through the tube was measured. Although the measured drop in optical power was roughly linearly correlated with the sample ethanol concentration [up to 30% (v/v)], the reproducibility was unsatisfactory. The application of tubular liquid membrane to an ethanol sensing device was tried using FIA. The membrane was formed by impregnating methyl hydrogene polysiloxan (MHPS) in the porous wall of a ceramic tube. When the tube containing water was immersed in an aqueous ethanol solution, the ethanol dissolved in MHPS and diffused into the water, forming a radial gradient of ethanol concentration. A laser beam transmitted through the tube was expanded by concave-lens effect. The drop in power density of the transmitted beam was roughly correlated with the ethanol concentration. However, reproducibility of data was unsatisfactory, possibly due to disturbance of the boundary between the ethanol solution and carrier water.', 'language' => 'Japanese', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'No', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '0', 'urlcheck' => '2014-10-12 09:18:50', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => null, 'pauthor' => 'NA', 'address' => 'NGK Spark Plug Co. Ltd., Res. and Dev. Dept., 2808 Iwaski, Komaki, Aichi 485 Japan', 'email' => 'NA', 'notes' => null, 'url' => '10.2116/bunsekikagaku.44.961', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Application of a tubular liquid membrane to ethanol sensing by the flow injection technique', Bunseki Kagaku, 1995 44(11) 961-964', 'firstchar' => 'A', 'twochars' => 'Ap', 'CitationsTechnique' => array( 'id' => '011561', 'citation_id' => '011705', 'technique_id' => '0449' ), 'Analyte' => array( (int) 0 => array( [maximum depth reached] ) ), 'Matrix' => array(), 'Keyword' => array( (int) 0 => array( [maximum depth reached] ), (int) 1 => array( [maximum depth reached] ) ) ), 'i' => (int) 2 ) $data = array( 'Technique' => array( 'id' => '0449', 'label' => 'Spectrometry', 'level1' => 'Spectrometry', 'level2' => 'thermal lens', 'level3' => 'laser induced', 'level4' => '', 'level5' => '', 'synonyms' => '', 'champ' => '', 'total' => '3', 'updated' => '0000-00-00 00:00:00', 'name' => 'Spectrometry, thermal lens, laser induced', 'nametotal' => 'Spectrometry, thermal lens, laser induced**3', 'first' => 'S' ), 'Citation' => array( (int) 0 => array( 'id' => '004645', 'authors' => 'Leach, R.A.;Harris, J.M.', 'authorsweb' => 'R. A. Leach and J. M. Harris', 'title' => 'Real-time thermal lens absorption measurements with application to flow injection systems', 'journal' => 'Anal. Chim. Acta', 'journal_id' => '0584', 'fadid' => 'ANCA1984V0164P00091', 'year' => '1984', 'volume' => '164', 'issue' => '1', 'startpage' => '91', 'endpage' => '101', 'type' => 'Journal Article', 'analytes' => ';1293;0343;2181;', 'matrices' => '', 'techniques' => ';0449;', 'keywords' => ';0342;', 'abstract' => 'The thermal-lens apparatus described previously (cf. Dovichi and Harris, Anal. Abstr., 1981, 41, 2J111) was used in conjunction with a microcomputer for real-time data processing. A 1-cm fused-silica flow-cell (1 mm deep) was used in which the carrier stream flowed vertically upwards, thereby minimizing problems due to convection. In the determination of Fe with 1,10-phenanthroline in aqueous methanol (1:1), the limit of detection was 37 pg in a 100 µL sample, while in the determination of azulene and C. I. Solvent Green 3 in CCl4 solution, respective absorbance detection limits of 8.5 x 10^-7 and 14 x 10^-7 were possible. The use of the flow injection procedure was found to minimize problems of photochemical instability frequently encountered in static thermal-lens measurements.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '4', 'urlcheck' => '2014-10-11 15:46:45', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '01002', 'pauthor' => '!Harris, J.M.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1016/S0003-2670(00)85620-2', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Real-time thermal lens absorption measurements with application to flow injection systems', Anal. Chim. Acta, 1984 164(1) 91-101', 'firstchar' => 'R', 'twochars' => 'Re', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 1 => array( 'id' => '008356', 'authors' => 'Leach, R.A.;Harris, J.M.', 'authorsweb' => 'R. A. Leach and J. M. Harris', 'title' => 'Thermal lens absorption measurements by flow injection into supercritical fluid solvents', 'journal' => 'Anal. Chem.', 'journal_id' => '0499', 'fadid' => 'ANCH1984V0056P02801', 'year' => '1984', 'volume' => '56', 'issue' => '14', 'startpage' => '2801', 'endpage' => '2805', 'type' => 'Journal Article', 'analytes' => ';0343;', 'matrices' => '', 'techniques' => ';0449;', 'keywords' => ';0449;', 'abstract' => 'The flow system consists of a reservoir of the supercritical fluid (CO2 near its critical point) that is used to fill a high-pressure syringe pump. The fluid is filtered and passed through a reversed-phase ODS chromatographic column (to remove the solvent for the analyte) to a flow cell and back-pressure regulator. The sample (a solution of azulene in hexane) is injected, via a valve, into the flowing supercritical fluid. Detection is by means of a thermal-lens absorption instrument, based on the Kr-ion laser previously described (cf. Anal. Abstr., 1985, 47, 4J100). Use of this technique enhances the sensitivity for azulene (relative to CCl4). Background absorption is low and permits low detection limits.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '2', 'urlcheck' => '2014-10-11 18:33:26', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '01002', 'pauthor' => '!Harris, J.M.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1021/ac00278a037', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Thermal lens absorption measurements by flow injection into supercritical fluid solvents', Anal. Chem., 1984 56(14) 2801-2805', 'firstchar' => 'T', 'twochars' => 'Th', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 2 => array( 'id' => '011705', 'authors' => 'Ando, M.;Okubo, M.;Kato, T.;Okada, K.;Tokumoto, J.;Okura, T.', 'authorsweb' => 'NA', 'title' => 'Application of a tubular liquid membrane to ethanol sensing by the flow injection technique', 'journal' => 'Bunseki Kagaku', 'journal_id' => '0965', 'fadid' => 'BUNK1995V0044P00961', 'year' => '1995', 'volume' => '44', 'issue' => '11', 'startpage' => '961', 'endpage' => '964', 'type' => 'Journal Article', 'analytes' => ';0931;', 'matrices' => '', 'techniques' => ';0449;', 'keywords' => ';0246;0115;', 'abstract' => 'The sample (3 ml) was injected into a carrier stream of water, which flowed (2 ml/min) round the outside of a porous ceramic tube (6.5 cm x 1 mm i.d., 2.1 mm o.d.) that was impregnated with methyl hydrogen polysiloxane to form a membrane. Ethanol from the sample diffused through the membrane into a stream of water that flowed through the tube in the opposite direction to the carrier stream, and the resulting defocusing of a laser beam transmitted through the tube was measured. Although the measured drop in optical power was roughly linearly correlated with the sample ethanol concentration [up to 30% (v/v)], the reproducibility was unsatisfactory. The application of tubular liquid membrane to an ethanol sensing device was tried using FIA. The membrane was formed by impregnating methyl hydrogene polysiloxan (MHPS) in the porous wall of a ceramic tube. When the tube containing water was immersed in an aqueous ethanol solution, the ethanol dissolved in MHPS and diffused into the water, forming a radial gradient of ethanol concentration. A laser beam transmitted through the tube was expanded by concave-lens effect. The drop in power density of the transmitted beam was roughly correlated with the ethanol concentration. However, reproducibility of data was unsatisfactory, possibly due to disturbance of the boundary between the ethanol solution and carrier water.', 'language' => 'Japanese', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'No', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '0', 'urlcheck' => '2014-10-12 09:18:50', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => null, 'pauthor' => 'NA', 'address' => 'NGK Spark Plug Co. Ltd., Res. and Dev. Dept., 2808 Iwaski, Komaki, Aichi 485 Japan', 'email' => 'NA', 'notes' => null, 'url' => '10.2116/bunsekikagaku.44.961', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Application of a tubular liquid membrane to ethanol sensing by the flow injection technique', Bunseki Kagaku, 1995 44(11) 961-964', 'firstchar' => 'A', 'twochars' => 'Ap', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ) ) ) $c = array( 'id' => '011705', 'authors' => 'Ando, M.;Okubo, M.;Kato, T.;Okada, K.;Tokumoto, J.;Okura, T.', 'authorsweb' => 'NA', 'title' => 'Application of a tubular liquid membrane to ethanol sensing by the flow injection technique', 'journal' => 'Bunseki Kagaku', 'journal_id' => '0965', 'fadid' => 'BUNK1995V0044P00961', 'year' => '1995', 'volume' => '44', 'issue' => '11', 'startpage' => '961', 'endpage' => '964', 'type' => 'Journal Article', 'analytes' => ';0931;', 'matrices' => '', 'techniques' => ';0449;', 'keywords' => ';0246;0115;', 'abstract' => 'The sample (3 ml) was injected into a carrier stream of water, which flowed (2 ml/min) round the outside of a porous ceramic tube (6.5 cm x 1 mm i.d., 2.1 mm o.d.) that was impregnated with methyl hydrogen polysiloxane to form a membrane. Ethanol from the sample diffused through the membrane into a stream of water that flowed through the tube in the opposite direction to the carrier stream, and the resulting defocusing of a laser beam transmitted through the tube was measured. Although the measured drop in optical power was roughly linearly correlated with the sample ethanol concentration [up to 30% (v/v)], the reproducibility was unsatisfactory. The application of tubular liquid membrane to an ethanol sensing device was tried using FIA. The membrane was formed by impregnating methyl hydrogene polysiloxan (MHPS) in the porous wall of a ceramic tube. When the tube containing water was immersed in an aqueous ethanol solution, the ethanol dissolved in MHPS and diffused into the water, forming a radial gradient of ethanol concentration. A laser beam transmitted through the tube was expanded by concave-lens effect. The drop in power density of the transmitted beam was roughly correlated with the ethanol concentration. However, reproducibility of data was unsatisfactory, possibly due to disturbance of the boundary between the ethanol solution and carrier water.', 'language' => 'Japanese', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'No', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '0', 'urlcheck' => '2014-10-12 09:18:50', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => null, 'pauthor' => 'NA', 'address' => 'NGK Spark Plug Co. Ltd., Res. and Dev. Dept., 2808 Iwaski, Komaki, Aichi 485 Japan', 'email' => 'NA', 'notes' => null, 'url' => '10.2116/bunsekikagaku.44.961', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Application of a tubular liquid membrane to ethanol sensing by the flow injection technique', Bunseki Kagaku, 1995 44(11) 961-964', 'firstchar' => 'A', 'twochars' => 'Ap', 'CitationsTechnique' => array( 'id' => '011561', 'citation_id' => '011705', 'technique_id' => '0449' ), 'Analyte' => array( (int) 0 => array( 'id' => '00931', 'name' => 'Ethanol', 'iupac_name' => 'ethanol', 'casrn' => '64-17-5', 'synonyms' => 'alcohol; alcohol dehydrated; algrain; Anhydrol; cologne spirit; cologne spirits (alcohol); Denatured alcohol; Ethyl alcohol; Ethanol; ethanol 200 proof; Ethanol absolute; ethyl hydrate; ethyl hydroxide; fermentation alcohol; grain alcohol; jaysol; jaysol s; methylcarbinol; molasses alcohol; potato alcohol; sd alcohol 23-hydrogen; spirit; spirits of wine; Synasol; tecsol', 'total' => '115', 'inchi' => 'InChI=1S/C2H6O/c1-2-3/h3H,2H2,1H3', 'inchikey' => 'LFQSCWFLJHTTHZ-UHFFFAOYSA-N', 'formula' => 'C2H6O', 'oxstate' => 'Zero', 'url' => '', 'charge' => '0', 'class1' => 'Organic compound', 'class2' => 'NA', 'class3' => 'NA', 'class4' => 'Molecule', 'class5' => '', 'isgroup' => '', 'checked' => 'yes', 'citation_count' => '0', 'updated' => '2015-10-23 09:57:39', 'first' => 'E', 'nametotal' => 'Ethanol**115', 'AnalytesCitation' => array( [maximum depth reached] ) ) ), 'Matrix' => array(), 'Keyword' => array( (int) 0 => array( 'id' => '0246', 'type' => 'Membrane', 'keyword' => 'Liquid membrane', 'newKeyword' => '', 'synonyms' => '', 'fao' => '', 'total' => '5', 'first' => 'L', 'keytotal' => 'Liquid membrane**5', 'CitationsKeyword' => array( [maximum depth reached] ) ), (int) 1 => array( 'id' => '0115', 'type' => 'Manifold process', 'keyword' => 'Diffusion', 'newKeyword' => '', 'synonyms' => '', 'fao' => '', 'total' => '47', 'first' => 'D', 'keytotal' => 'Diffusion**47', 'CitationsKeyword' => array( [maximum depth reached] ) ) ) ) $i = (int) 2 $path = '' $a = '' $url = 'http://dx.doi.org/10.2116/bunsekikagaku.44.961' $aus = 'Ando, M.;Okubo, M.;Kato, T.;Okada, K.;Tokumoto, J.;Okura, T.'include - APP/View/Elements/citation.ctp, line 40 View::_evaluate() - CORE/Cake/View/View.php, line 971 View::_render() - CORE/Cake/View/View.php, line 933 View::_renderElement() - CORE/Cake/View/View.php, line 1224 View::element() - CORE/Cake/View/View.php, line 418 include - APP/View/Techniques/view.ctp, line 52 View::_evaluate() - CORE/Cake/View/View.php, line 971 View::_render() - CORE/Cake/View/View.php, line 933 View::render() - CORE/Cake/View/View.php, line 473 Controller::render() - CORE/Cake/Controller/Controller.php, line 968 Dispatcher::_invoke() - CORE/Cake/Routing/Dispatcher.php, line 200 Dispatcher::dispatch() - CORE/Cake/Routing/Dispatcher.php, line 167 [main] - APP/webroot/index.php, line 109