Contact Info
Stuart Chalk, Ph.D.
Department of Chemistry
University of North Florida
Phone: 1-904-620-1938
Fax: 1-904-620-3535
Email: schalk@unf.edu
Website: @unf
Raman
Citations 15
"Flow Injection Analysis And Liquid Chromatography: Surface Enhanced Raman Spectrometry Detection By Using A Windowless Flow Cell"
Anal. Chim. Acta
1996 Volume 318, Issue 2 Pages 203-210
Notice (8): Undefined variable: uid [APP/View/Elements/citation.ctp, line 40]L. M. Cabalín, A. Rupérez and J. J. Laserna*Code Context?>
<?php
if($uid!='') {
$viewFile = '/home/stuchalk/public_html/fad/app/View/Elements/citation.ctp' $dataForView = array( 'data' => array( 'Technique' => array( 'id' => '0410', 'label' => 'Raman', 'level1' => 'Raman', 'level2' => 'surface enhanced', 'level3' => '', 'level4' => '', 'level5' => '', 'synonyms' => 'Surface enhanced raman spectroscopy,SERS', 'champ' => '', 'total' => '15', 'updated' => '0000-00-00 00:00:00', 'name' => 'Raman, surface enhanced', 'nametotal' => 'Raman, surface enhanced**15', 'first' => 'R' ), 'Citation' => array( (int) 0 => array( [maximum depth reached] ), (int) 1 => array( [maximum depth reached] ), (int) 2 => array( [maximum depth reached] ), (int) 3 => array( [maximum depth reached] ), (int) 4 => array( [maximum depth reached] ), (int) 5 => array( [maximum depth reached] ), (int) 6 => array( [maximum depth reached] ), (int) 7 => array( [maximum depth reached] ), (int) 8 => array( [maximum depth reached] ), (int) 9 => array( [maximum depth reached] ), (int) 10 => array( [maximum depth reached] ), (int) 11 => array( [maximum depth reached] ), (int) 12 => array( [maximum depth reached] ), (int) 13 => array( [maximum depth reached] ), (int) 14 => array( [maximum depth reached] ) ) ), 'c' => array( 'id' => '006258', 'authors' => 'Cabalin, L.M.;Ruperez, A.;Laserna, J.J.', 'authorsweb' => 'L. M. Cabalín, A. Rupérez and J. J. Laserna*', 'title' => 'Flow injection analysis and liquid chromatography: surface enhanced Raman spectrometry detection by using a windowless flow cell', 'journal' => 'Anal. Chim. Acta', 'journal_id' => '0584', 'fadid' => 'ANCA1996V0318P00203', 'year' => '1996', 'volume' => '318', 'issue' => '2', 'startpage' => '203', 'endpage' => '210', 'type' => 'Journal Article', 'analytes' => ';0146;0199;2037;1732;2402;', 'matrices' => '', 'techniques' => ';0032;0410;', 'keywords' => ';0167;0302;', 'abstract' => 'A windowless flow cell was developed for detection by surface-enhanced Raman spectrometry (SERS) in FIA and LC. The flow cell consisted of two stainless-steel tubes (0.16 mm i.d.; 1.4 mm o.d.) mounted on an Al frame so that the ends were ~e;1.6 mm apart. The liquid draining from the upper to the lower tube was supported by surface tension and formed a column (1.4 mm diameter). The mobile phase from the FIA or LC was merged with a silver hydrosol stream then propelled in to the flow cell. The Raman spectra were recorded using a focussed Ar ion laser beam (488 nm; 85 mW) as the source. The performance of the flow cell was optimized using five drugs (amiloride, amiphenazole, 2-mercaptopyridine, pemoline and triamterene) as model analytes. The maximum SERS signal was obtained with flow rates of 0.075 ml/ml and 1.5 ml/ml for the mobile phase and silver hydrosol, respectively. The reproducibility (n = 5) of the FIA-SERS system for the determination of 625 ng amiloride was 1%.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '1', 'urlcheck' => '2014-10-11 16:18:55', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '01097', 'pauthor' => '!Laserna, J.J.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1016/0003-2670(95)00441-6', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Flow injection analysis and liquid chromatography: surface enhanced Raman spectrometry detection by using a windowless flow cell', Anal. Chim. Acta, 1996 318(2) 203-210', 'firstchar' => 'F', 'twochars' => 'Fl', 'CitationsTechnique' => array( 'id' => '002899', 'citation_id' => '006258', 'technique_id' => '0410' ), 'Analyte' => array( (int) 0 => array( [maximum depth reached] ), (int) 1 => array( [maximum depth reached] ), (int) 2 => array( [maximum depth reached] ), (int) 3 => array( [maximum depth reached] ), (int) 4 => array( [maximum depth reached] ) ), 'Matrix' => array(), 'Keyword' => array( (int) 0 => array( [maximum depth reached] ), (int) 1 => array( [maximum depth reached] ) ) ), 'i' => (int) 0 ) $data = array( 'Technique' => array( 'id' => '0410', 'label' => 'Raman', 'level1' => 'Raman', 'level2' => 'surface enhanced', 'level3' => '', 'level4' => '', 'level5' => '', 'synonyms' => 'Surface enhanced raman spectroscopy,SERS', 'champ' => '', 'total' => '15', 'updated' => '0000-00-00 00:00:00', 'name' => 'Raman, surface enhanced', 'nametotal' => 'Raman, surface enhanced**15', 'first' => 'R' ), 'Citation' => array( (int) 0 => array( 'id' => '006258', 'authors' => 'Cabalin, L.M.;Ruperez, A.;Laserna, J.J.', 'authorsweb' => 'L. M. Cabalín, A. Rupérez and J. J. Laserna*', 'title' => 'Flow injection analysis and liquid chromatography: surface enhanced Raman spectrometry detection by using a windowless flow cell', 'journal' => 'Anal. Chim. Acta', 'journal_id' => '0584', 'fadid' => 'ANCA1996V0318P00203', 'year' => '1996', 'volume' => '318', 'issue' => '2', 'startpage' => '203', 'endpage' => '210', 'type' => 'Journal Article', 'analytes' => ';0146;0199;2037;1732;2402;', 'matrices' => '', 'techniques' => ';0032;0410;', 'keywords' => ';0167;0302;', 'abstract' => 'A windowless flow cell was developed for detection by surface-enhanced Raman spectrometry (SERS) in FIA and LC. The flow cell consisted of two stainless-steel tubes (0.16 mm i.d.; 1.4 mm o.d.) mounted on an Al frame so that the ends were ~e;1.6 mm apart. The liquid draining from the upper to the lower tube was supported by surface tension and formed a column (1.4 mm diameter). The mobile phase from the FIA or LC was merged with a silver hydrosol stream then propelled in to the flow cell. The Raman spectra were recorded using a focussed Ar ion laser beam (488 nm; 85 mW) as the source. The performance of the flow cell was optimized using five drugs (amiloride, amiphenazole, 2-mercaptopyridine, pemoline and triamterene) as model analytes. The maximum SERS signal was obtained with flow rates of 0.075 ml/ml and 1.5 ml/ml for the mobile phase and silver hydrosol, respectively. The reproducibility (n = 5) of the FIA-SERS system for the determination of 625 ng amiloride was 1%.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '1', 'urlcheck' => '2014-10-11 16:18:55', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '01097', 'pauthor' => '!Laserna, J.J.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1016/0003-2670(95)00441-6', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Flow injection analysis and liquid chromatography: surface enhanced Raman spectrometry detection by using a windowless flow cell', Anal. Chim. Acta, 1996 318(2) 203-210', 'firstchar' => 'F', 'twochars' => 'Fl', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 1 => array( 'id' => '006451', 'authors' => 'Somsen, G.W.;Coulter, S.K.;Gooijer, C.;Velthorst, N.H.;Brinkman, U.A.T.', 'authorsweb' => 'G. W. Somsen*, S. K. Coulter, C. Gooijer, N. H. Velthorst and U. A. Th. Brinkman', 'title' => 'Coupling of column liquid-chromatography and surface-enhanced resonance raman-spectroscopy via a thin-layer chromatographic plate', 'journal' => 'Anal. Chim. Acta', 'journal_id' => '0584', 'fadid' => 'ANCA1997V0349P00189', 'year' => '1997', 'volume' => '349', 'issue' => '1-3', 'startpage' => '189', 'endpage' => '197', 'type' => 'Journal Article', 'analytes' => '', 'matrices' => '', 'techniques' => ';0410;0038;', 'keywords' => ';0339;0302;', 'abstract' => 'Surface-enhanced resonance Raman (SERR) spectroscopy was used to characterize compounds separated by column liquid chromatography (LC). Three percent of the effluent from a conventional-size LC column were immobilized on a moving thin-layer chromatography (TLC) plate using a spray-jet solvent-elimination interface. Next, colloidal silver was applied to the analyte spots and in situ SERR spectra were recorded with a multichannel micro-Raman spectrometer. Storage of the LC effluent avoids the need to use a continuous-flow of colloidal silver and, in principle allows compounds to be detected independently of LC conditions like eluent composition and flow rate. Using dyes as test compounds, the method was optimized and aspects were studied such as type of TLC plate, LC separation of the dyes, preservation of LC integrity during immobilization, and SERR analysis of the deposited compounds. With a silica TLC plate as deposition substrate, good-quality and characteristic SERR spectra were obtained for the dyes which were separated on a cyanoproyl-modified silica LC column with methanol-water containing the volatile additives ammonium acetate and triethylamine as eluent. The minimum identifiable concentration of the dyes was about 250 ng mL-1 (750 pg applied on the plate). For some strong Raman scatterers such as nile blue and pararosaniline, the major spectral peaks could be observed down to concentrations of 25 ng mL-1. 36 References', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '3', 'urlcheck' => '2014-10-11 16:23:46', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '01300', 'pauthor' => '!Somsen, G.W.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1016/S0003-2670(97)00011-1', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Coupling of column liquid-chromatography and surface-enhanced resonance raman-spectroscopy via a thin-layer chromatographic plate', Anal. Chim. Acta, 1997 349(1-3) 189-197', 'firstchar' => 'C', 'twochars' => 'Co', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array([maximum depth reached]), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 2 => array( 'id' => '006887', 'authors' => 'Laserna, J.J.;Berthod, A.;Winefordner, J.D.', 'authorsweb' => 'J. J. Laserna, A. Berthod and J. D. Winefordner ', 'title' => 'Quantitative analysis by surface-enhanced raman spectrometry on silver hydrosols in a flow injection system', 'journal' => 'Talanta', 'journal_id' => '0569', 'fadid' => 'TALT1987V0034P00745', 'year' => '1987', 'volume' => '34', 'issue' => '8', 'startpage' => '745', 'endpage' => '747', 'type' => 'Journal Article', 'analytes' => ';0056;0401;', 'matrices' => '', 'techniques' => ';0410;', 'keywords' => ';0457;', 'abstract' => 'The application of surface-enhanced Raman scattering (SERS) in quantitative analysis is demonstrated by the determination of 4-aminobenzoic acid(I) and acridin-9-amine(II) on silver suspensions by SERS in a flow injection system. Two peristaltic pumps were used to mix 2 mM NaBH4 and 1 mM AgNO3 and pump the resulting silver suspension through the flow injection analysis system. The flow injection analysis system is described (with diagram). The sample solution contained I in aqueous 40% ethanol or II in ethanol. The calibration graph was rectilinear for 4 to 100 µg mL-1 of I, and the coefficient of variation (n = 6) was 3.2%. The system required cleaning with 40% HNO3 after 10 to 15 injections.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '7', 'urlcheck' => '2014-10-11 14:54:34', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '01400', 'pauthor' => '!Winefordner, J.D.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1016/0039-9140(87)80234-5', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Quantitative analysis by surface-enhanced raman spectrometry on silver hydrosols in a flow injection system', Talanta, 1987 34(8) 745-747', 'firstchar' => 'Q', 'twochars' => 'Qu', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 3 => array( 'id' => '007977', 'authors' => 'Weissenbacher, N.;Lendl, B.;Frank, J.;Wanzenbock, H.D.;Kellner, R.', 'authorsweb' => 'N. Weißenbacher, B. Lendl, J. Frank, H. D. Wanzenböck and R. Kellner', 'title' => 'Surface enhanced raman spectroscopy as a molecular specific detection system in aqueous flow-through systems', 'journal' => 'Analyst', 'journal_id' => '0864', 'fadid' => 'ANAL1998V0123P01057', 'year' => '1998', 'volume' => '123', 'issue' => '5', 'startpage' => '1057', 'endpage' => '1060', 'type' => 'Journal Article', 'analytes' => ';1583;', 'matrices' => '', 'techniques' => ';0410;0409;', 'keywords' => ';0446;0167;0043;0258;', 'abstract' => 'Surface enhanced Raman scattering (SERS) is proposed as a mol. specific technique for direct measurements of organic molecules in aqueous solutions An FT-Raman spectrometer was interfaced with a flow injection manifold operated in the stopped-flow mode enabling reproducible collection of SERS spectra due to the automation of the anal. procedure. For SERS a solid state substrate placed in a newly developed flow-cell was used. Multiple measurements on one single SERS substrate were achieved by rinsing the substrate with reagents such as 3 M KCl or 0.1 M NaOH solutions prior to the next measurements to remove retained analytes from the surface of the SERS substrate. This procedure allowed for improved precision as compared with a conventional batch approach. Quant. aspects were studied by establishing a calibration curve for nicotinic acid which was used as a model analyte. A linear dependence of the recorded SERS intensities from the logarithm of the analyte concentration. was obtained throughout the whole studied concentration. range (0.001-0.1 M, correlation coefficient r2 = 0.97). The standard deviation of the method sx0 is 0.122 mM and detection limit 1.7 mM, respectively. The results demonstrate the potential of SERS spectroscopy to be used as a molecular specific detector in aqueous flow systems such as flow injection anal.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '5', 'urlcheck' => '2014-10-12 09:52:18', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '00241', 'pauthor' => '!Lendl, B.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1039/a705837c', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Surface enhanced raman spectroscopy as a molecular specific detection system in aqueous flow-through systems', Analyst, 1998 123(5) 1057-1060', 'firstchar' => 'S', 'twochars' => 'Su', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 4 => array( 'id' => '008516', 'authors' => 'Force, R.K.', 'authorsweb' => 'R. Ken Force', 'title' => 'Surface-enhanced raman spectroscopy at a silver electrode as a detector in flow injection analysis', 'journal' => 'Anal. Chem.', 'journal_id' => '0499', 'fadid' => 'ANCH1988V0060P01987', 'year' => '1988', 'volume' => '60', 'issue' => '18', 'startpage' => '1987', 'endpage' => '1989', 'type' => 'Journal Article', 'analytes' => '', 'matrices' => '', 'techniques' => ';0214;0410;', 'keywords' => '', 'abstract' => 'A Ag-ring reference (diameter 5 mm) and a Ag-disc working electrode (diameter 3 mm) were sealed 1 mm apart in a Pyrex tube (o.d. 7 mm) and polished smooth. The Ag ring was anodized at 0.4 V (vs. a SCE) in 0.1 M KCl to produce a Ag - AgCl reference electrode with a potential of ~0.190 to ~0.200 V (vs. a NHE) in the 0.1 M KCl used as mobile phase and supporting electrolyte. The apparatus was applied in flow injection analysis for 50.0 mM pyridine (1 mL injections) in KCl flowing at 2 mL min-1. The potential was held at -0.6 V. Raman spectra were recorded from 990 to 1050 cm-1 in 2-cm-1 steps. A detection limit of ~250 nM was achieved. A Ag-ring reference (diameter 5 mm) and a Ag-disc working electrode (diameter 3 mm) were sealed 1 mm apart in a Pyrex tube (o.d. 7 mm) and polished smooth.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '0', 'urlcheck' => '2014-10-11 18:35:15', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '00965', 'pauthor' => '!Force, R.K.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1021/ac00169a033', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Surface-enhanced raman spectroscopy at a silver electrode as a detector in flow injection analysis', Anal. Chem., 1988 60(18) 1987-1989', 'firstchar' => 'S', 'twochars' => 'Su', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array([maximum depth reached]), 'Matrix' => array([maximum depth reached]), 'Keyword' => array([maximum depth reached]) ), (int) 5 => array( 'id' => '008566', 'authors' => 'Pothier, N.J.;Force, R.K.', 'authorsweb' => 'Neil J. Pothier and R. Ken Force', 'title' => 'Surface-enhanced raman spectroscopy at a silver electrode as a detection system in flowing streams', 'journal' => 'Anal. Chem.', 'journal_id' => '0499', 'fadid' => 'ANCH1990V0062P00678', 'year' => '1990', 'volume' => '62', 'issue' => '7', 'startpage' => '678', 'endpage' => '680', 'type' => 'Journal Article', 'analytes' => ';0064;2356;0747;', 'matrices' => '', 'techniques' => ';0410;0210;0038;', 'keywords' => ';0276;0446;0109;', 'abstract' => 'A three-electrode surface-enhanced Raman spectroscopy detector, with a Ag working electrode, Pt foil auxiliary electrode and SCE reference and a cell volume of 30 µL, was evaluated for use with HPLC and flow injection analysis. In a flowing system, the analyte is rapidly removed from the electrode surface in 10 s, and spectra was obtained in 5 s with an optical multichannel analyzer.. Under stopped-flow conditions, detection limits were 175, 233 and 211 pmol for adenine, thymine and cytosine, respectively.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '3', 'urlcheck' => '2014-10-11 18:35:47', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '00965', 'pauthor' => '!Force, R.K.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1021/ac00206a005', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Surface-enhanced raman spectroscopy at a silver electrode as a detection system in flowing streams', Anal. Chem., 1990 62(7) 678-680', 'firstchar' => 'S', 'twochars' => 'Su', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 6 => array( 'id' => '008582', 'authors' => 'Ni, F.;Sheng, R.S.;Cotton, T.M.', 'authorsweb' => 'Fan Ni, Rongsheng Sheng, and Therese M. Cotton', 'title' => 'Flow injection analysis and real-time detection of RNA bases by surface-enhanced Raman spectroscopy', 'journal' => 'Anal. Chem.', 'journal_id' => '0499', 'fadid' => 'ANCH1990V0062P01958', 'year' => '1990', 'volume' => '62', 'issue' => '18', 'startpage' => '1958', 'endpage' => '1963', 'type' => 'Journal Article', 'analytes' => ';0365;', 'matrices' => '', 'techniques' => ';0410;0038;', 'keywords' => ';0216;0320;0302;', 'abstract' => 'Surface-enhanced Raman scattering (SERS) spectroscopy has been successfully interfaced with a flow injection analysis system to detect RNA bases in real time. Four of the major base components of RNA, uracil, cytosine, adenine, and guanine, were introduced into the flow injection system and were mixed with a Ag sol prior to SERS measurements. Several experimental parameters including pH, temperature, flow rate, and tubing materials were examined, and their impact on the SERS spectra is presented here. The feasibility of interfacing flow injection based SERS detection methods with liquid or high performance liquid chromatography for the detection of individual components in a complex mixture is also assessed.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '2', 'urlcheck' => '2014-10-11 18:36:03', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => null, 'pauthor' => 'Cotton, T.M.', 'address' => 'Department of Chemistry, Iowa State University, Ames, Iowa 50011 USA', 'email' => 'NA', 'notes' => null, 'url' => '10.1021/ac00217a012', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Flow injection analysis and real-time detection of RNA bases by surface-enhanced Raman spectroscopy', Anal. Chem., 1990 62(18) 1958-1963', 'firstchar' => 'F', 'twochars' => 'Fl', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 7 => array( 'id' => '009344', 'authors' => 'Laserna, J.J.;Berthod, A.;Winefordner, J.D.', 'authorsweb' => 'J. J. Laserna, A. Berthod and J. D. Winefordner*', 'title' => 'Evaluation and optimization of experimental conditions for surface-enhanced raman detection of analytes in flow injection analysis', 'journal' => 'Microchem. J.', 'journal_id' => '0639', 'fadid' => 'MCHJ1988V0038P00125', 'year' => '1988', 'volume' => '38', 'issue' => '1', 'startpage' => '125', 'endpage' => '126', 'type' => 'Journal Article', 'analytes' => ';0399;0055;', 'matrices' => '', 'techniques' => ';0410;', 'keywords' => ';0110;0302;', 'abstract' => 'The Raman instrumentation included a 100-mW Ar ion laser operated at 514.5 nm, a double monochromator and a cooled Hamamatsu R-928 photomultiplier tube with photon counting system as the detector. Vertically polarized light was used, with right-angle geometry for Raman sampling and a long-wave-pass glass filter to suppress Rayleigh-scattered light. Spectra were obtained by single scans. Flow streams of 1 mM AgNO3 and 2 mM NaBH4 were merged to form a silver hydrosol matrix, and 4-aminobenzoic acid(I) and acridin-9-amine were used successfully as test analytes. The detector flow-cell was a silica tube (3 mm x 0.5 mm;~0.6 µL). For maximum signal response with I, the total flow rate was 0.7 mL min-1 and the pH was adjusted with HNO3 to 3.2.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '14', 'urlcheck' => '2014-10-12 00:26:48', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '01400', 'pauthor' => '!Winefordner, J.D.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1016/0026-265X(88)90011-2', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Evaluation and optimization of experimental conditions for surface-enhanced raman detection of analytes in flow injection analysis', Microchem. J., 1988 38(1) 125-126', 'firstchar' => 'E', 'twochars' => 'Ev', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 8 => array( 'id' => '010331', 'authors' => 'Gouveia, V.J.P.;Gutz, I.G.R.;Rubim, J.C.', 'authorsweb' => 'Vitor J. P. Gouveia, Ivano G. Gutz and Joel C. Rubim*', 'title' => 'New spectroelectrochemical cell for flow injection analysis and its application to the determination of iron(II) down to the femtomole level by surface-enhanced resonance Raman scattering (SERRS)', 'journal' => 'J. Electroanal. Chem.', 'journal_id' => '0709', 'fadid' => 'JECH1994V0371P00037', 'year' => '1994', 'volume' => '371', 'issue' => '1-2', 'startpage' => '37', 'endpage' => '42', 'type' => 'Journal Article', 'analytes' => ';1294;', 'matrices' => ';0404;', 'techniques' => ';0226;0410;', 'keywords' => '', 'abstract' => 'A principal feature of the cell (diagrams presented) is the in situ renewal of the surface-enhanced Raman-active Ag substratum. Before injection of the analyte, Ag+ are introduced, and Ag is electro-deposited on a vitreous-carbon electrode; after the Raman spectrum of the adsorbed analyte has been recorded, the Ag is removed by anodic stripping. Fe(II) was determined in a 130 µL injected sample as its tris(bipyridyl) complex, which exhibits both a resonance Raman effect when excited with Ar+ laser 514.5 nm radiation and surface-enhanced Raman scattering when adsorbed on Ag. The calibration graph was sigmoidal, but usable for 10 nM-10 µM-Fe(II), and the detection limit was 1 nM, which represented detection of Fe(II) at the femtomole level.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '13', 'urlcheck' => '2014-10-12 09:04:46', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => null, 'pauthor' => 'Rubim, J.C.', 'address' => 'Institututo de Química da Universidade de São Paulo C.P.20780, 01498, São Paulo, SP Brazil', 'email' => 'NA', 'notes' => null, 'url' => '10.1016/0022-0728(93)03220-J', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''New spectroelectrochemical cell for flow injection analysis and its application to the determination of iron(II) down to the femtomole level by surface-enhanced resonance Raman scattering (SERRS)', J. Electroanal. Chem., 1994 371(1-2) 37-42', 'firstchar' => 'N', 'twochars' => 'Ne', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array( [maximum depth reached] ), 'Keyword' => array([maximum depth reached]) ), (int) 9 => array( 'id' => '013707', 'authors' => 'Weissenbacher, N.;Lendl, B.;Frank, J.;Wanzenbock, H.D.;Mizaikoff, B.;Kellner, R.', 'authorsweb' => 'N. Weissenbacher*, B. Lendl, J. Frank, H. D. Wanzenböck, B. Mizaikoff and R. Kellner', 'title' => 'Continuous surface-enhanced raman-spectroscopy for the detection of trace organic pollutants in aqueous systems', 'journal' => 'J. Mol. Struct.', 'journal_id' => '0628', 'fadid' => 'JMRS1997V0410P00539', 'year' => '1997', 'volume' => '410', 'issue' => '1', 'startpage' => '539', 'endpage' => '542', 'type' => 'Journal Article', 'analytes' => ';2050;1583;1774;0504;1478;', 'matrices' => '', 'techniques' => ';0410;', 'keywords' => '', 'abstract' => 'In Raman spectroscopy, detection limits for organic pollutants in water can be lowered by several orders of magnitude when surface enhanced techniques are applied. In this work a continuous analytical device based on flow injection analysis using SERS detection is proposed. This system was tested with model analytes such as pyridine and nicotinic acid as well as several pesticides (carbendazim, metazachlorine). (C) 1997 Elsevier Science B.V. 22 References', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'No', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '3', 'urlcheck' => '2014-10-12 09:49:43', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => null, 'pauthor' => 'Weissenbacher, N.', 'address' => 'Institute for Analytical Chemistry, Vienna University of Technology, Getreidemarkt 9/151, A-1060, Vienna, Austria', 'email' => 'NA', 'notes' => null, 'url' => '10.1016/S0022-2860(96)09531-2', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Continuous surface-enhanced raman-spectroscopy for the detection of trace organic pollutants in aqueous systems', J. Mol. Struct., 1997 410(1) 539-542', 'firstchar' => 'C', 'twochars' => 'Co', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array([maximum depth reached]) ), (int) 10 => array( 'id' => '014097', 'authors' => 'Sawata, S.;Kai, E.;Ikebukuro, K.;Iida, T.;Honda, T.;Karube, I.', 'authorsweb' => 'Sawata S, Kai E, Ikebukuro K, Iida T, Honda T, Karube I.', 'title' => 'Novel detection system of flow injection analysis. 1. The existence of significant relation between secondary structure of DNA and sensitivity in signal detection', 'journal' => 'Nucleic Acids Symp. Ser.', 'journal_id' => '1346', 'fadid' => 'NASS1997V0037P00247', 'year' => '1997', 'volume' => '37', 'issue' => '1', 'startpage' => '247', 'endpage' => '248', 'type' => 'Journal Article', 'analytes' => ';0847;', 'matrices' => '', 'techniques' => ';0410;', 'keywords' => ';0401;', 'abstract' => 'Polymerase Chain Reaction (PCR) products were detected quantitatively using a flow injection type sensor, based on Surface Plasmon Resonance (SPR). We used asymmetric PCR to amplify the two kinds of products; their DNA lengths are different. This novel design permitted us not only to detect PCR products with high-sensitivity, but also to develop a rapid DNA detection system for the sense of the genetic pathogen.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'No', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '0', 'urlcheck' => '2014-10-13 19:09:08', 'urlcheckcode' => 'HTTP/1.1 200 OK', 'pauthor_id' => '00227', 'pauthor' => '!Karube, I.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => 'www.ncbi.nlm.nih.gov/pubmed/9586092', 'urltype' => 'absurl', 'gotpdf' => 'no', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Novel detection system of flow injection analysis. 1. The existence of significant relation between secondary structure of DNA and sensitivity in signal detection', Nucleic Acids Symp. Ser., 1997 37(1) 247-248', 'firstchar' => 'N', 'twochars' => 'No', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 11 => array( 'id' => '014429', 'authors' => 'Storey, J.M.E.;Barber, T.E.;Shelton, R.D.;Wachter, E.A.;Carron, K.T.;Jiang, Y.', 'authorsweb' => 'NA', 'title' => 'Applications of surface-enhanced Raman scattering (SERS) to chemical detection', 'journal' => 'Spectroscopy', 'journal_id' => '0489', 'fadid' => 'STRS1995V0010P00020', 'year' => '1995', 'volume' => '10', 'issue' => '3', 'startpage' => '20', 'endpage' => '25', 'type' => 'Journal Article', 'analytes' => ';0716;1186;1582;', 'matrices' => ';0343;0372;', 'techniques' => ';0410;', 'keywords' => ';0389;', 'abstract' => 'lectrochemical surface-enhanced Raman spectrometry (SERS) was used to detect chlorinated hydrocarbons in ground water, in tobacco smoke and aqueous cyanide ions. Hybrid substrate SERS was used for the detection of organic compounds in liquid and gas phases, using a flow-through cell. The experimental protocols were described previously. (Appl Spectrosc., 1994, 48, 1265; Shelton et al., Ibid., 1994, 48, 1007; Wachter et al.,Ibid., 1995, 49, 193; and Barber et al., Ibid., 1994, 48, 1423). The detection limits for hydrocarbons in electrolytes were a few ppm; they were an order of magnitude higher in groundwater. No calibration data are given. The response to cyanide was linear for 10^-100 ppm. The detection limit for nicotine in smoke was 15 ppb (no calibration data given). The advantages and limitations of the methods are discussed and future research directions are outlined.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'No', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '0', 'urlcheck' => '2006-05-20 19:26:31', 'urlcheckcode' => '', 'pauthor_id' => null, 'pauthor' => 'NA', 'address' => 'Oak Ridge Natl. Lab., Health Sci. Res. Div., Oak Ridge, TN 37831-6113 UK', 'email' => 'NA', 'notes' => null, 'url' => 'NA', 'urltype' => 'NA', 'gotpdf' => 'no', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Applications of surface-enhanced Raman scattering (SERS) to chemical detection', Spectroscopy, 1995 10(3) 20-25', 'firstchar' => 'A', 'twochars' => 'Ap', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array( [maximum depth reached] ), 'Keyword' => array( [maximum depth reached] ) ), (int) 12 => array( 'id' => '014511', 'authors' => 'Fujiwara, K.;Ito, S.', 'authorsweb' => 'Kitao Fujiwara and Seiji Ito', 'title' => 'Application of waveguiding in solutions for absorption and fluorescence spectrometry', 'journal' => 'Trends Anal. Chem.', 'journal_id' => '0653', 'fadid' => 'TRAC1991V0010P00184', 'year' => '1991', 'volume' => '10', 'issue' => '6', 'startpage' => '184', 'endpage' => '190', 'type' => 'Journal Article', 'analytes' => '', 'matrices' => '', 'techniques' => ';0252;0410;', 'keywords' => ';0043;0167;0521;', 'abstract' => 'Several waveguiding techniques in solution are presented in the context of spectrometry. Although light propagation in dense media via total reflection is a commonly used technique with optical fibers, it is also possible in solutions. This is very useful for improving both sensitivity and spatial resolution, especially in absorption and fluorescence spectrometry, by elongating the optical path length and controlling the angle of incidence of light in the measurement area of a sample. ', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'No', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '26', 'urlcheck' => '2014-10-12 02:21:14', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => null, 'pauthor' => 'NA', 'address' => 'NA', 'email' => 'NA', 'notes' => null, 'url' => '10.1016/0165-9936(91)85019-N', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Application of waveguiding in solutions for absorption and fluorescence spectrometry', Trends Anal. Chem., 1991 10(6) 184-190', 'firstchar' => 'A', 'twochars' => 'Ap', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array([maximum depth reached]), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 13 => array( 'id' => '014536', 'authors' => 'Vo Dinh, T.', 'authorsweb' => 'Tuan Vo-Dinh', 'title' => 'Surface enhanced raman spectroscopy using metallic nanostructures', 'journal' => 'Trends Anal. Chem.', 'journal_id' => '0653', 'fadid' => 'TRAC1998V0017P00557', 'year' => '1998', 'volume' => '17', 'issue' => '8-9', 'startpage' => '557', 'endpage' => '582', 'type' => 'Journal Article', 'analytes' => '', 'matrices' => ';0404;0093;', 'techniques' => ';0410;', 'keywords' => ';0043;0215;0389;', 'abstract' => 'This article provides an overview of the development and application of the surface-enhanced Raman scattering (SERS) techniques using metal-coated nanostructures on solid substrates, An introduction to theoretical principles of the SERS effect and the different SERS-active media is presented. The focus is on nanostructured solid substrates and their practical applications in chemical, environmental and biomedical areas. Specific examples of analytical techniques, instruments and sensors developed in the author's laboratory will be discussed to illustrate the usefulness and potential of the SERS techniques.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'No', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '38', 'urlcheck' => '2014-10-12 10:04:45', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => null, 'pauthor' => 'Vo Dinh, T.', 'address' => 'Advanced Monitoring Development Group, Life Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6101, USA', 'email' => 'NA', 'notes' => null, 'url' => '10.1016/S0165-9936(98)00069-7', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Surface enhanced raman spectroscopy using metallic nanostructures', Trends Anal. Chem., 1998 17(8-9) 557-582', 'firstchar' => 'S', 'twochars' => 'Su', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array([maximum depth reached]), 'Matrix' => array( [maximum depth reached] ), 'Keyword' => array( [maximum depth reached] ) ), (int) 14 => array( 'id' => '014560', 'authors' => 'Ruperez, A.;Montes, R.;Laserna, J.J.', 'authorsweb' => 'A. Rupérez, R. Montes and J. J. Laserna*', 'title' => 'Identification of stimulant drugs by surface-enhanced raman spectrometry on colloidal silver', 'journal' => 'Vib. Spectrosc.', 'journal_id' => '0655', 'fadid' => 'VIBS1991V0002P00145', 'year' => '1991', 'volume' => '2', 'issue' => '2-3', 'startpage' => '145', 'endpage' => '154', 'type' => 'Journal Article', 'analytes' => ';0862;', 'matrices' => '', 'techniques' => ';0032;0055;0410;', 'keywords' => '', 'abstract' => 'The surface-enhanced Raman (SER) spectra of stimulant drugs, including mefenorex, pentylenetetrazole, -amphetamine and pemoline, were obtained on colloidal silver. Silver colloids are prepared in a single step, at room temperature, by chemical reduction of Ag+ with sodium tetrahydroborate. Spectra are recorded using drug concentrations at the g mL-1 level. Individual drugs can be identified by characteristic vibrational bands. The SER spectrum of human urine and that of human urine spiked with mixtures of stimulant drugs are reported.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'No', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '7', 'urlcheck' => '2014-10-12 02:21:21', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '01097', 'pauthor' => '!Laserna, J.J.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1016/0924-2031(91)85020-N', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Identification of stimulant drugs by surface-enhanced raman spectrometry on colloidal silver', Vib. Spectrosc., 1991 2(2-3) 145-154', 'firstchar' => 'I', 'twochars' => 'Id', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array([maximum depth reached]) ) ) ) $c = array( 'id' => '006258', 'authors' => 'Cabalin, L.M.;Ruperez, A.;Laserna, J.J.', 'authorsweb' => 'L. M. Cabalín, A. Rupérez and J. J. Laserna*', 'title' => 'Flow injection analysis and liquid chromatography: surface enhanced Raman spectrometry detection by using a windowless flow cell', 'journal' => 'Anal. Chim. Acta', 'journal_id' => '0584', 'fadid' => 'ANCA1996V0318P00203', 'year' => '1996', 'volume' => '318', 'issue' => '2', 'startpage' => '203', 'endpage' => '210', 'type' => 'Journal Article', 'analytes' => ';0146;0199;2037;1732;2402;', 'matrices' => '', 'techniques' => ';0032;0410;', 'keywords' => ';0167;0302;', 'abstract' => 'A windowless flow cell was developed for detection by surface-enhanced Raman spectrometry (SERS) in FIA and LC. The flow cell consisted of two stainless-steel tubes (0.16 mm i.d.; 1.4 mm o.d.) mounted on an Al frame so that the ends were ~e;1.6 mm apart. The liquid draining from the upper to the lower tube was supported by surface tension and formed a column (1.4 mm diameter). The mobile phase from the FIA or LC was merged with a silver hydrosol stream then propelled in to the flow cell. The Raman spectra were recorded using a focussed Ar ion laser beam (488 nm; 85 mW) as the source. The performance of the flow cell was optimized using five drugs (amiloride, amiphenazole, 2-mercaptopyridine, pemoline and triamterene) as model analytes. The maximum SERS signal was obtained with flow rates of 0.075 ml/ml and 1.5 ml/ml for the mobile phase and silver hydrosol, respectively. The reproducibility (n = 5) of the FIA-SERS system for the determination of 625 ng amiloride was 1%.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '1', 'urlcheck' => '2014-10-11 16:18:55', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '01097', 'pauthor' => '!Laserna, J.J.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1016/0003-2670(95)00441-6', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Flow injection analysis and liquid chromatography: surface enhanced Raman spectrometry detection by using a windowless flow cell', Anal. Chim. Acta, 1996 318(2) 203-210', 'firstchar' => 'F', 'twochars' => 'Fl', 'CitationsTechnique' => array( 'id' => '002899', 'citation_id' => '006258', 'technique_id' => '0410' ), 'Analyte' => array( (int) 0 => array( 'id' => '00146', 'name' => 'Amiloride', 'iupac_name' => '3,5-diamino-6-chloro-N-(diaminomethylidene)pyrazine-2-carboxamide', 'casrn' => '2609-46-3', 'synonyms' => 'AMILORIDE, Amipramidin, Midamor, Guanamprazine, Amipramizid, Amipramizide, Guanamprazin, Amilorida, Amiloridum, Amyloride, Amiloridum [INN-Latin], Amilorida [INN-Spanish], 2609-46-3, Amiloride HCL, Amiprazidine, CHEMBL945, UNII-7DZO8EB0Z3, Amiclaran (TN), Amiloride (INN), 3,5-diamino-N-carbamimidoyl-6-chloropyrazine-2-carboxamide, CCRIS 6545, CHEBI:2639, N-Amidino-3,5-diamino-6-chloropyrazinecarboxamide, Spectrum_000034, Tocris-0890, 1f5l, Amiloride [INN:BAN], AC1Q3POC, C6H8ClN7O, Prestwick0_000007, Prestwick1_000007, Prestwick2_000007, Prestwick3_000007, Spectrum2_000118, Spectrum3_000293, Spectrum4_000132, Spectrum5_000776, EINECS 220-024-7, Lopac-A-7410, Pyrazinecarboxamide, 3,5-diamino-N-(aminoiminomethyl)-6-chloro-, AC1L27IZ, Lopac0_000111, BSPBio_000013, BSPBio_001572, BSPBio_001826, KBioGR_000292, KBioGR_000544, KBioSS_000292, KBioSS_000394, ST079279, BIDD:GT0466, DivK1c_000182, SPBio_000136, SPBio_001934, MLS001060798, BPBio1_000015, 3,5-Diamino-N-(aminoiminomethyl)-6-chloropyrazinecarboxamide, Amikal (Hydrochloride dihydrate), BCBcMAP01_000101, KBio1_000182, KBio2_000292, KBio2_000394, KBio2_002860, KBio2_002962, KBio2_005428, KBio2_005530, KBio3_000583, KBio3_000584, KBio3_001326, Midamor (Hydrochloride dihydrate), NINDS_000182, MolPort-005-934-472, N-Amidino-3,5-diamino-6-chlorpyrazincarboxamid, XSDQTOBWRPYKKA-UHFFFAOYSA-N, 17440-83-4 (hydrochloride), 3,5-diamino-6-chloro-N-(diaminomethylidene)pyrazine-2-carboxamide, Bio1_000359, Bio1_000848, Bio1_001337, Bio2_000292, Bio2_000772, HMS1791O14, HMS1989O14, HMS2089H05, MK-870 (Hydrochloride dihydrate), Amiloride hydrochloride hydrate, ZINC04340269, DB00594, LS-1094, 2016-88-8 (anhydrous hydrochloride), IDI1_000182, IDI1_034042, NCGC00015089-01, NCGC00015089-02, NCGC00015089-08, NCGC00015089-12, NCGC00024443-02, NCGC00024443-05, NCGC00024443-06, NCGC00024443-07, NCGC00024443-09, AC-13631, SMR000486264, AB00053415, AMIPRAMIDINE, C06821, D07447, DSSTox_CID_23853, DSSTox_RID_80077, Amiloride Hydrocholride, DSSTox_GSID_43853, BRD-K97181089-003-02-3, BRD-K97181089-310-03-0, N-amidino-3,5-diamino-6-chloro-2-pyrazinecarboxamide, AMILORIDE (SEE ALSO: AMILORIDE HCL (2016-88-8)), MLS000758249, 3,5-diamino-N-[amino(imino)methyl]-6-chloropyrazine-2-carboxamide, Pyrazinecarboxamide, 3,5-diamino-N-(aminoiminomethyl)-6-chloro-, monohydrochloride, CAS-2609-46-3, SMR000449325, Midamorreg, Amiclaran, Amilorid, Moduret, (3,5-diamino-6-chloropyrazin-2-yl)-N-(???methyl)carboxamide, Arumil, CID16231, 7DZO8EB0Z3, SCHEMBL27562, GTPL2421, BDBM16173, MolPort-005-937-651, HMS2213E05, HMS3355K04, ACT05635, ACT05652, HY-B0285, Tox21_110080, BBL028157, CPD-10324, DAP000187, SBB037856, STL373007, AKOS015961348, Tox21_110080_1, CCG-204206, CS-2297, NCGC00015089-03, NCGC00015089-04, NCGC00015089-05, NCGC00015089-06, NCGC00015089-07, NCGC00015089-09, NCGC00015089-11, NCGC00015089-13, NCGC00015089-14, NCGC00015089-15, NCGC00015089-16, NCGC00015089-17, U460, (3,5-Diamino-6-chloropyrazinoyl)guanidine, N-amidino-3,5-diamino-6-chloropyrazinamide, AB00053415-24, AB00053415-25, 117188-EP2277879A1, 117188-EP2298776A1, N-amidino 3,5-diamino-6-chloro-2-pyrazinecarboxamide, 3,5-diamino-N-carbamimidoyl-6-chloro-pyrazine-2-carboxamide, 3,5-diamino-6-chloro-N-(diaminomethylene)pyrazinamide;hydrochloride, 137053-86-2', 'total' => '3', 'inchi' => 'InChI=1S/C6H8ClN7O/c7-2-4(9)13-3(8)1(12-2)5(15)14-6(10)11/h(H4,8,9,13)(H4,10,11,14,15)', 'inchikey' => 'XSDQTOBWRPYKKA-UHFFFAOYSA-N', 'formula' => 'C6H8ClN7O', 'oxstate' => 'Zero', 'url' => '', 'charge' => '0', 'class1' => '', 'class2' => '', 'class3' => '', 'class4' => '', 'class5' => '', 'isgroup' => 'no', 'checked' => 'no', 'citation_count' => '0', 'updated' => '2015-10-23 09:32:33', 'first' => 'A', 'nametotal' => 'Amiloride**3', 'AnalytesCitation' => array( [maximum depth reached] ) ), (int) 1 => array( 'id' => '00199', 'name' => 'Amiphenazole', 'iupac_name' => '5-phenyl-1,3-thiazole-2,4-diamine', 'casrn' => '490-55-1', 'synonyms' => 'Amiphenazole, Amiphenazol, Phenamizole, Amifenazol, Daftazol, Daptazile, Daptazole, Fenamizol, Phenamizol, Dizol, 2,4-Diamino-5-phenylthiazole, 5-Phenyl-2,4-thiazolediamine, dapt(van), DHA-245, 2,4-Thiazolediamine, 5-phenyl-, Thiazole, 2,4-diamino-5-phenyl-, UNII-7ZJ8PWY0XD, Amifenazol [INN-Spanish], Amiphenazol [INN-French], Amiphenazolum [INN-Latin], 490-55-1, EINECS 207-713-8, SBB003630, 5-Phenyl-1,3-thiazole-2,4-diamine, BRN 0157088, NCGC00164489-01, NCGC00164489-04, DSSTox_CID_26388, DSSTox_RID_81568, DSSTox_GSID_46388, CAS-490-55-1, Amiphenazolum, AC1L1UUT, AC1Q4VQX, Amiphenazole [INN:BAN], 7ZJ8PWY0XD, C9H9N3S, SCHEMBL139210, 2,4-Thiazolediamine,5-phenyl-, CHEMBL1514085, UPOYFZYFGWBUKL-UHFFFAOYSA-N, 942-31-4 (mono-hydrochloride), 6020-54-8 (mono-hydrobromide), Tox21_112128, AR-1I3461, ZINC17299272, AKOS003630530, Tox21_112128_1, (2-amino-5-phenyl-thiazol-4-yl)-amine, 5-Phenyl-1,3-thiazole-2,4-diamine #, NCGC00164489-02, AJ-70025, DB-070961, LS-150918, ST50406303, 4-27-00-05139 (Beilstein Handbook Reference)', 'total' => '1', 'inchi' => 'InChI=1S/C9H9N3S/c10-8-7(13-9(11)12-8)6-4-2-1-3-5-6/h1-5H,10H2,(H2,11,12)', 'inchikey' => 'UPOYFZYFGWBUKL-UHFFFAOYSA-N', 'formula' => 'C9H9N3S', 'oxstate' => 'Zero', 'url' => '', 'charge' => '0', 'class1' => '', 'class2' => '', 'class3' => '', 'class4' => '', 'class5' => '', 'isgroup' => 'no', 'checked' => 'no', 'citation_count' => '0', 'updated' => '2015-10-23 09:32:41', 'first' => 'A', 'nametotal' => 'Amiphenazole**1', 'AnalytesCitation' => array( [maximum depth reached] ) ), (int) 2 => array( 'id' => '02037', 'name' => '2-Mercaptopyridine', 'iupac_name' => '1H-pyridine-2-thione', 'casrn' => '2637-34-5', 'synonyms' => '2-Mercaptopyridine, 2-Pyridinethiol, Pyridine-2-thiol, 2637-34-5, 2-Thiopyridine, Pyrid-2-thione, 2(1H)-PYRIDINETHIONE, 2-Pyridyl mercaptan, Pyridinethione, 1H-pyridine-2-thione, 2-Thiopyridone, 2-Pyridinethione, 2-Mercapto pyridine, 2-pyridylthiol, 2-pyridinylthiol, 73018-10-7, CHEBI:45223, Thiopyridone-2 [French], NSC 41337, 1,2-dihydropyridine-2-thione, WHMDPDGBKYUEMW-UHFFFAOYSA-N, EINECS 220-131-9, 29468-20-0, PYS, Pyridinethiol, mercaptopyridine, Thiopyridone-2, pyridin-2-thiol, Alrithiol-2, Pridine-2-thiol, 2-Sulphanylpyridine, 2-mercapto-pyridine, zlchem 157, mercapto(2-)pyridine, PubChem10835, PubChem16329, ACMC-1CMBR, Pyridin-2(1H)-thione, pyridine-2(1H)-thione, AC1MC3EX, WLN: T6NJ BSH, Epitope ID:120365, AC1Q7F2Q, M5852_ALDRICH, SCHEMBL54576, KSC191E9T, UNII-EE982KT952, CHEMBL1235541, CTK0J1299, CTK1A5990, ZLB0146, MolPort-000-156-720, EE982KT952, ACT05649, NSC41337, EINECS 249-657-7, ANW-25980, CM0035, NSC-41337, SBB058593, STL281380, WR 608, ZINC00403023, 2-Pyridinethiol; 2-Pyridyl mercaptan, AKOS000120194, AKOS003596823, AM81301, DB03329, MCULE-7596777399, NE10433, PS-6210, RP00538, RTR-011978, TRA0020947, VP14324, AN-25542, HC150139, KB-26225, KB-86984, SC-46168, ZB013028, AB0012129, AB1003777, LS-132090, TL8002107, TR-011978, FT-0612770, ST50701362, 26746P, A818409, A837693, S02-0133, I14-49035, 3B3-005819, 1120-96-3, 123574-65-2, 29467-96-7, 811801-36-2', 'total' => '1', 'inchi' => 'InChI=1S/C5H5NS/c7-5-3-1-2-4-6-5/h1-4H,(H,6,7)', 'inchikey' => 'WHMDPDGBKYUEMW-UHFFFAOYSA-N', 'formula' => 'C5H5NS', 'oxstate' => 'Zero', 'url' => '', 'charge' => '0', 'class1' => '', 'class2' => '', 'class3' => '', 'class4' => '', 'class5' => '', 'isgroup' => 'no', 'checked' => 'no', 'citation_count' => '0', 'updated' => '2015-10-23 21:36:01', 'first' => '2', 'nametotal' => '2-Mercaptopyridine**1', 'AnalytesCitation' => array( [maximum depth reached] ) ), (int) 3 => array( 'id' => '01732', 'name' => 'Pemoline', 'iupac_name' => '2-amino-5-phenyl-1,3-oxazol-4-one', 'casrn' => '2152-34-3', 'synonyms' => '4(5H)-Oxazolone, 2-amino-5-phenyl-; Azoksodon; Azoxodon; Azoxodone; Centramin; Dantromin; Deltamin; Hyton; Kethamed; LA 956; Okodon; Pemolin; Pheniminooxazolidinone; Phenoxazole; Phenylisohydantoin; Phenylpseudohydantoin; Pioxol; Pondex; PIO; Ronyl; Sistra; Stimul; Stimulol; Tradon; Tradone; Yh 1; A 13397; Abbott 13397; Betanamin; C- 293; Constimol; Cylert; Deltamine; Endolin; Fenoxazol; Fio; Fwh-352; H 310; Juston-Wirkstoff; Myamin; Nitan; NPL 1; P 10; Phenalone; Phenilone; Pn/135; Pomoline; PT 360; Sigmadyn; Sistral; Sofro; Volital; Volitol; 2-Imino-5-phenyl-4-oxazolidinone; 4-Oxazolidinone, 2-imino-5-phenyl-; 5-Phenyl-2-imino-4-oxazolidine; 5-Phenyl-2-imino-4-oxazolidinone; 2-Amino-5-phenyl-4(5H)-oxazolone; CS 293; H 3104; Notair; Pemolina; 5-Phenyl-2-imino-4-oxooxazolidine; Hyton asa; NSC-25159; Senior; 2-Amino-5-phenyl-1,3-oxazol-4(5H)-one', 'total' => '1', 'inchi' => 'InChI=1S/C9H8N2O2/c10-9-11-8(12)7(13-9)6-4-2-1-3-5-6/h1-5,7H,(H2,10,11,12)', 'inchikey' => 'NRNCYVBFPDDJNE-UHFFFAOYSA-N', 'formula' => 'C9H8N2O2', 'oxstate' => 'Zero', 'url' => '', 'charge' => '0', 'class1' => 'Organic compound', 'class2' => 'NA', 'class3' => 'NA', 'class4' => 'Molecule', 'class5' => 'Drugs', 'isgroup' => '', 'checked' => 'yes', 'citation_count' => '0', 'updated' => '2015-10-23 21:33:43', 'first' => 'P', 'nametotal' => 'Pemoline**1', 'AnalytesCitation' => array( [maximum depth reached] ) ), (int) 4 => array( 'id' => '02402', 'name' => 'Triamterene', 'iupac_name' => '6-phenylpteridine-2,4,7-triamine', 'casrn' => '396-01-0', 'synonyms' => '2,4,7-triamino-6-phenylpteridine; 6-phenyl-2,4,7-Pteridinetriamine; 6-phenyl-2,4,7-triaminopteridine; ademine; Diren; Ditak; Dyazide; Dyren; Dyrenium; Dytac; jatropur; noridil; noridyl; pterofen; pterophene; skf 8542; taturil; teriam; teridin; triampur; Triamterene; TRIAMTERENE USP; triamteril; Triamterine; tri-span; triteren; urocaudal', 'total' => '1', 'inchi' => 'InChI=1S/C12H11N7/c13-9-7(6-4-2-1-3-5-6)16-8-10(14)18-12(15)19-11(8)17-9/h1-5H,(H6,13,14,15,17,18,19)', 'inchikey' => 'FNYLWPVRPXGIIP-UHFFFAOYSA-N', 'formula' => 'C12H11N7', 'oxstate' => 'Zero', 'url' => '', 'charge' => '0', 'class1' => 'Organic compound', 'class2' => 'NA', 'class3' => 'NA', 'class4' => 'Molecule', 'class5' => 'Drugs', 'isgroup' => '', 'checked' => 'yes', 'citation_count' => '0', 'updated' => '2015-10-23 21:38:50', 'first' => 'T', 'nametotal' => 'Triamterene**1', 'AnalytesCitation' => array( [maximum depth reached] ) ) ), 'Matrix' => array(), 'Keyword' => array( (int) 0 => array( 'id' => '0167', 'type' => 'Manifold component', 'keyword' => 'Flowcell', 'newKeyword' => '', 'synonyms' => '', 'fao' => '', 'total' => '156', 'first' => 'F', 'keytotal' => 'Flowcell**156', 'CitationsKeyword' => array( [maximum depth reached] ) ), (int) 1 => array( 'id' => '0302', 'type' => 'Feature', 'keyword' => 'Optimization', 'newKeyword' => '', 'synonyms' => '', 'fao' => '', 'total' => '1069', 'first' => 'O', 'keytotal' => 'Optimization**1069', 'CitationsKeyword' => array( [maximum depth reached] ) ) ) ) $i = (int) 0 $path = '' $a = '' $url = 'http://dx.doi.org/10.1016/0003-2670(95)00441-6' $aus = 'L. M. Cabal&iacute;n, A. Rup&eacute;rez and J. J. Laserna*'include - APP/View/Elements/citation.ctp, line 40 View::_evaluate() - CORE/Cake/View/View.php, line 971 View::_render() - CORE/Cake/View/View.php, line 933 View::_renderElement() - CORE/Cake/View/View.php, line 1224 View::element() - CORE/Cake/View/View.php, line 418 include - APP/View/Techniques/view.ctp, line 52 View::_evaluate() - CORE/Cake/View/View.php, line 971 View::_render() - CORE/Cake/View/View.php, line 933 View::render() - CORE/Cake/View/View.php, line 473 Controller::render() - CORE/Cake/Controller/Controller.php, line 968 Dispatcher::_invoke() - CORE/Cake/Routing/Dispatcher.php, line 200 Dispatcher::dispatch() - CORE/Cake/Routing/Dispatcher.php, line 167 [main] - APP/webroot/index.php, line 109
"Coupling Of Column Liquid-chromatography And Surface-enhanced Resonance Raman-spectroscopy Via A Thin-layer Chromatographic Plate"
Anal. Chim. Acta
1997 Volume 349, Issue 1-3 Pages 189-197
Notice (8): Undefined variable: uid [APP/View/Elements/citation.ctp, line 40]G. W. Somsen*, S. K. Coulter, C. Gooijer, N. H. Velthorst and U. A. Th. BrinkmanCode Context?>
<?php
if($uid!='') {
$viewFile = '/home/stuchalk/public_html/fad/app/View/Elements/citation.ctp' $dataForView = array( 'data' => array( 'Technique' => array( 'id' => '0410', 'label' => 'Raman', 'level1' => 'Raman', 'level2' => 'surface enhanced', 'level3' => '', 'level4' => '', 'level5' => '', 'synonyms' => 'Surface enhanced raman spectroscopy,SERS', 'champ' => '', 'total' => '15', 'updated' => '0000-00-00 00:00:00', 'name' => 'Raman, surface enhanced', 'nametotal' => 'Raman, surface enhanced**15', 'first' => 'R' ), 'Citation' => array( (int) 0 => array( [maximum depth reached] ), (int) 1 => array( [maximum depth reached] ), (int) 2 => array( [maximum depth reached] ), (int) 3 => array( [maximum depth reached] ), (int) 4 => array( [maximum depth reached] ), (int) 5 => array( [maximum depth reached] ), (int) 6 => array( [maximum depth reached] ), (int) 7 => array( [maximum depth reached] ), (int) 8 => array( [maximum depth reached] ), (int) 9 => array( [maximum depth reached] ), (int) 10 => array( [maximum depth reached] ), (int) 11 => array( [maximum depth reached] ), (int) 12 => array( [maximum depth reached] ), (int) 13 => array( [maximum depth reached] ), (int) 14 => array( [maximum depth reached] ) ) ), 'c' => array( 'id' => '006451', 'authors' => 'Somsen, G.W.;Coulter, S.K.;Gooijer, C.;Velthorst, N.H.;Brinkman, U.A.T.', 'authorsweb' => 'G. W. Somsen*, S. K. Coulter, C. Gooijer, N. H. Velthorst and U. A. Th. Brinkman', 'title' => 'Coupling of column liquid-chromatography and surface-enhanced resonance raman-spectroscopy via a thin-layer chromatographic plate', 'journal' => 'Anal. Chim. Acta', 'journal_id' => '0584', 'fadid' => 'ANCA1997V0349P00189', 'year' => '1997', 'volume' => '349', 'issue' => '1-3', 'startpage' => '189', 'endpage' => '197', 'type' => 'Journal Article', 'analytes' => '', 'matrices' => '', 'techniques' => ';0410;0038;', 'keywords' => ';0339;0302;', 'abstract' => 'Surface-enhanced resonance Raman (SERR) spectroscopy was used to characterize compounds separated by column liquid chromatography (LC). Three percent of the effluent from a conventional-size LC column were immobilized on a moving thin-layer chromatography (TLC) plate using a spray-jet solvent-elimination interface. Next, colloidal silver was applied to the analyte spots and in situ SERR spectra were recorded with a multichannel micro-Raman spectrometer. Storage of the LC effluent avoids the need to use a continuous-flow of colloidal silver and, in principle allows compounds to be detected independently of LC conditions like eluent composition and flow rate. Using dyes as test compounds, the method was optimized and aspects were studied such as type of TLC plate, LC separation of the dyes, preservation of LC integrity during immobilization, and SERR analysis of the deposited compounds. With a silica TLC plate as deposition substrate, good-quality and characteristic SERR spectra were obtained for the dyes which were separated on a cyanoproyl-modified silica LC column with methanol-water containing the volatile additives ammonium acetate and triethylamine as eluent. The minimum identifiable concentration of the dyes was about 250 ng mL-1 (750 pg applied on the plate). For some strong Raman scatterers such as nile blue and pararosaniline, the major spectral peaks could be observed down to concentrations of 25 ng mL-1. 36 References', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '3', 'urlcheck' => '2014-10-11 16:23:46', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '01300', 'pauthor' => '!Somsen, G.W.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1016/S0003-2670(97)00011-1', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Coupling of column liquid-chromatography and surface-enhanced resonance raman-spectroscopy via a thin-layer chromatographic plate', Anal. Chim. Acta, 1997 349(1-3) 189-197', 'firstchar' => 'C', 'twochars' => 'Co', 'CitationsTechnique' => array( 'id' => '003260', 'citation_id' => '006451', 'technique_id' => '0410' ), 'Analyte' => array(), 'Matrix' => array(), 'Keyword' => array( (int) 0 => array( [maximum depth reached] ), (int) 1 => array( [maximum depth reached] ) ) ), 'i' => (int) 1 ) $data = array( 'Technique' => array( 'id' => '0410', 'label' => 'Raman', 'level1' => 'Raman', 'level2' => 'surface enhanced', 'level3' => '', 'level4' => '', 'level5' => '', 'synonyms' => 'Surface enhanced raman spectroscopy,SERS', 'champ' => '', 'total' => '15', 'updated' => '0000-00-00 00:00:00', 'name' => 'Raman, surface enhanced', 'nametotal' => 'Raman, surface enhanced**15', 'first' => 'R' ), 'Citation' => array( (int) 0 => array( 'id' => '006258', 'authors' => 'Cabalin, L.M.;Ruperez, A.;Laserna, J.J.', 'authorsweb' => 'L. M. Cabalín, A. Rupérez and J. J. Laserna*', 'title' => 'Flow injection analysis and liquid chromatography: surface enhanced Raman spectrometry detection by using a windowless flow cell', 'journal' => 'Anal. Chim. Acta', 'journal_id' => '0584', 'fadid' => 'ANCA1996V0318P00203', 'year' => '1996', 'volume' => '318', 'issue' => '2', 'startpage' => '203', 'endpage' => '210', 'type' => 'Journal Article', 'analytes' => ';0146;0199;2037;1732;2402;', 'matrices' => '', 'techniques' => ';0032;0410;', 'keywords' => ';0167;0302;', 'abstract' => 'A windowless flow cell was developed for detection by surface-enhanced Raman spectrometry (SERS) in FIA and LC. The flow cell consisted of two stainless-steel tubes (0.16 mm i.d.; 1.4 mm o.d.) mounted on an Al frame so that the ends were ~e;1.6 mm apart. The liquid draining from the upper to the lower tube was supported by surface tension and formed a column (1.4 mm diameter). The mobile phase from the FIA or LC was merged with a silver hydrosol stream then propelled in to the flow cell. The Raman spectra were recorded using a focussed Ar ion laser beam (488 nm; 85 mW) as the source. The performance of the flow cell was optimized using five drugs (amiloride, amiphenazole, 2-mercaptopyridine, pemoline and triamterene) as model analytes. The maximum SERS signal was obtained with flow rates of 0.075 ml/ml and 1.5 ml/ml for the mobile phase and silver hydrosol, respectively. The reproducibility (n = 5) of the FIA-SERS system for the determination of 625 ng amiloride was 1%.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '1', 'urlcheck' => '2014-10-11 16:18:55', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '01097', 'pauthor' => '!Laserna, J.J.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1016/0003-2670(95)00441-6', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Flow injection analysis and liquid chromatography: surface enhanced Raman spectrometry detection by using a windowless flow cell', Anal. Chim. Acta, 1996 318(2) 203-210', 'firstchar' => 'F', 'twochars' => 'Fl', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 1 => array( 'id' => '006451', 'authors' => 'Somsen, G.W.;Coulter, S.K.;Gooijer, C.;Velthorst, N.H.;Brinkman, U.A.T.', 'authorsweb' => 'G. W. Somsen*, S. K. Coulter, C. Gooijer, N. H. Velthorst and U. A. Th. Brinkman', 'title' => 'Coupling of column liquid-chromatography and surface-enhanced resonance raman-spectroscopy via a thin-layer chromatographic plate', 'journal' => 'Anal. Chim. Acta', 'journal_id' => '0584', 'fadid' => 'ANCA1997V0349P00189', 'year' => '1997', 'volume' => '349', 'issue' => '1-3', 'startpage' => '189', 'endpage' => '197', 'type' => 'Journal Article', 'analytes' => '', 'matrices' => '', 'techniques' => ';0410;0038;', 'keywords' => ';0339;0302;', 'abstract' => 'Surface-enhanced resonance Raman (SERR) spectroscopy was used to characterize compounds separated by column liquid chromatography (LC). Three percent of the effluent from a conventional-size LC column were immobilized on a moving thin-layer chromatography (TLC) plate using a spray-jet solvent-elimination interface. Next, colloidal silver was applied to the analyte spots and in situ SERR spectra were recorded with a multichannel micro-Raman spectrometer. Storage of the LC effluent avoids the need to use a continuous-flow of colloidal silver and, in principle allows compounds to be detected independently of LC conditions like eluent composition and flow rate. Using dyes as test compounds, the method was optimized and aspects were studied such as type of TLC plate, LC separation of the dyes, preservation of LC integrity during immobilization, and SERR analysis of the deposited compounds. With a silica TLC plate as deposition substrate, good-quality and characteristic SERR spectra were obtained for the dyes which were separated on a cyanoproyl-modified silica LC column with methanol-water containing the volatile additives ammonium acetate and triethylamine as eluent. The minimum identifiable concentration of the dyes was about 250 ng mL-1 (750 pg applied on the plate). For some strong Raman scatterers such as nile blue and pararosaniline, the major spectral peaks could be observed down to concentrations of 25 ng mL-1. 36 References', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '3', 'urlcheck' => '2014-10-11 16:23:46', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '01300', 'pauthor' => '!Somsen, G.W.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1016/S0003-2670(97)00011-1', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Coupling of column liquid-chromatography and surface-enhanced resonance raman-spectroscopy via a thin-layer chromatographic plate', Anal. Chim. Acta, 1997 349(1-3) 189-197', 'firstchar' => 'C', 'twochars' => 'Co', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array([maximum depth reached]), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 2 => array( 'id' => '006887', 'authors' => 'Laserna, J.J.;Berthod, A.;Winefordner, J.D.', 'authorsweb' => 'J. J. Laserna, A. Berthod and J. D. Winefordner ', 'title' => 'Quantitative analysis by surface-enhanced raman spectrometry on silver hydrosols in a flow injection system', 'journal' => 'Talanta', 'journal_id' => '0569', 'fadid' => 'TALT1987V0034P00745', 'year' => '1987', 'volume' => '34', 'issue' => '8', 'startpage' => '745', 'endpage' => '747', 'type' => 'Journal Article', 'analytes' => ';0056;0401;', 'matrices' => '', 'techniques' => ';0410;', 'keywords' => ';0457;', 'abstract' => 'The application of surface-enhanced Raman scattering (SERS) in quantitative analysis is demonstrated by the determination of 4-aminobenzoic acid(I) and acridin-9-amine(II) on silver suspensions by SERS in a flow injection system. Two peristaltic pumps were used to mix 2 mM NaBH4 and 1 mM AgNO3 and pump the resulting silver suspension through the flow injection analysis system. The flow injection analysis system is described (with diagram). The sample solution contained I in aqueous 40% ethanol or II in ethanol. The calibration graph was rectilinear for 4 to 100 µg mL-1 of I, and the coefficient of variation (n = 6) was 3.2%. The system required cleaning with 40% HNO3 after 10 to 15 injections.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '7', 'urlcheck' => '2014-10-11 14:54:34', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '01400', 'pauthor' => '!Winefordner, J.D.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1016/0039-9140(87)80234-5', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Quantitative analysis by surface-enhanced raman spectrometry on silver hydrosols in a flow injection system', Talanta, 1987 34(8) 745-747', 'firstchar' => 'Q', 'twochars' => 'Qu', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 3 => array( 'id' => '007977', 'authors' => 'Weissenbacher, N.;Lendl, B.;Frank, J.;Wanzenbock, H.D.;Kellner, R.', 'authorsweb' => 'N. Weißenbacher, B. Lendl, J. Frank, H. D. Wanzenböck and R. Kellner', 'title' => 'Surface enhanced raman spectroscopy as a molecular specific detection system in aqueous flow-through systems', 'journal' => 'Analyst', 'journal_id' => '0864', 'fadid' => 'ANAL1998V0123P01057', 'year' => '1998', 'volume' => '123', 'issue' => '5', 'startpage' => '1057', 'endpage' => '1060', 'type' => 'Journal Article', 'analytes' => ';1583;', 'matrices' => '', 'techniques' => ';0410;0409;', 'keywords' => ';0446;0167;0043;0258;', 'abstract' => 'Surface enhanced Raman scattering (SERS) is proposed as a mol. specific technique for direct measurements of organic molecules in aqueous solutions An FT-Raman spectrometer was interfaced with a flow injection manifold operated in the stopped-flow mode enabling reproducible collection of SERS spectra due to the automation of the anal. procedure. For SERS a solid state substrate placed in a newly developed flow-cell was used. Multiple measurements on one single SERS substrate were achieved by rinsing the substrate with reagents such as 3 M KCl or 0.1 M NaOH solutions prior to the next measurements to remove retained analytes from the surface of the SERS substrate. This procedure allowed for improved precision as compared with a conventional batch approach. Quant. aspects were studied by establishing a calibration curve for nicotinic acid which was used as a model analyte. A linear dependence of the recorded SERS intensities from the logarithm of the analyte concentration. was obtained throughout the whole studied concentration. range (0.001-0.1 M, correlation coefficient r2 = 0.97). The standard deviation of the method sx0 is 0.122 mM and detection limit 1.7 mM, respectively. The results demonstrate the potential of SERS spectroscopy to be used as a molecular specific detector in aqueous flow systems such as flow injection anal.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '5', 'urlcheck' => '2014-10-12 09:52:18', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '00241', 'pauthor' => '!Lendl, B.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1039/a705837c', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Surface enhanced raman spectroscopy as a molecular specific detection system in aqueous flow-through systems', Analyst, 1998 123(5) 1057-1060', 'firstchar' => 'S', 'twochars' => 'Su', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 4 => array( 'id' => '008516', 'authors' => 'Force, R.K.', 'authorsweb' => 'R. Ken Force', 'title' => 'Surface-enhanced raman spectroscopy at a silver electrode as a detector in flow injection analysis', 'journal' => 'Anal. Chem.', 'journal_id' => '0499', 'fadid' => 'ANCH1988V0060P01987', 'year' => '1988', 'volume' => '60', 'issue' => '18', 'startpage' => '1987', 'endpage' => '1989', 'type' => 'Journal Article', 'analytes' => '', 'matrices' => '', 'techniques' => ';0214;0410;', 'keywords' => '', 'abstract' => 'A Ag-ring reference (diameter 5 mm) and a Ag-disc working electrode (diameter 3 mm) were sealed 1 mm apart in a Pyrex tube (o.d. 7 mm) and polished smooth. The Ag ring was anodized at 0.4 V (vs. a SCE) in 0.1 M KCl to produce a Ag - AgCl reference electrode with a potential of ~0.190 to ~0.200 V (vs. a NHE) in the 0.1 M KCl used as mobile phase and supporting electrolyte. The apparatus was applied in flow injection analysis for 50.0 mM pyridine (1 mL injections) in KCl flowing at 2 mL min-1. The potential was held at -0.6 V. Raman spectra were recorded from 990 to 1050 cm-1 in 2-cm-1 steps. A detection limit of ~250 nM was achieved. A Ag-ring reference (diameter 5 mm) and a Ag-disc working electrode (diameter 3 mm) were sealed 1 mm apart in a Pyrex tube (o.d. 7 mm) and polished smooth.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '0', 'urlcheck' => '2014-10-11 18:35:15', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '00965', 'pauthor' => '!Force, R.K.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1021/ac00169a033', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Surface-enhanced raman spectroscopy at a silver electrode as a detector in flow injection analysis', Anal. Chem., 1988 60(18) 1987-1989', 'firstchar' => 'S', 'twochars' => 'Su', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array([maximum depth reached]), 'Matrix' => array([maximum depth reached]), 'Keyword' => array([maximum depth reached]) ), (int) 5 => array( 'id' => '008566', 'authors' => 'Pothier, N.J.;Force, R.K.', 'authorsweb' => 'Neil J. Pothier and R. Ken Force', 'title' => 'Surface-enhanced raman spectroscopy at a silver electrode as a detection system in flowing streams', 'journal' => 'Anal. Chem.', 'journal_id' => '0499', 'fadid' => 'ANCH1990V0062P00678', 'year' => '1990', 'volume' => '62', 'issue' => '7', 'startpage' => '678', 'endpage' => '680', 'type' => 'Journal Article', 'analytes' => ';0064;2356;0747;', 'matrices' => '', 'techniques' => ';0410;0210;0038;', 'keywords' => ';0276;0446;0109;', 'abstract' => 'A three-electrode surface-enhanced Raman spectroscopy detector, with a Ag working electrode, Pt foil auxiliary electrode and SCE reference and a cell volume of 30 µL, was evaluated for use with HPLC and flow injection analysis. In a flowing system, the analyte is rapidly removed from the electrode surface in 10 s, and spectra was obtained in 5 s with an optical multichannel analyzer.. Under stopped-flow conditions, detection limits were 175, 233 and 211 pmol for adenine, thymine and cytosine, respectively.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '3', 'urlcheck' => '2014-10-11 18:35:47', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '00965', 'pauthor' => '!Force, R.K.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1021/ac00206a005', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Surface-enhanced raman spectroscopy at a silver electrode as a detection system in flowing streams', Anal. Chem., 1990 62(7) 678-680', 'firstchar' => 'S', 'twochars' => 'Su', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 6 => array( 'id' => '008582', 'authors' => 'Ni, F.;Sheng, R.S.;Cotton, T.M.', 'authorsweb' => 'Fan Ni, Rongsheng Sheng, and Therese M. Cotton', 'title' => 'Flow injection analysis and real-time detection of RNA bases by surface-enhanced Raman spectroscopy', 'journal' => 'Anal. Chem.', 'journal_id' => '0499', 'fadid' => 'ANCH1990V0062P01958', 'year' => '1990', 'volume' => '62', 'issue' => '18', 'startpage' => '1958', 'endpage' => '1963', 'type' => 'Journal Article', 'analytes' => ';0365;', 'matrices' => '', 'techniques' => ';0410;0038;', 'keywords' => ';0216;0320;0302;', 'abstract' => 'Surface-enhanced Raman scattering (SERS) spectroscopy has been successfully interfaced with a flow injection analysis system to detect RNA bases in real time. Four of the major base components of RNA, uracil, cytosine, adenine, and guanine, were introduced into the flow injection system and were mixed with a Ag sol prior to SERS measurements. Several experimental parameters including pH, temperature, flow rate, and tubing materials were examined, and their impact on the SERS spectra is presented here. The feasibility of interfacing flow injection based SERS detection methods with liquid or high performance liquid chromatography for the detection of individual components in a complex mixture is also assessed.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '2', 'urlcheck' => '2014-10-11 18:36:03', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => null, 'pauthor' => 'Cotton, T.M.', 'address' => 'Department of Chemistry, Iowa State University, Ames, Iowa 50011 USA', 'email' => 'NA', 'notes' => null, 'url' => '10.1021/ac00217a012', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Flow injection analysis and real-time detection of RNA bases by surface-enhanced Raman spectroscopy', Anal. Chem., 1990 62(18) 1958-1963', 'firstchar' => 'F', 'twochars' => 'Fl', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 7 => array( 'id' => '009344', 'authors' => 'Laserna, J.J.;Berthod, A.;Winefordner, J.D.', 'authorsweb' => 'J. J. Laserna, A. Berthod and J. D. Winefordner*', 'title' => 'Evaluation and optimization of experimental conditions for surface-enhanced raman detection of analytes in flow injection analysis', 'journal' => 'Microchem. J.', 'journal_id' => '0639', 'fadid' => 'MCHJ1988V0038P00125', 'year' => '1988', 'volume' => '38', 'issue' => '1', 'startpage' => '125', 'endpage' => '126', 'type' => 'Journal Article', 'analytes' => ';0399;0055;', 'matrices' => '', 'techniques' => ';0410;', 'keywords' => ';0110;0302;', 'abstract' => 'The Raman instrumentation included a 100-mW Ar ion laser operated at 514.5 nm, a double monochromator and a cooled Hamamatsu R-928 photomultiplier tube with photon counting system as the detector. Vertically polarized light was used, with right-angle geometry for Raman sampling and a long-wave-pass glass filter to suppress Rayleigh-scattered light. Spectra were obtained by single scans. Flow streams of 1 mM AgNO3 and 2 mM NaBH4 were merged to form a silver hydrosol matrix, and 4-aminobenzoic acid(I) and acridin-9-amine were used successfully as test analytes. The detector flow-cell was a silica tube (3 mm x 0.5 mm;~0.6 µL). For maximum signal response with I, the total flow rate was 0.7 mL min-1 and the pH was adjusted with HNO3 to 3.2.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '14', 'urlcheck' => '2014-10-12 00:26:48', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '01400', 'pauthor' => '!Winefordner, J.D.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1016/0026-265X(88)90011-2', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Evaluation and optimization of experimental conditions for surface-enhanced raman detection of analytes in flow injection analysis', Microchem. J., 1988 38(1) 125-126', 'firstchar' => 'E', 'twochars' => 'Ev', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 8 => array( 'id' => '010331', 'authors' => 'Gouveia, V.J.P.;Gutz, I.G.R.;Rubim, J.C.', 'authorsweb' => 'Vitor J. P. Gouveia, Ivano G. Gutz and Joel C. Rubim*', 'title' => 'New spectroelectrochemical cell for flow injection analysis and its application to the determination of iron(II) down to the femtomole level by surface-enhanced resonance Raman scattering (SERRS)', 'journal' => 'J. Electroanal. Chem.', 'journal_id' => '0709', 'fadid' => 'JECH1994V0371P00037', 'year' => '1994', 'volume' => '371', 'issue' => '1-2', 'startpage' => '37', 'endpage' => '42', 'type' => 'Journal Article', 'analytes' => ';1294;', 'matrices' => ';0404;', 'techniques' => ';0226;0410;', 'keywords' => '', 'abstract' => 'A principal feature of the cell (diagrams presented) is the in situ renewal of the surface-enhanced Raman-active Ag substratum. Before injection of the analyte, Ag+ are introduced, and Ag is electro-deposited on a vitreous-carbon electrode; after the Raman spectrum of the adsorbed analyte has been recorded, the Ag is removed by anodic stripping. Fe(II) was determined in a 130 µL injected sample as its tris(bipyridyl) complex, which exhibits both a resonance Raman effect when excited with Ar+ laser 514.5 nm radiation and surface-enhanced Raman scattering when adsorbed on Ag. The calibration graph was sigmoidal, but usable for 10 nM-10 µM-Fe(II), and the detection limit was 1 nM, which represented detection of Fe(II) at the femtomole level.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '13', 'urlcheck' => '2014-10-12 09:04:46', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => null, 'pauthor' => 'Rubim, J.C.', 'address' => 'Institututo de Química da Universidade de São Paulo C.P.20780, 01498, São Paulo, SP Brazil', 'email' => 'NA', 'notes' => null, 'url' => '10.1016/0022-0728(93)03220-J', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''New spectroelectrochemical cell for flow injection analysis and its application to the determination of iron(II) down to the femtomole level by surface-enhanced resonance Raman scattering (SERRS)', J. Electroanal. Chem., 1994 371(1-2) 37-42', 'firstchar' => 'N', 'twochars' => 'Ne', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array( [maximum depth reached] ), 'Keyword' => array([maximum depth reached]) ), (int) 9 => array( 'id' => '013707', 'authors' => 'Weissenbacher, N.;Lendl, B.;Frank, J.;Wanzenbock, H.D.;Mizaikoff, B.;Kellner, R.', 'authorsweb' => 'N. Weissenbacher*, B. Lendl, J. Frank, H. D. Wanzenböck, B. Mizaikoff and R. Kellner', 'title' => 'Continuous surface-enhanced raman-spectroscopy for the detection of trace organic pollutants in aqueous systems', 'journal' => 'J. Mol. Struct.', 'journal_id' => '0628', 'fadid' => 'JMRS1997V0410P00539', 'year' => '1997', 'volume' => '410', 'issue' => '1', 'startpage' => '539', 'endpage' => '542', 'type' => 'Journal Article', 'analytes' => ';2050;1583;1774;0504;1478;', 'matrices' => '', 'techniques' => ';0410;', 'keywords' => '', 'abstract' => 'In Raman spectroscopy, detection limits for organic pollutants in water can be lowered by several orders of magnitude when surface enhanced techniques are applied. In this work a continuous analytical device based on flow injection analysis using SERS detection is proposed. This system was tested with model analytes such as pyridine and nicotinic acid as well as several pesticides (carbendazim, metazachlorine). (C) 1997 Elsevier Science B.V. 22 References', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'No', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '3', 'urlcheck' => '2014-10-12 09:49:43', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => null, 'pauthor' => 'Weissenbacher, N.', 'address' => 'Institute for Analytical Chemistry, Vienna University of Technology, Getreidemarkt 9/151, A-1060, Vienna, Austria', 'email' => 'NA', 'notes' => null, 'url' => '10.1016/S0022-2860(96)09531-2', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Continuous surface-enhanced raman-spectroscopy for the detection of trace organic pollutants in aqueous systems', J. Mol. Struct., 1997 410(1) 539-542', 'firstchar' => 'C', 'twochars' => 'Co', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array([maximum depth reached]) ), (int) 10 => array( 'id' => '014097', 'authors' => 'Sawata, S.;Kai, E.;Ikebukuro, K.;Iida, T.;Honda, T.;Karube, I.', 'authorsweb' => 'Sawata S, Kai E, Ikebukuro K, Iida T, Honda T, Karube I.', 'title' => 'Novel detection system of flow injection analysis. 1. The existence of significant relation between secondary structure of DNA and sensitivity in signal detection', 'journal' => 'Nucleic Acids Symp. Ser.', 'journal_id' => '1346', 'fadid' => 'NASS1997V0037P00247', 'year' => '1997', 'volume' => '37', 'issue' => '1', 'startpage' => '247', 'endpage' => '248', 'type' => 'Journal Article', 'analytes' => ';0847;', 'matrices' => '', 'techniques' => ';0410;', 'keywords' => ';0401;', 'abstract' => 'Polymerase Chain Reaction (PCR) products were detected quantitatively using a flow injection type sensor, based on Surface Plasmon Resonance (SPR). We used asymmetric PCR to amplify the two kinds of products; their DNA lengths are different. This novel design permitted us not only to detect PCR products with high-sensitivity, but also to develop a rapid DNA detection system for the sense of the genetic pathogen.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'No', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '0', 'urlcheck' => '2014-10-13 19:09:08', 'urlcheckcode' => 'HTTP/1.1 200 OK', 'pauthor_id' => '00227', 'pauthor' => '!Karube, I.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => 'www.ncbi.nlm.nih.gov/pubmed/9586092', 'urltype' => 'absurl', 'gotpdf' => 'no', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Novel detection system of flow injection analysis. 1. The existence of significant relation between secondary structure of DNA and sensitivity in signal detection', Nucleic Acids Symp. Ser., 1997 37(1) 247-248', 'firstchar' => 'N', 'twochars' => 'No', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 11 => array( 'id' => '014429', 'authors' => 'Storey, J.M.E.;Barber, T.E.;Shelton, R.D.;Wachter, E.A.;Carron, K.T.;Jiang, Y.', 'authorsweb' => 'NA', 'title' => 'Applications of surface-enhanced Raman scattering (SERS) to chemical detection', 'journal' => 'Spectroscopy', 'journal_id' => '0489', 'fadid' => 'STRS1995V0010P00020', 'year' => '1995', 'volume' => '10', 'issue' => '3', 'startpage' => '20', 'endpage' => '25', 'type' => 'Journal Article', 'analytes' => ';0716;1186;1582;', 'matrices' => ';0343;0372;', 'techniques' => ';0410;', 'keywords' => ';0389;', 'abstract' => 'lectrochemical surface-enhanced Raman spectrometry (SERS) was used to detect chlorinated hydrocarbons in ground water, in tobacco smoke and aqueous cyanide ions. Hybrid substrate SERS was used for the detection of organic compounds in liquid and gas phases, using a flow-through cell. The experimental protocols were described previously. (Appl Spectrosc., 1994, 48, 1265; Shelton et al., Ibid., 1994, 48, 1007; Wachter et al.,Ibid., 1995, 49, 193; and Barber et al., Ibid., 1994, 48, 1423). The detection limits for hydrocarbons in electrolytes were a few ppm; they were an order of magnitude higher in groundwater. No calibration data are given. The response to cyanide was linear for 10^-100 ppm. The detection limit for nicotine in smoke was 15 ppb (no calibration data given). The advantages and limitations of the methods are discussed and future research directions are outlined.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'No', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '0', 'urlcheck' => '2006-05-20 19:26:31', 'urlcheckcode' => '', 'pauthor_id' => null, 'pauthor' => 'NA', 'address' => 'Oak Ridge Natl. Lab., Health Sci. Res. Div., Oak Ridge, TN 37831-6113 UK', 'email' => 'NA', 'notes' => null, 'url' => 'NA', 'urltype' => 'NA', 'gotpdf' => 'no', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Applications of surface-enhanced Raman scattering (SERS) to chemical detection', Spectroscopy, 1995 10(3) 20-25', 'firstchar' => 'A', 'twochars' => 'Ap', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array( [maximum depth reached] ), 'Keyword' => array( [maximum depth reached] ) ), (int) 12 => array( 'id' => '014511', 'authors' => 'Fujiwara, K.;Ito, S.', 'authorsweb' => 'Kitao Fujiwara and Seiji Ito', 'title' => 'Application of waveguiding in solutions for absorption and fluorescence spectrometry', 'journal' => 'Trends Anal. Chem.', 'journal_id' => '0653', 'fadid' => 'TRAC1991V0010P00184', 'year' => '1991', 'volume' => '10', 'issue' => '6', 'startpage' => '184', 'endpage' => '190', 'type' => 'Journal Article', 'analytes' => '', 'matrices' => '', 'techniques' => ';0252;0410;', 'keywords' => ';0043;0167;0521;', 'abstract' => 'Several waveguiding techniques in solution are presented in the context of spectrometry. Although light propagation in dense media via total reflection is a commonly used technique with optical fibers, it is also possible in solutions. This is very useful for improving both sensitivity and spatial resolution, especially in absorption and fluorescence spectrometry, by elongating the optical path length and controlling the angle of incidence of light in the measurement area of a sample. ', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'No', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '26', 'urlcheck' => '2014-10-12 02:21:14', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => null, 'pauthor' => 'NA', 'address' => 'NA', 'email' => 'NA', 'notes' => null, 'url' => '10.1016/0165-9936(91)85019-N', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Application of waveguiding in solutions for absorption and fluorescence spectrometry', Trends Anal. Chem., 1991 10(6) 184-190', 'firstchar' => 'A', 'twochars' => 'Ap', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array([maximum depth reached]), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 13 => array( 'id' => '014536', 'authors' => 'Vo Dinh, T.', 'authorsweb' => 'Tuan Vo-Dinh', 'title' => 'Surface enhanced raman spectroscopy using metallic nanostructures', 'journal' => 'Trends Anal. Chem.', 'journal_id' => '0653', 'fadid' => 'TRAC1998V0017P00557', 'year' => '1998', 'volume' => '17', 'issue' => '8-9', 'startpage' => '557', 'endpage' => '582', 'type' => 'Journal Article', 'analytes' => '', 'matrices' => ';0404;0093;', 'techniques' => ';0410;', 'keywords' => ';0043;0215;0389;', 'abstract' => 'This article provides an overview of the development and application of the surface-enhanced Raman scattering (SERS) techniques using metal-coated nanostructures on solid substrates, An introduction to theoretical principles of the SERS effect and the different SERS-active media is presented. The focus is on nanostructured solid substrates and their practical applications in chemical, environmental and biomedical areas. Specific examples of analytical techniques, instruments and sensors developed in the author's laboratory will be discussed to illustrate the usefulness and potential of the SERS techniques.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'No', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '38', 'urlcheck' => '2014-10-12 10:04:45', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => null, 'pauthor' => 'Vo Dinh, T.', 'address' => 'Advanced Monitoring Development Group, Life Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6101, USA', 'email' => 'NA', 'notes' => null, 'url' => '10.1016/S0165-9936(98)00069-7', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Surface enhanced raman spectroscopy using metallic nanostructures', Trends Anal. Chem., 1998 17(8-9) 557-582', 'firstchar' => 'S', 'twochars' => 'Su', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array([maximum depth reached]), 'Matrix' => array( [maximum depth reached] ), 'Keyword' => array( [maximum depth reached] ) ), (int) 14 => array( 'id' => '014560', 'authors' => 'Ruperez, A.;Montes, R.;Laserna, J.J.', 'authorsweb' => 'A. Rupérez, R. Montes and J. J. Laserna*', 'title' => 'Identification of stimulant drugs by surface-enhanced raman spectrometry on colloidal silver', 'journal' => 'Vib. Spectrosc.', 'journal_id' => '0655', 'fadid' => 'VIBS1991V0002P00145', 'year' => '1991', 'volume' => '2', 'issue' => '2-3', 'startpage' => '145', 'endpage' => '154', 'type' => 'Journal Article', 'analytes' => ';0862;', 'matrices' => '', 'techniques' => ';0032;0055;0410;', 'keywords' => '', 'abstract' => 'The surface-enhanced Raman (SER) spectra of stimulant drugs, including mefenorex, pentylenetetrazole, -amphetamine and pemoline, were obtained on colloidal silver. Silver colloids are prepared in a single step, at room temperature, by chemical reduction of Ag+ with sodium tetrahydroborate. Spectra are recorded using drug concentrations at the g mL-1 level. Individual drugs can be identified by characteristic vibrational bands. The SER spectrum of human urine and that of human urine spiked with mixtures of stimulant drugs are reported.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'No', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '7', 'urlcheck' => '2014-10-12 02:21:21', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '01097', 'pauthor' => '!Laserna, J.J.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1016/0924-2031(91)85020-N', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Identification of stimulant drugs by surface-enhanced raman spectrometry on colloidal silver', Vib. Spectrosc., 1991 2(2-3) 145-154', 'firstchar' => 'I', 'twochars' => 'Id', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array([maximum depth reached]) ) ) ) $c = array( 'id' => '006451', 'authors' => 'Somsen, G.W.;Coulter, S.K.;Gooijer, C.;Velthorst, N.H.;Brinkman, U.A.T.', 'authorsweb' => 'G. W. Somsen*, S. K. Coulter, C. Gooijer, N. H. Velthorst and U. A. Th. Brinkman', 'title' => 'Coupling of column liquid-chromatography and surface-enhanced resonance raman-spectroscopy via a thin-layer chromatographic plate', 'journal' => 'Anal. Chim. Acta', 'journal_id' => '0584', 'fadid' => 'ANCA1997V0349P00189', 'year' => '1997', 'volume' => '349', 'issue' => '1-3', 'startpage' => '189', 'endpage' => '197', 'type' => 'Journal Article', 'analytes' => '', 'matrices' => '', 'techniques' => ';0410;0038;', 'keywords' => ';0339;0302;', 'abstract' => 'Surface-enhanced resonance Raman (SERR) spectroscopy was used to characterize compounds separated by column liquid chromatography (LC). Three percent of the effluent from a conventional-size LC column were immobilized on a moving thin-layer chromatography (TLC) plate using a spray-jet solvent-elimination interface. Next, colloidal silver was applied to the analyte spots and in situ SERR spectra were recorded with a multichannel micro-Raman spectrometer. Storage of the LC effluent avoids the need to use a continuous-flow of colloidal silver and, in principle allows compounds to be detected independently of LC conditions like eluent composition and flow rate. Using dyes as test compounds, the method was optimized and aspects were studied such as type of TLC plate, LC separation of the dyes, preservation of LC integrity during immobilization, and SERR analysis of the deposited compounds. With a silica TLC plate as deposition substrate, good-quality and characteristic SERR spectra were obtained for the dyes which were separated on a cyanoproyl-modified silica LC column with methanol-water containing the volatile additives ammonium acetate and triethylamine as eluent. The minimum identifiable concentration of the dyes was about 250 ng mL-1 (750 pg applied on the plate). For some strong Raman scatterers such as nile blue and pararosaniline, the major spectral peaks could be observed down to concentrations of 25 ng mL-1. 36 References', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '3', 'urlcheck' => '2014-10-11 16:23:46', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '01300', 'pauthor' => '!Somsen, G.W.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1016/S0003-2670(97)00011-1', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Coupling of column liquid-chromatography and surface-enhanced resonance raman-spectroscopy via a thin-layer chromatographic plate', Anal. Chim. Acta, 1997 349(1-3) 189-197', 'firstchar' => 'C', 'twochars' => 'Co', 'CitationsTechnique' => array( 'id' => '003260', 'citation_id' => '006451', 'technique_id' => '0410' ), 'Analyte' => array(), 'Matrix' => array(), 'Keyword' => array( (int) 0 => array( 'id' => '0339', 'type' => 'Manifold process', 'keyword' => 'Post-column derivatization', 'newKeyword' => '', 'synonyms' => '', 'fao' => '', 'total' => '646', 'first' => 'P', 'keytotal' => 'Post-column derivatization**646', 'CitationsKeyword' => array( [maximum depth reached] ) ), (int) 1 => array( 'id' => '0302', 'type' => 'Feature', 'keyword' => 'Optimization', 'newKeyword' => '', 'synonyms' => '', 'fao' => '', 'total' => '1069', 'first' => 'O', 'keytotal' => 'Optimization**1069', 'CitationsKeyword' => array( [maximum depth reached] ) ) ) ) $i = (int) 1 $path = '' $a = '' $url = 'http://dx.doi.org/10.1016/S0003-2670(97)00011-1' $aus = 'G. W. Somsen*, S. K. Coulter, C. Gooijer, N. H. Velthorst and U. A. Th. Brinkman'include - APP/View/Elements/citation.ctp, line 40 View::_evaluate() - CORE/Cake/View/View.php, line 971 View::_render() - CORE/Cake/View/View.php, line 933 View::_renderElement() - CORE/Cake/View/View.php, line 1224 View::element() - CORE/Cake/View/View.php, line 418 include - APP/View/Techniques/view.ctp, line 52 View::_evaluate() - CORE/Cake/View/View.php, line 971 View::_render() - CORE/Cake/View/View.php, line 933 View::render() - CORE/Cake/View/View.php, line 473 Controller::render() - CORE/Cake/Controller/Controller.php, line 968 Dispatcher::_invoke() - CORE/Cake/Routing/Dispatcher.php, line 200 Dispatcher::dispatch() - CORE/Cake/Routing/Dispatcher.php, line 167 [main] - APP/webroot/index.php, line 109
"Quantitative Analysis By Surface-enhanced Raman Spectrometry On Silver Hydrosols In A Flow Injection System"
Talanta
1987 Volume 34, Issue 8 Pages 745-747
Notice (8): Undefined variable: uid [APP/View/Elements/citation.ctp, line 40]J. J. Laserna, A. Berthod and J. D. WinefordnerCode Context?>
<?php
if($uid!='') {
$viewFile = '/home/stuchalk/public_html/fad/app/View/Elements/citation.ctp' $dataForView = array( 'data' => array( 'Technique' => array( 'id' => '0410', 'label' => 'Raman', 'level1' => 'Raman', 'level2' => 'surface enhanced', 'level3' => '', 'level4' => '', 'level5' => '', 'synonyms' => 'Surface enhanced raman spectroscopy,SERS', 'champ' => '', 'total' => '15', 'updated' => '0000-00-00 00:00:00', 'name' => 'Raman, surface enhanced', 'nametotal' => 'Raman, surface enhanced**15', 'first' => 'R' ), 'Citation' => array( (int) 0 => array( [maximum depth reached] ), (int) 1 => array( [maximum depth reached] ), (int) 2 => array( [maximum depth reached] ), (int) 3 => array( [maximum depth reached] ), (int) 4 => array( [maximum depth reached] ), (int) 5 => array( [maximum depth reached] ), (int) 6 => array( [maximum depth reached] ), (int) 7 => array( [maximum depth reached] ), (int) 8 => array( [maximum depth reached] ), (int) 9 => array( [maximum depth reached] ), (int) 10 => array( [maximum depth reached] ), (int) 11 => array( [maximum depth reached] ), (int) 12 => array( [maximum depth reached] ), (int) 13 => array( [maximum depth reached] ), (int) 14 => array( [maximum depth reached] ) ) ), 'c' => array( 'id' => '006887', 'authors' => 'Laserna, J.J.;Berthod, A.;Winefordner, J.D.', 'authorsweb' => 'J. J. Laserna, A. Berthod and J. D. Winefordner ', 'title' => 'Quantitative analysis by surface-enhanced raman spectrometry on silver hydrosols in a flow injection system', 'journal' => 'Talanta', 'journal_id' => '0569', 'fadid' => 'TALT1987V0034P00745', 'year' => '1987', 'volume' => '34', 'issue' => '8', 'startpage' => '745', 'endpage' => '747', 'type' => 'Journal Article', 'analytes' => ';0056;0401;', 'matrices' => '', 'techniques' => ';0410;', 'keywords' => ';0457;', 'abstract' => 'The application of surface-enhanced Raman scattering (SERS) in quantitative analysis is demonstrated by the determination of 4-aminobenzoic acid(I) and acridin-9-amine(II) on silver suspensions by SERS in a flow injection system. Two peristaltic pumps were used to mix 2 mM NaBH4 and 1 mM AgNO3 and pump the resulting silver suspension through the flow injection analysis system. The flow injection analysis system is described (with diagram). The sample solution contained I in aqueous 40% ethanol or II in ethanol. The calibration graph was rectilinear for 4 to 100 µg mL-1 of I, and the coefficient of variation (n = 6) was 3.2%. The system required cleaning with 40% HNO3 after 10 to 15 injections.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '7', 'urlcheck' => '2014-10-11 14:54:34', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '01400', 'pauthor' => '!Winefordner, J.D.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1016/0039-9140(87)80234-5', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Quantitative analysis by surface-enhanced raman spectrometry on silver hydrosols in a flow injection system', Talanta, 1987 34(8) 745-747', 'firstchar' => 'Q', 'twochars' => 'Qu', 'CitationsTechnique' => array( 'id' => '003681', 'citation_id' => '006887', 'technique_id' => '0410' ), 'Analyte' => array( (int) 0 => array( [maximum depth reached] ), (int) 1 => array( [maximum depth reached] ) ), 'Matrix' => array(), 'Keyword' => array( (int) 0 => array( [maximum depth reached] ) ) ), 'i' => (int) 2 ) $data = array( 'Technique' => array( 'id' => '0410', 'label' => 'Raman', 'level1' => 'Raman', 'level2' => 'surface enhanced', 'level3' => '', 'level4' => '', 'level5' => '', 'synonyms' => 'Surface enhanced raman spectroscopy,SERS', 'champ' => '', 'total' => '15', 'updated' => '0000-00-00 00:00:00', 'name' => 'Raman, surface enhanced', 'nametotal' => 'Raman, surface enhanced**15', 'first' => 'R' ), 'Citation' => array( (int) 0 => array( 'id' => '006258', 'authors' => 'Cabalin, L.M.;Ruperez, A.;Laserna, J.J.', 'authorsweb' => 'L. M. Cabalín, A. Rupérez and J. J. Laserna*', 'title' => 'Flow injection analysis and liquid chromatography: surface enhanced Raman spectrometry detection by using a windowless flow cell', 'journal' => 'Anal. Chim. Acta', 'journal_id' => '0584', 'fadid' => 'ANCA1996V0318P00203', 'year' => '1996', 'volume' => '318', 'issue' => '2', 'startpage' => '203', 'endpage' => '210', 'type' => 'Journal Article', 'analytes' => ';0146;0199;2037;1732;2402;', 'matrices' => '', 'techniques' => ';0032;0410;', 'keywords' => ';0167;0302;', 'abstract' => 'A windowless flow cell was developed for detection by surface-enhanced Raman spectrometry (SERS) in FIA and LC. The flow cell consisted of two stainless-steel tubes (0.16 mm i.d.; 1.4 mm o.d.) mounted on an Al frame so that the ends were ~e;1.6 mm apart. The liquid draining from the upper to the lower tube was supported by surface tension and formed a column (1.4 mm diameter). The mobile phase from the FIA or LC was merged with a silver hydrosol stream then propelled in to the flow cell. The Raman spectra were recorded using a focussed Ar ion laser beam (488 nm; 85 mW) as the source. The performance of the flow cell was optimized using five drugs (amiloride, amiphenazole, 2-mercaptopyridine, pemoline and triamterene) as model analytes. The maximum SERS signal was obtained with flow rates of 0.075 ml/ml and 1.5 ml/ml for the mobile phase and silver hydrosol, respectively. The reproducibility (n = 5) of the FIA-SERS system for the determination of 625 ng amiloride was 1%.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '1', 'urlcheck' => '2014-10-11 16:18:55', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '01097', 'pauthor' => '!Laserna, J.J.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1016/0003-2670(95)00441-6', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Flow injection analysis and liquid chromatography: surface enhanced Raman spectrometry detection by using a windowless flow cell', Anal. Chim. Acta, 1996 318(2) 203-210', 'firstchar' => 'F', 'twochars' => 'Fl', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 1 => array( 'id' => '006451', 'authors' => 'Somsen, G.W.;Coulter, S.K.;Gooijer, C.;Velthorst, N.H.;Brinkman, U.A.T.', 'authorsweb' => 'G. W. Somsen*, S. K. Coulter, C. Gooijer, N. H. Velthorst and U. A. Th. Brinkman', 'title' => 'Coupling of column liquid-chromatography and surface-enhanced resonance raman-spectroscopy via a thin-layer chromatographic plate', 'journal' => 'Anal. Chim. Acta', 'journal_id' => '0584', 'fadid' => 'ANCA1997V0349P00189', 'year' => '1997', 'volume' => '349', 'issue' => '1-3', 'startpage' => '189', 'endpage' => '197', 'type' => 'Journal Article', 'analytes' => '', 'matrices' => '', 'techniques' => ';0410;0038;', 'keywords' => ';0339;0302;', 'abstract' => 'Surface-enhanced resonance Raman (SERR) spectroscopy was used to characterize compounds separated by column liquid chromatography (LC). Three percent of the effluent from a conventional-size LC column were immobilized on a moving thin-layer chromatography (TLC) plate using a spray-jet solvent-elimination interface. Next, colloidal silver was applied to the analyte spots and in situ SERR spectra were recorded with a multichannel micro-Raman spectrometer. Storage of the LC effluent avoids the need to use a continuous-flow of colloidal silver and, in principle allows compounds to be detected independently of LC conditions like eluent composition and flow rate. Using dyes as test compounds, the method was optimized and aspects were studied such as type of TLC plate, LC separation of the dyes, preservation of LC integrity during immobilization, and SERR analysis of the deposited compounds. With a silica TLC plate as deposition substrate, good-quality and characteristic SERR spectra were obtained for the dyes which were separated on a cyanoproyl-modified silica LC column with methanol-water containing the volatile additives ammonium acetate and triethylamine as eluent. The minimum identifiable concentration of the dyes was about 250 ng mL-1 (750 pg applied on the plate). For some strong Raman scatterers such as nile blue and pararosaniline, the major spectral peaks could be observed down to concentrations of 25 ng mL-1. 36 References', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '3', 'urlcheck' => '2014-10-11 16:23:46', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '01300', 'pauthor' => '!Somsen, G.W.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1016/S0003-2670(97)00011-1', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Coupling of column liquid-chromatography and surface-enhanced resonance raman-spectroscopy via a thin-layer chromatographic plate', Anal. Chim. Acta, 1997 349(1-3) 189-197', 'firstchar' => 'C', 'twochars' => 'Co', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array([maximum depth reached]), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 2 => array( 'id' => '006887', 'authors' => 'Laserna, J.J.;Berthod, A.;Winefordner, J.D.', 'authorsweb' => 'J. J. Laserna, A. Berthod and J. D. Winefordner ', 'title' => 'Quantitative analysis by surface-enhanced raman spectrometry on silver hydrosols in a flow injection system', 'journal' => 'Talanta', 'journal_id' => '0569', 'fadid' => 'TALT1987V0034P00745', 'year' => '1987', 'volume' => '34', 'issue' => '8', 'startpage' => '745', 'endpage' => '747', 'type' => 'Journal Article', 'analytes' => ';0056;0401;', 'matrices' => '', 'techniques' => ';0410;', 'keywords' => ';0457;', 'abstract' => 'The application of surface-enhanced Raman scattering (SERS) in quantitative analysis is demonstrated by the determination of 4-aminobenzoic acid(I) and acridin-9-amine(II) on silver suspensions by SERS in a flow injection system. Two peristaltic pumps were used to mix 2 mM NaBH4 and 1 mM AgNO3 and pump the resulting silver suspension through the flow injection analysis system. The flow injection analysis system is described (with diagram). The sample solution contained I in aqueous 40% ethanol or II in ethanol. The calibration graph was rectilinear for 4 to 100 µg mL-1 of I, and the coefficient of variation (n = 6) was 3.2%. The system required cleaning with 40% HNO3 after 10 to 15 injections.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '7', 'urlcheck' => '2014-10-11 14:54:34', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '01400', 'pauthor' => '!Winefordner, J.D.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1016/0039-9140(87)80234-5', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Quantitative analysis by surface-enhanced raman spectrometry on silver hydrosols in a flow injection system', Talanta, 1987 34(8) 745-747', 'firstchar' => 'Q', 'twochars' => 'Qu', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 3 => array( 'id' => '007977', 'authors' => 'Weissenbacher, N.;Lendl, B.;Frank, J.;Wanzenbock, H.D.;Kellner, R.', 'authorsweb' => 'N. Weißenbacher, B. Lendl, J. Frank, H. D. Wanzenböck and R. Kellner', 'title' => 'Surface enhanced raman spectroscopy as a molecular specific detection system in aqueous flow-through systems', 'journal' => 'Analyst', 'journal_id' => '0864', 'fadid' => 'ANAL1998V0123P01057', 'year' => '1998', 'volume' => '123', 'issue' => '5', 'startpage' => '1057', 'endpage' => '1060', 'type' => 'Journal Article', 'analytes' => ';1583;', 'matrices' => '', 'techniques' => ';0410;0409;', 'keywords' => ';0446;0167;0043;0258;', 'abstract' => 'Surface enhanced Raman scattering (SERS) is proposed as a mol. specific technique for direct measurements of organic molecules in aqueous solutions An FT-Raman spectrometer was interfaced with a flow injection manifold operated in the stopped-flow mode enabling reproducible collection of SERS spectra due to the automation of the anal. procedure. For SERS a solid state substrate placed in a newly developed flow-cell was used. Multiple measurements on one single SERS substrate were achieved by rinsing the substrate with reagents such as 3 M KCl or 0.1 M NaOH solutions prior to the next measurements to remove retained analytes from the surface of the SERS substrate. This procedure allowed for improved precision as compared with a conventional batch approach. Quant. aspects were studied by establishing a calibration curve for nicotinic acid which was used as a model analyte. A linear dependence of the recorded SERS intensities from the logarithm of the analyte concentration. was obtained throughout the whole studied concentration. range (0.001-0.1 M, correlation coefficient r2 = 0.97). The standard deviation of the method sx0 is 0.122 mM and detection limit 1.7 mM, respectively. The results demonstrate the potential of SERS spectroscopy to be used as a molecular specific detector in aqueous flow systems such as flow injection anal.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '5', 'urlcheck' => '2014-10-12 09:52:18', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '00241', 'pauthor' => '!Lendl, B.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1039/a705837c', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Surface enhanced raman spectroscopy as a molecular specific detection system in aqueous flow-through systems', Analyst, 1998 123(5) 1057-1060', 'firstchar' => 'S', 'twochars' => 'Su', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 4 => array( 'id' => '008516', 'authors' => 'Force, R.K.', 'authorsweb' => 'R. Ken Force', 'title' => 'Surface-enhanced raman spectroscopy at a silver electrode as a detector in flow injection analysis', 'journal' => 'Anal. Chem.', 'journal_id' => '0499', 'fadid' => 'ANCH1988V0060P01987', 'year' => '1988', 'volume' => '60', 'issue' => '18', 'startpage' => '1987', 'endpage' => '1989', 'type' => 'Journal Article', 'analytes' => '', 'matrices' => '', 'techniques' => ';0214;0410;', 'keywords' => '', 'abstract' => 'A Ag-ring reference (diameter 5 mm) and a Ag-disc working electrode (diameter 3 mm) were sealed 1 mm apart in a Pyrex tube (o.d. 7 mm) and polished smooth. The Ag ring was anodized at 0.4 V (vs. a SCE) in 0.1 M KCl to produce a Ag - AgCl reference electrode with a potential of ~0.190 to ~0.200 V (vs. a NHE) in the 0.1 M KCl used as mobile phase and supporting electrolyte. The apparatus was applied in flow injection analysis for 50.0 mM pyridine (1 mL injections) in KCl flowing at 2 mL min-1. The potential was held at -0.6 V. Raman spectra were recorded from 990 to 1050 cm-1 in 2-cm-1 steps. A detection limit of ~250 nM was achieved. A Ag-ring reference (diameter 5 mm) and a Ag-disc working electrode (diameter 3 mm) were sealed 1 mm apart in a Pyrex tube (o.d. 7 mm) and polished smooth.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '0', 'urlcheck' => '2014-10-11 18:35:15', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '00965', 'pauthor' => '!Force, R.K.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1021/ac00169a033', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Surface-enhanced raman spectroscopy at a silver electrode as a detector in flow injection analysis', Anal. Chem., 1988 60(18) 1987-1989', 'firstchar' => 'S', 'twochars' => 'Su', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array([maximum depth reached]), 'Matrix' => array([maximum depth reached]), 'Keyword' => array([maximum depth reached]) ), (int) 5 => array( 'id' => '008566', 'authors' => 'Pothier, N.J.;Force, R.K.', 'authorsweb' => 'Neil J. Pothier and R. Ken Force', 'title' => 'Surface-enhanced raman spectroscopy at a silver electrode as a detection system in flowing streams', 'journal' => 'Anal. Chem.', 'journal_id' => '0499', 'fadid' => 'ANCH1990V0062P00678', 'year' => '1990', 'volume' => '62', 'issue' => '7', 'startpage' => '678', 'endpage' => '680', 'type' => 'Journal Article', 'analytes' => ';0064;2356;0747;', 'matrices' => '', 'techniques' => ';0410;0210;0038;', 'keywords' => ';0276;0446;0109;', 'abstract' => 'A three-electrode surface-enhanced Raman spectroscopy detector, with a Ag working electrode, Pt foil auxiliary electrode and SCE reference and a cell volume of 30 µL, was evaluated for use with HPLC and flow injection analysis. In a flowing system, the analyte is rapidly removed from the electrode surface in 10 s, and spectra was obtained in 5 s with an optical multichannel analyzer.. Under stopped-flow conditions, detection limits were 175, 233 and 211 pmol for adenine, thymine and cytosine, respectively.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '3', 'urlcheck' => '2014-10-11 18:35:47', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '00965', 'pauthor' => '!Force, R.K.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1021/ac00206a005', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Surface-enhanced raman spectroscopy at a silver electrode as a detection system in flowing streams', Anal. Chem., 1990 62(7) 678-680', 'firstchar' => 'S', 'twochars' => 'Su', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 6 => array( 'id' => '008582', 'authors' => 'Ni, F.;Sheng, R.S.;Cotton, T.M.', 'authorsweb' => 'Fan Ni, Rongsheng Sheng, and Therese M. Cotton', 'title' => 'Flow injection analysis and real-time detection of RNA bases by surface-enhanced Raman spectroscopy', 'journal' => 'Anal. Chem.', 'journal_id' => '0499', 'fadid' => 'ANCH1990V0062P01958', 'year' => '1990', 'volume' => '62', 'issue' => '18', 'startpage' => '1958', 'endpage' => '1963', 'type' => 'Journal Article', 'analytes' => ';0365;', 'matrices' => '', 'techniques' => ';0410;0038;', 'keywords' => ';0216;0320;0302;', 'abstract' => 'Surface-enhanced Raman scattering (SERS) spectroscopy has been successfully interfaced with a flow injection analysis system to detect RNA bases in real time. Four of the major base components of RNA, uracil, cytosine, adenine, and guanine, were introduced into the flow injection system and were mixed with a Ag sol prior to SERS measurements. Several experimental parameters including pH, temperature, flow rate, and tubing materials were examined, and their impact on the SERS spectra is presented here. The feasibility of interfacing flow injection based SERS detection methods with liquid or high performance liquid chromatography for the detection of individual components in a complex mixture is also assessed.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '2', 'urlcheck' => '2014-10-11 18:36:03', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => null, 'pauthor' => 'Cotton, T.M.', 'address' => 'Department of Chemistry, Iowa State University, Ames, Iowa 50011 USA', 'email' => 'NA', 'notes' => null, 'url' => '10.1021/ac00217a012', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Flow injection analysis and real-time detection of RNA bases by surface-enhanced Raman spectroscopy', Anal. Chem., 1990 62(18) 1958-1963', 'firstchar' => 'F', 'twochars' => 'Fl', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 7 => array( 'id' => '009344', 'authors' => 'Laserna, J.J.;Berthod, A.;Winefordner, J.D.', 'authorsweb' => 'J. J. Laserna, A. Berthod and J. D. Winefordner*', 'title' => 'Evaluation and optimization of experimental conditions for surface-enhanced raman detection of analytes in flow injection analysis', 'journal' => 'Microchem. J.', 'journal_id' => '0639', 'fadid' => 'MCHJ1988V0038P00125', 'year' => '1988', 'volume' => '38', 'issue' => '1', 'startpage' => '125', 'endpage' => '126', 'type' => 'Journal Article', 'analytes' => ';0399;0055;', 'matrices' => '', 'techniques' => ';0410;', 'keywords' => ';0110;0302;', 'abstract' => 'The Raman instrumentation included a 100-mW Ar ion laser operated at 514.5 nm, a double monochromator and a cooled Hamamatsu R-928 photomultiplier tube with photon counting system as the detector. Vertically polarized light was used, with right-angle geometry for Raman sampling and a long-wave-pass glass filter to suppress Rayleigh-scattered light. Spectra were obtained by single scans. Flow streams of 1 mM AgNO3 and 2 mM NaBH4 were merged to form a silver hydrosol matrix, and 4-aminobenzoic acid(I) and acridin-9-amine were used successfully as test analytes. The detector flow-cell was a silica tube (3 mm x 0.5 mm;~0.6 µL). For maximum signal response with I, the total flow rate was 0.7 mL min-1 and the pH was adjusted with HNO3 to 3.2.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '14', 'urlcheck' => '2014-10-12 00:26:48', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '01400', 'pauthor' => '!Winefordner, J.D.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1016/0026-265X(88)90011-2', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Evaluation and optimization of experimental conditions for surface-enhanced raman detection of analytes in flow injection analysis', Microchem. J., 1988 38(1) 125-126', 'firstchar' => 'E', 'twochars' => 'Ev', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 8 => array( 'id' => '010331', 'authors' => 'Gouveia, V.J.P.;Gutz, I.G.R.;Rubim, J.C.', 'authorsweb' => 'Vitor J. P. Gouveia, Ivano G. Gutz and Joel C. Rubim*', 'title' => 'New spectroelectrochemical cell for flow injection analysis and its application to the determination of iron(II) down to the femtomole level by surface-enhanced resonance Raman scattering (SERRS)', 'journal' => 'J. Electroanal. Chem.', 'journal_id' => '0709', 'fadid' => 'JECH1994V0371P00037', 'year' => '1994', 'volume' => '371', 'issue' => '1-2', 'startpage' => '37', 'endpage' => '42', 'type' => 'Journal Article', 'analytes' => ';1294;', 'matrices' => ';0404;', 'techniques' => ';0226;0410;', 'keywords' => '', 'abstract' => 'A principal feature of the cell (diagrams presented) is the in situ renewal of the surface-enhanced Raman-active Ag substratum. Before injection of the analyte, Ag+ are introduced, and Ag is electro-deposited on a vitreous-carbon electrode; after the Raman spectrum of the adsorbed analyte has been recorded, the Ag is removed by anodic stripping. Fe(II) was determined in a 130 µL injected sample as its tris(bipyridyl) complex, which exhibits both a resonance Raman effect when excited with Ar+ laser 514.5 nm radiation and surface-enhanced Raman scattering when adsorbed on Ag. The calibration graph was sigmoidal, but usable for 10 nM-10 µM-Fe(II), and the detection limit was 1 nM, which represented detection of Fe(II) at the femtomole level.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '13', 'urlcheck' => '2014-10-12 09:04:46', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => null, 'pauthor' => 'Rubim, J.C.', 'address' => 'Institututo de Química da Universidade de São Paulo C.P.20780, 01498, São Paulo, SP Brazil', 'email' => 'NA', 'notes' => null, 'url' => '10.1016/0022-0728(93)03220-J', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''New spectroelectrochemical cell for flow injection analysis and its application to the determination of iron(II) down to the femtomole level by surface-enhanced resonance Raman scattering (SERRS)', J. Electroanal. Chem., 1994 371(1-2) 37-42', 'firstchar' => 'N', 'twochars' => 'Ne', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array( [maximum depth reached] ), 'Keyword' => array([maximum depth reached]) ), (int) 9 => array( 'id' => '013707', 'authors' => 'Weissenbacher, N.;Lendl, B.;Frank, J.;Wanzenbock, H.D.;Mizaikoff, B.;Kellner, R.', 'authorsweb' => 'N. Weissenbacher*, B. Lendl, J. Frank, H. D. Wanzenböck, B. Mizaikoff and R. Kellner', 'title' => 'Continuous surface-enhanced raman-spectroscopy for the detection of trace organic pollutants in aqueous systems', 'journal' => 'J. Mol. Struct.', 'journal_id' => '0628', 'fadid' => 'JMRS1997V0410P00539', 'year' => '1997', 'volume' => '410', 'issue' => '1', 'startpage' => '539', 'endpage' => '542', 'type' => 'Journal Article', 'analytes' => ';2050;1583;1774;0504;1478;', 'matrices' => '', 'techniques' => ';0410;', 'keywords' => '', 'abstract' => 'In Raman spectroscopy, detection limits for organic pollutants in water can be lowered by several orders of magnitude when surface enhanced techniques are applied. In this work a continuous analytical device based on flow injection analysis using SERS detection is proposed. This system was tested with model analytes such as pyridine and nicotinic acid as well as several pesticides (carbendazim, metazachlorine). (C) 1997 Elsevier Science B.V. 22 References', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'No', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '3', 'urlcheck' => '2014-10-12 09:49:43', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => null, 'pauthor' => 'Weissenbacher, N.', 'address' => 'Institute for Analytical Chemistry, Vienna University of Technology, Getreidemarkt 9/151, A-1060, Vienna, Austria', 'email' => 'NA', 'notes' => null, 'url' => '10.1016/S0022-2860(96)09531-2', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Continuous surface-enhanced raman-spectroscopy for the detection of trace organic pollutants in aqueous systems', J. Mol. Struct., 1997 410(1) 539-542', 'firstchar' => 'C', 'twochars' => 'Co', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array([maximum depth reached]) ), (int) 10 => array( 'id' => '014097', 'authors' => 'Sawata, S.;Kai, E.;Ikebukuro, K.;Iida, T.;Honda, T.;Karube, I.', 'authorsweb' => 'Sawata S, Kai E, Ikebukuro K, Iida T, Honda T, Karube I.', 'title' => 'Novel detection system of flow injection analysis. 1. The existence of significant relation between secondary structure of DNA and sensitivity in signal detection', 'journal' => 'Nucleic Acids Symp. Ser.', 'journal_id' => '1346', 'fadid' => 'NASS1997V0037P00247', 'year' => '1997', 'volume' => '37', 'issue' => '1', 'startpage' => '247', 'endpage' => '248', 'type' => 'Journal Article', 'analytes' => ';0847;', 'matrices' => '', 'techniques' => ';0410;', 'keywords' => ';0401;', 'abstract' => 'Polymerase Chain Reaction (PCR) products were detected quantitatively using a flow injection type sensor, based on Surface Plasmon Resonance (SPR). We used asymmetric PCR to amplify the two kinds of products; their DNA lengths are different. This novel design permitted us not only to detect PCR products with high-sensitivity, but also to develop a rapid DNA detection system for the sense of the genetic pathogen.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'No', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '0', 'urlcheck' => '2014-10-13 19:09:08', 'urlcheckcode' => 'HTTP/1.1 200 OK', 'pauthor_id' => '00227', 'pauthor' => '!Karube, I.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => 'www.ncbi.nlm.nih.gov/pubmed/9586092', 'urltype' => 'absurl', 'gotpdf' => 'no', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Novel detection system of flow injection analysis. 1. The existence of significant relation between secondary structure of DNA and sensitivity in signal detection', Nucleic Acids Symp. Ser., 1997 37(1) 247-248', 'firstchar' => 'N', 'twochars' => 'No', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 11 => array( 'id' => '014429', 'authors' => 'Storey, J.M.E.;Barber, T.E.;Shelton, R.D.;Wachter, E.A.;Carron, K.T.;Jiang, Y.', 'authorsweb' => 'NA', 'title' => 'Applications of surface-enhanced Raman scattering (SERS) to chemical detection', 'journal' => 'Spectroscopy', 'journal_id' => '0489', 'fadid' => 'STRS1995V0010P00020', 'year' => '1995', 'volume' => '10', 'issue' => '3', 'startpage' => '20', 'endpage' => '25', 'type' => 'Journal Article', 'analytes' => ';0716;1186;1582;', 'matrices' => ';0343;0372;', 'techniques' => ';0410;', 'keywords' => ';0389;', 'abstract' => 'lectrochemical surface-enhanced Raman spectrometry (SERS) was used to detect chlorinated hydrocarbons in ground water, in tobacco smoke and aqueous cyanide ions. Hybrid substrate SERS was used for the detection of organic compounds in liquid and gas phases, using a flow-through cell. The experimental protocols were described previously. (Appl Spectrosc., 1994, 48, 1265; Shelton et al., Ibid., 1994, 48, 1007; Wachter et al.,Ibid., 1995, 49, 193; and Barber et al., Ibid., 1994, 48, 1423). The detection limits for hydrocarbons in electrolytes were a few ppm; they were an order of magnitude higher in groundwater. No calibration data are given. The response to cyanide was linear for 10^-100 ppm. The detection limit for nicotine in smoke was 15 ppb (no calibration data given). The advantages and limitations of the methods are discussed and future research directions are outlined.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'No', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '0', 'urlcheck' => '2006-05-20 19:26:31', 'urlcheckcode' => '', 'pauthor_id' => null, 'pauthor' => 'NA', 'address' => 'Oak Ridge Natl. Lab., Health Sci. Res. Div., Oak Ridge, TN 37831-6113 UK', 'email' => 'NA', 'notes' => null, 'url' => 'NA', 'urltype' => 'NA', 'gotpdf' => 'no', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Applications of surface-enhanced Raman scattering (SERS) to chemical detection', Spectroscopy, 1995 10(3) 20-25', 'firstchar' => 'A', 'twochars' => 'Ap', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array( [maximum depth reached] ), 'Keyword' => array( [maximum depth reached] ) ), (int) 12 => array( 'id' => '014511', 'authors' => 'Fujiwara, K.;Ito, S.', 'authorsweb' => 'Kitao Fujiwara and Seiji Ito', 'title' => 'Application of waveguiding in solutions for absorption and fluorescence spectrometry', 'journal' => 'Trends Anal. Chem.', 'journal_id' => '0653', 'fadid' => 'TRAC1991V0010P00184', 'year' => '1991', 'volume' => '10', 'issue' => '6', 'startpage' => '184', 'endpage' => '190', 'type' => 'Journal Article', 'analytes' => '', 'matrices' => '', 'techniques' => ';0252;0410;', 'keywords' => ';0043;0167;0521;', 'abstract' => 'Several waveguiding techniques in solution are presented in the context of spectrometry. Although light propagation in dense media via total reflection is a commonly used technique with optical fibers, it is also possible in solutions. This is very useful for improving both sensitivity and spatial resolution, especially in absorption and fluorescence spectrometry, by elongating the optical path length and controlling the angle of incidence of light in the measurement area of a sample. ', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'No', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '26', 'urlcheck' => '2014-10-12 02:21:14', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => null, 'pauthor' => 'NA', 'address' => 'NA', 'email' => 'NA', 'notes' => null, 'url' => '10.1016/0165-9936(91)85019-N', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Application of waveguiding in solutions for absorption and fluorescence spectrometry', Trends Anal. Chem., 1991 10(6) 184-190', 'firstchar' => 'A', 'twochars' => 'Ap', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array([maximum depth reached]), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 13 => array( 'id' => '014536', 'authors' => 'Vo Dinh, T.', 'authorsweb' => 'Tuan Vo-Dinh', 'title' => 'Surface enhanced raman spectroscopy using metallic nanostructures', 'journal' => 'Trends Anal. Chem.', 'journal_id' => '0653', 'fadid' => 'TRAC1998V0017P00557', 'year' => '1998', 'volume' => '17', 'issue' => '8-9', 'startpage' => '557', 'endpage' => '582', 'type' => 'Journal Article', 'analytes' => '', 'matrices' => ';0404;0093;', 'techniques' => ';0410;', 'keywords' => ';0043;0215;0389;', 'abstract' => 'This article provides an overview of the development and application of the surface-enhanced Raman scattering (SERS) techniques using metal-coated nanostructures on solid substrates, An introduction to theoretical principles of the SERS effect and the different SERS-active media is presented. The focus is on nanostructured solid substrates and their practical applications in chemical, environmental and biomedical areas. Specific examples of analytical techniques, instruments and sensors developed in the author's laboratory will be discussed to illustrate the usefulness and potential of the SERS techniques.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'No', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '38', 'urlcheck' => '2014-10-12 10:04:45', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => null, 'pauthor' => 'Vo Dinh, T.', 'address' => 'Advanced Monitoring Development Group, Life Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6101, USA', 'email' => 'NA', 'notes' => null, 'url' => '10.1016/S0165-9936(98)00069-7', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Surface enhanced raman spectroscopy using metallic nanostructures', Trends Anal. Chem., 1998 17(8-9) 557-582', 'firstchar' => 'S', 'twochars' => 'Su', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array([maximum depth reached]), 'Matrix' => array( [maximum depth reached] ), 'Keyword' => array( [maximum depth reached] ) ), (int) 14 => array( 'id' => '014560', 'authors' => 'Ruperez, A.;Montes, R.;Laserna, J.J.', 'authorsweb' => 'A. Rupérez, R. Montes and J. J. Laserna*', 'title' => 'Identification of stimulant drugs by surface-enhanced raman spectrometry on colloidal silver', 'journal' => 'Vib. Spectrosc.', 'journal_id' => '0655', 'fadid' => 'VIBS1991V0002P00145', 'year' => '1991', 'volume' => '2', 'issue' => '2-3', 'startpage' => '145', 'endpage' => '154', 'type' => 'Journal Article', 'analytes' => ';0862;', 'matrices' => '', 'techniques' => ';0032;0055;0410;', 'keywords' => '', 'abstract' => 'The surface-enhanced Raman (SER) spectra of stimulant drugs, including mefenorex, pentylenetetrazole, -amphetamine and pemoline, were obtained on colloidal silver. Silver colloids are prepared in a single step, at room temperature, by chemical reduction of Ag+ with sodium tetrahydroborate. Spectra are recorded using drug concentrations at the g mL-1 level. Individual drugs can be identified by characteristic vibrational bands. The SER spectrum of human urine and that of human urine spiked with mixtures of stimulant drugs are reported.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'No', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '7', 'urlcheck' => '2014-10-12 02:21:21', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '01097', 'pauthor' => '!Laserna, J.J.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1016/0924-2031(91)85020-N', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Identification of stimulant drugs by surface-enhanced raman spectrometry on colloidal silver', Vib. Spectrosc., 1991 2(2-3) 145-154', 'firstchar' => 'I', 'twochars' => 'Id', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array([maximum depth reached]) ) ) ) $c = array( 'id' => '006887', 'authors' => 'Laserna, J.J.;Berthod, A.;Winefordner, J.D.', 'authorsweb' => 'J. J. Laserna, A. Berthod and J. D. Winefordner ', 'title' => 'Quantitative analysis by surface-enhanced raman spectrometry on silver hydrosols in a flow injection system', 'journal' => 'Talanta', 'journal_id' => '0569', 'fadid' => 'TALT1987V0034P00745', 'year' => '1987', 'volume' => '34', 'issue' => '8', 'startpage' => '745', 'endpage' => '747', 'type' => 'Journal Article', 'analytes' => ';0056;0401;', 'matrices' => '', 'techniques' => ';0410;', 'keywords' => ';0457;', 'abstract' => 'The application of surface-enhanced Raman scattering (SERS) in quantitative analysis is demonstrated by the determination of 4-aminobenzoic acid(I) and acridin-9-amine(II) on silver suspensions by SERS in a flow injection system. Two peristaltic pumps were used to mix 2 mM NaBH4 and 1 mM AgNO3 and pump the resulting silver suspension through the flow injection analysis system. The flow injection analysis system is described (with diagram). The sample solution contained I in aqueous 40% ethanol or II in ethanol. The calibration graph was rectilinear for 4 to 100 µg mL-1 of I, and the coefficient of variation (n = 6) was 3.2%. The system required cleaning with 40% HNO3 after 10 to 15 injections.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '7', 'urlcheck' => '2014-10-11 14:54:34', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '01400', 'pauthor' => '!Winefordner, J.D.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1016/0039-9140(87)80234-5', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Quantitative analysis by surface-enhanced raman spectrometry on silver hydrosols in a flow injection system', Talanta, 1987 34(8) 745-747', 'firstchar' => 'Q', 'twochars' => 'Qu', 'CitationsTechnique' => array( 'id' => '003681', 'citation_id' => '006887', 'technique_id' => '0410' ), 'Analyte' => array( (int) 0 => array( 'id' => '00056', 'name' => 'Aminoacridine', 'iupac_name' => 'acridin-9-amine', 'casrn' => '90-45-9', 'synonyms' => '9-AMINOACRIDINE, Aminacrine, Acridin-9-amine, 9-Acridinamine, Aminoacridine, Aminacrin, 90-45-9, Izoacridina, 10-Amino-5-azaanthracene, Acridine, 9-amino-, Monacrin, Aminoacridina, Aminoacridinum, 9-Aminoakridin, 9-Aminoacridin, 9-Acridinylamine, Acridin-9-ylamine, 9(10H)-Acridinimine, 9-Aminoakridin [Czech], NSC 13000, 9AA, Aminoacridine [INN:BAN], UNII-78OY3Z0P7Z, CCRIS 748, CHEBI:74789, XJGFWWJLMVZSIG-UHFFFAOYSA-N, acridine-9-ylamine, NSC 7571, EINECS 201-995-6, BRN 0141171, AI3-51012, WLN: T C666 BNJ IZ, Aminopt, Mykocert, MLS000780068, NSC7571, 110166-26-2, 7AD, 8AD, C13H10N2, 9-Aminoacridine hydrochloride hydrate, SMR000420251, 5-Aminoacridin, 4bds, 9-Amino-acridine, F2179-0009, acridin-9-yl-amine, Quench (Salt/Mix), ACMC-20mczt, Mycosert (Salt/Mix), Spectrum_001108, SpecPlus_000861, 9-Acridinamine (9CI), AC1L1NTJ, 52417-22-8, Spectrum2_001112, Spectrum3_000617, Spectrum4_000580, Spectrum5_001498, AC1Q4W9J, AC1Q51BO, Acramine Yellow (Salt/Mix), SCHEMBL14999, BSPBio_002154, KBioGR_001020, KBioSS_001588, BIDD:GT0816, CHEMBL43184, DivK1c_006957, SPECTRUM1500810, SPBio_001244, 78OY3Z0P7Z, 9-AA, STOCK1S-10695, BDBM72700, cid_2723598, CTK0G2217, KBio1_001901, KBio2_001588, KBio2_004156, KBio2_006724, KBio3_001654, XJGFWWJLMVZSIG-UHFFFAOYSA-, MolPort-001-738-830, HMS1921I16, HMS2092K22, Pharmakon1600-01500810, 9-acridinamine;hydrate;hydrochloride, NSC13000, NSC28747, acridin-9-amine;hydrate;hydrochloride, ANW-75188, AR-1H5411, BBL011755, CCG-39037, NSC-13000, NSC-28747, NSC757794, SBB003606, STK387428, AKOS000120447, acridin-9-ylamine;hydrate;hydrochloride, LS-1913, MCULE-4734217474, NSC-757794, NCGC00094857-01, NCGC00094857-02, NCGC00094857-03, AJ-45955, AK109135, ST093685, U978, DB-026983, KB-250613, TC-163933, FT-0621612, ST24045903, M-2337, CS-003/03975023, CU-01000012501-2, BRD-K00535541-001-02-2, 3B3-019151, T0512-4846, 9-AMINO-(N-(2-DIMETHYLAMINO)BUTYL)ACRIDINE-4-CARBOXAMIDE, 9-AMINOACRIDINE (SEE ALSO 9-AMINOACRIDINE HCL AND 9-AMINOACRIDINE HCL-H2O), 148651-03-0, InChI=1/C13H10N2/c14-13-9-5-1-3-7-11(9)15-12-8-4-2-6-10(12)13/h1-8H,(H2,14,15)', 'total' => '2', 'inchi' => 'InChI=1S/C13H10N2/c14-11-5-3-7-13-10(11)8-9-4-1-2-6-12(9)15-13/h1-8H,14H2', 'inchikey' => 'XJGFWWJLMVZSIG-UHFFFAOYSA-N', 'formula' => 'C13H10N2', 'oxstate' => 'Zero', 'url' => '', 'charge' => '0', 'class1' => '', 'class2' => '', 'class3' => '', 'class4' => '', 'class5' => '', 'isgroup' => 'no', 'checked' => 'no', 'citation_count' => '0', 'updated' => '2015-10-23 09:27:50', 'first' => 'A', 'nametotal' => 'Aminoacridine**2', 'AnalytesCitation' => array( [maximum depth reached] ) ), (int) 1 => array( 'id' => '00401', 'name' => 'aminobenzoic acid', 'iupac_name' => '', 'casrn' => '', 'synonyms' => '', 'total' => '1', 'inchi' => '', 'inchikey' => '', 'formula' => '', 'oxstate' => null, 'url' => '', 'charge' => null, 'class1' => '', 'class2' => '', 'class3' => '', 'class4' => '', 'class5' => '', 'isgroup' => 'no', 'checked' => 'no', 'citation_count' => '0', 'updated' => '2015-12-11 09:53:17', 'first' => 'A', 'nametotal' => 'aminobenzoic acid**1', 'AnalytesCitation' => array( [maximum depth reached] ) ) ), 'Matrix' => array(), 'Keyword' => array( (int) 0 => array( 'id' => '0457', 'type' => 'Mobile Phase', 'keyword' => 'Suspension', 'newKeyword' => '', 'synonyms' => '', 'fao' => '', 'total' => '9', 'first' => 'S', 'keytotal' => 'Suspension**9', 'CitationsKeyword' => array( [maximum depth reached] ) ) ) ) $i = (int) 2 $path = '' $a = '' $url = 'http://dx.doi.org/10.1016/0039-9140(87)80234-5' $aus = 'J. J. Laserna, A. Berthod and J. D. Winefordner 'include - APP/View/Elements/citation.ctp, line 40 View::_evaluate() - CORE/Cake/View/View.php, line 971 View::_render() - CORE/Cake/View/View.php, line 933 View::_renderElement() - CORE/Cake/View/View.php, line 1224 View::element() - CORE/Cake/View/View.php, line 418 include - APP/View/Techniques/view.ctp, line 52 View::_evaluate() - CORE/Cake/View/View.php, line 971 View::_render() - CORE/Cake/View/View.php, line 933 View::render() - CORE/Cake/View/View.php, line 473 Controller::render() - CORE/Cake/Controller/Controller.php, line 968 Dispatcher::_invoke() - CORE/Cake/Routing/Dispatcher.php, line 200 Dispatcher::dispatch() - CORE/Cake/Routing/Dispatcher.php, line 167 [main] - APP/webroot/index.php, line 109
"Surface Enhanced Raman Spectroscopy As A Molecular Specific Detection System In Aqueous Flow-through Systems"
Analyst
1998 Volume 123, Issue 5 Pages 1057-1060
Notice (8): Undefined variable: uid [APP/View/Elements/citation.ctp, line 40]N. Weißenbacher, B. Lendl, J. Frank, H. D. Wanzenböck and R. KellnerCode Context?>
<?php
if($uid!='') {
$viewFile = '/home/stuchalk/public_html/fad/app/View/Elements/citation.ctp' $dataForView = array( 'data' => array( 'Technique' => array( 'id' => '0410', 'label' => 'Raman', 'level1' => 'Raman', 'level2' => 'surface enhanced', 'level3' => '', 'level4' => '', 'level5' => '', 'synonyms' => 'Surface enhanced raman spectroscopy,SERS', 'champ' => '', 'total' => '15', 'updated' => '0000-00-00 00:00:00', 'name' => 'Raman, surface enhanced', 'nametotal' => 'Raman, surface enhanced**15', 'first' => 'R' ), 'Citation' => array( (int) 0 => array( [maximum depth reached] ), (int) 1 => array( [maximum depth reached] ), (int) 2 => array( [maximum depth reached] ), (int) 3 => array( [maximum depth reached] ), (int) 4 => array( [maximum depth reached] ), (int) 5 => array( [maximum depth reached] ), (int) 6 => array( [maximum depth reached] ), (int) 7 => array( [maximum depth reached] ), (int) 8 => array( [maximum depth reached] ), (int) 9 => array( [maximum depth reached] ), (int) 10 => array( [maximum depth reached] ), (int) 11 => array( [maximum depth reached] ), (int) 12 => array( [maximum depth reached] ), (int) 13 => array( [maximum depth reached] ), (int) 14 => array( [maximum depth reached] ) ) ), 'c' => array( 'id' => '007977', 'authors' => 'Weissenbacher, N.;Lendl, B.;Frank, J.;Wanzenbock, H.D.;Kellner, R.', 'authorsweb' => 'N. Weißenbacher, B. Lendl, J. Frank, H. D. Wanzenböck and R. Kellner', 'title' => 'Surface enhanced raman spectroscopy as a molecular specific detection system in aqueous flow-through systems', 'journal' => 'Analyst', 'journal_id' => '0864', 'fadid' => 'ANAL1998V0123P01057', 'year' => '1998', 'volume' => '123', 'issue' => '5', 'startpage' => '1057', 'endpage' => '1060', 'type' => 'Journal Article', 'analytes' => ';1583;', 'matrices' => '', 'techniques' => ';0410;0409;', 'keywords' => ';0446;0167;0043;0258;', 'abstract' => 'Surface enhanced Raman scattering (SERS) is proposed as a mol. specific technique for direct measurements of organic molecules in aqueous solutions An FT-Raman spectrometer was interfaced with a flow injection manifold operated in the stopped-flow mode enabling reproducible collection of SERS spectra due to the automation of the anal. procedure. For SERS a solid state substrate placed in a newly developed flow-cell was used. Multiple measurements on one single SERS substrate were achieved by rinsing the substrate with reagents such as 3 M KCl or 0.1 M NaOH solutions prior to the next measurements to remove retained analytes from the surface of the SERS substrate. This procedure allowed for improved precision as compared with a conventional batch approach. Quant. aspects were studied by establishing a calibration curve for nicotinic acid which was used as a model analyte. A linear dependence of the recorded SERS intensities from the logarithm of the analyte concentration. was obtained throughout the whole studied concentration. range (0.001-0.1 M, correlation coefficient r2 = 0.97). The standard deviation of the method sx0 is 0.122 mM and detection limit 1.7 mM, respectively. The results demonstrate the potential of SERS spectroscopy to be used as a molecular specific detector in aqueous flow systems such as flow injection anal.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '5', 'urlcheck' => '2014-10-12 09:52:18', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '00241', 'pauthor' => '!Lendl, B.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1039/a705837c', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Surface enhanced raman spectroscopy as a molecular specific detection system in aqueous flow-through systems', Analyst, 1998 123(5) 1057-1060', 'firstchar' => 'S', 'twochars' => 'Su', 'CitationsTechnique' => array( 'id' => '005409', 'citation_id' => '007977', 'technique_id' => '0410' ), 'Analyte' => array( (int) 0 => array( [maximum depth reached] ) ), 'Matrix' => array(), 'Keyword' => array( (int) 0 => array( [maximum depth reached] ), (int) 1 => array( [maximum depth reached] ), (int) 2 => array( [maximum depth reached] ), (int) 3 => array( [maximum depth reached] ) ) ), 'i' => (int) 3 ) $data = array( 'Technique' => array( 'id' => '0410', 'label' => 'Raman', 'level1' => 'Raman', 'level2' => 'surface enhanced', 'level3' => '', 'level4' => '', 'level5' => '', 'synonyms' => 'Surface enhanced raman spectroscopy,SERS', 'champ' => '', 'total' => '15', 'updated' => '0000-00-00 00:00:00', 'name' => 'Raman, surface enhanced', 'nametotal' => 'Raman, surface enhanced**15', 'first' => 'R' ), 'Citation' => array( (int) 0 => array( 'id' => '006258', 'authors' => 'Cabalin, L.M.;Ruperez, A.;Laserna, J.J.', 'authorsweb' => 'L. M. Cabalín, A. Rupérez and J. J. Laserna*', 'title' => 'Flow injection analysis and liquid chromatography: surface enhanced Raman spectrometry detection by using a windowless flow cell', 'journal' => 'Anal. Chim. Acta', 'journal_id' => '0584', 'fadid' => 'ANCA1996V0318P00203', 'year' => '1996', 'volume' => '318', 'issue' => '2', 'startpage' => '203', 'endpage' => '210', 'type' => 'Journal Article', 'analytes' => ';0146;0199;2037;1732;2402;', 'matrices' => '', 'techniques' => ';0032;0410;', 'keywords' => ';0167;0302;', 'abstract' => 'A windowless flow cell was developed for detection by surface-enhanced Raman spectrometry (SERS) in FIA and LC. The flow cell consisted of two stainless-steel tubes (0.16 mm i.d.; 1.4 mm o.d.) mounted on an Al frame so that the ends were ~e;1.6 mm apart. The liquid draining from the upper to the lower tube was supported by surface tension and formed a column (1.4 mm diameter). The mobile phase from the FIA or LC was merged with a silver hydrosol stream then propelled in to the flow cell. The Raman spectra were recorded using a focussed Ar ion laser beam (488 nm; 85 mW) as the source. The performance of the flow cell was optimized using five drugs (amiloride, amiphenazole, 2-mercaptopyridine, pemoline and triamterene) as model analytes. The maximum SERS signal was obtained with flow rates of 0.075 ml/ml and 1.5 ml/ml for the mobile phase and silver hydrosol, respectively. The reproducibility (n = 5) of the FIA-SERS system for the determination of 625 ng amiloride was 1%.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '1', 'urlcheck' => '2014-10-11 16:18:55', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '01097', 'pauthor' => '!Laserna, J.J.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1016/0003-2670(95)00441-6', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Flow injection analysis and liquid chromatography: surface enhanced Raman spectrometry detection by using a windowless flow cell', Anal. Chim. Acta, 1996 318(2) 203-210', 'firstchar' => 'F', 'twochars' => 'Fl', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 1 => array( 'id' => '006451', 'authors' => 'Somsen, G.W.;Coulter, S.K.;Gooijer, C.;Velthorst, N.H.;Brinkman, U.A.T.', 'authorsweb' => 'G. W. Somsen*, S. K. Coulter, C. Gooijer, N. H. Velthorst and U. A. Th. Brinkman', 'title' => 'Coupling of column liquid-chromatography and surface-enhanced resonance raman-spectroscopy via a thin-layer chromatographic plate', 'journal' => 'Anal. Chim. Acta', 'journal_id' => '0584', 'fadid' => 'ANCA1997V0349P00189', 'year' => '1997', 'volume' => '349', 'issue' => '1-3', 'startpage' => '189', 'endpage' => '197', 'type' => 'Journal Article', 'analytes' => '', 'matrices' => '', 'techniques' => ';0410;0038;', 'keywords' => ';0339;0302;', 'abstract' => 'Surface-enhanced resonance Raman (SERR) spectroscopy was used to characterize compounds separated by column liquid chromatography (LC). Three percent of the effluent from a conventional-size LC column were immobilized on a moving thin-layer chromatography (TLC) plate using a spray-jet solvent-elimination interface. Next, colloidal silver was applied to the analyte spots and in situ SERR spectra were recorded with a multichannel micro-Raman spectrometer. Storage of the LC effluent avoids the need to use a continuous-flow of colloidal silver and, in principle allows compounds to be detected independently of LC conditions like eluent composition and flow rate. Using dyes as test compounds, the method was optimized and aspects were studied such as type of TLC plate, LC separation of the dyes, preservation of LC integrity during immobilization, and SERR analysis of the deposited compounds. With a silica TLC plate as deposition substrate, good-quality and characteristic SERR spectra were obtained for the dyes which were separated on a cyanoproyl-modified silica LC column with methanol-water containing the volatile additives ammonium acetate and triethylamine as eluent. The minimum identifiable concentration of the dyes was about 250 ng mL-1 (750 pg applied on the plate). For some strong Raman scatterers such as nile blue and pararosaniline, the major spectral peaks could be observed down to concentrations of 25 ng mL-1. 36 References', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '3', 'urlcheck' => '2014-10-11 16:23:46', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '01300', 'pauthor' => '!Somsen, G.W.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1016/S0003-2670(97)00011-1', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Coupling of column liquid-chromatography and surface-enhanced resonance raman-spectroscopy via a thin-layer chromatographic plate', Anal. Chim. Acta, 1997 349(1-3) 189-197', 'firstchar' => 'C', 'twochars' => 'Co', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array([maximum depth reached]), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 2 => array( 'id' => '006887', 'authors' => 'Laserna, J.J.;Berthod, A.;Winefordner, J.D.', 'authorsweb' => 'J. J. Laserna, A. Berthod and J. D. Winefordner ', 'title' => 'Quantitative analysis by surface-enhanced raman spectrometry on silver hydrosols in a flow injection system', 'journal' => 'Talanta', 'journal_id' => '0569', 'fadid' => 'TALT1987V0034P00745', 'year' => '1987', 'volume' => '34', 'issue' => '8', 'startpage' => '745', 'endpage' => '747', 'type' => 'Journal Article', 'analytes' => ';0056;0401;', 'matrices' => '', 'techniques' => ';0410;', 'keywords' => ';0457;', 'abstract' => 'The application of surface-enhanced Raman scattering (SERS) in quantitative analysis is demonstrated by the determination of 4-aminobenzoic acid(I) and acridin-9-amine(II) on silver suspensions by SERS in a flow injection system. Two peristaltic pumps were used to mix 2 mM NaBH4 and 1 mM AgNO3 and pump the resulting silver suspension through the flow injection analysis system. The flow injection analysis system is described (with diagram). The sample solution contained I in aqueous 40% ethanol or II in ethanol. The calibration graph was rectilinear for 4 to 100 µg mL-1 of I, and the coefficient of variation (n = 6) was 3.2%. The system required cleaning with 40% HNO3 after 10 to 15 injections.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '7', 'urlcheck' => '2014-10-11 14:54:34', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '01400', 'pauthor' => '!Winefordner, J.D.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1016/0039-9140(87)80234-5', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Quantitative analysis by surface-enhanced raman spectrometry on silver hydrosols in a flow injection system', Talanta, 1987 34(8) 745-747', 'firstchar' => 'Q', 'twochars' => 'Qu', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 3 => array( 'id' => '007977', 'authors' => 'Weissenbacher, N.;Lendl, B.;Frank, J.;Wanzenbock, H.D.;Kellner, R.', 'authorsweb' => 'N. Weißenbacher, B. Lendl, J. Frank, H. D. Wanzenböck and R. Kellner', 'title' => 'Surface enhanced raman spectroscopy as a molecular specific detection system in aqueous flow-through systems', 'journal' => 'Analyst', 'journal_id' => '0864', 'fadid' => 'ANAL1998V0123P01057', 'year' => '1998', 'volume' => '123', 'issue' => '5', 'startpage' => '1057', 'endpage' => '1060', 'type' => 'Journal Article', 'analytes' => ';1583;', 'matrices' => '', 'techniques' => ';0410;0409;', 'keywords' => ';0446;0167;0043;0258;', 'abstract' => 'Surface enhanced Raman scattering (SERS) is proposed as a mol. specific technique for direct measurements of organic molecules in aqueous solutions An FT-Raman spectrometer was interfaced with a flow injection manifold operated in the stopped-flow mode enabling reproducible collection of SERS spectra due to the automation of the anal. procedure. For SERS a solid state substrate placed in a newly developed flow-cell was used. Multiple measurements on one single SERS substrate were achieved by rinsing the substrate with reagents such as 3 M KCl or 0.1 M NaOH solutions prior to the next measurements to remove retained analytes from the surface of the SERS substrate. This procedure allowed for improved precision as compared with a conventional batch approach. Quant. aspects were studied by establishing a calibration curve for nicotinic acid which was used as a model analyte. A linear dependence of the recorded SERS intensities from the logarithm of the analyte concentration. was obtained throughout the whole studied concentration. range (0.001-0.1 M, correlation coefficient r2 = 0.97). The standard deviation of the method sx0 is 0.122 mM and detection limit 1.7 mM, respectively. The results demonstrate the potential of SERS spectroscopy to be used as a molecular specific detector in aqueous flow systems such as flow injection anal.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '5', 'urlcheck' => '2014-10-12 09:52:18', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '00241', 'pauthor' => '!Lendl, B.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1039/a705837c', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Surface enhanced raman spectroscopy as a molecular specific detection system in aqueous flow-through systems', Analyst, 1998 123(5) 1057-1060', 'firstchar' => 'S', 'twochars' => 'Su', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 4 => array( 'id' => '008516', 'authors' => 'Force, R.K.', 'authorsweb' => 'R. Ken Force', 'title' => 'Surface-enhanced raman spectroscopy at a silver electrode as a detector in flow injection analysis', 'journal' => 'Anal. Chem.', 'journal_id' => '0499', 'fadid' => 'ANCH1988V0060P01987', 'year' => '1988', 'volume' => '60', 'issue' => '18', 'startpage' => '1987', 'endpage' => '1989', 'type' => 'Journal Article', 'analytes' => '', 'matrices' => '', 'techniques' => ';0214;0410;', 'keywords' => '', 'abstract' => 'A Ag-ring reference (diameter 5 mm) and a Ag-disc working electrode (diameter 3 mm) were sealed 1 mm apart in a Pyrex tube (o.d. 7 mm) and polished smooth. The Ag ring was anodized at 0.4 V (vs. a SCE) in 0.1 M KCl to produce a Ag - AgCl reference electrode with a potential of ~0.190 to ~0.200 V (vs. a NHE) in the 0.1 M KCl used as mobile phase and supporting electrolyte. The apparatus was applied in flow injection analysis for 50.0 mM pyridine (1 mL injections) in KCl flowing at 2 mL min-1. The potential was held at -0.6 V. Raman spectra were recorded from 990 to 1050 cm-1 in 2-cm-1 steps. A detection limit of ~250 nM was achieved. A Ag-ring reference (diameter 5 mm) and a Ag-disc working electrode (diameter 3 mm) were sealed 1 mm apart in a Pyrex tube (o.d. 7 mm) and polished smooth.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '0', 'urlcheck' => '2014-10-11 18:35:15', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '00965', 'pauthor' => '!Force, R.K.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1021/ac00169a033', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Surface-enhanced raman spectroscopy at a silver electrode as a detector in flow injection analysis', Anal. Chem., 1988 60(18) 1987-1989', 'firstchar' => 'S', 'twochars' => 'Su', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array([maximum depth reached]), 'Matrix' => array([maximum depth reached]), 'Keyword' => array([maximum depth reached]) ), (int) 5 => array( 'id' => '008566', 'authors' => 'Pothier, N.J.;Force, R.K.', 'authorsweb' => 'Neil J. Pothier and R. Ken Force', 'title' => 'Surface-enhanced raman spectroscopy at a silver electrode as a detection system in flowing streams', 'journal' => 'Anal. Chem.', 'journal_id' => '0499', 'fadid' => 'ANCH1990V0062P00678', 'year' => '1990', 'volume' => '62', 'issue' => '7', 'startpage' => '678', 'endpage' => '680', 'type' => 'Journal Article', 'analytes' => ';0064;2356;0747;', 'matrices' => '', 'techniques' => ';0410;0210;0038;', 'keywords' => ';0276;0446;0109;', 'abstract' => 'A three-electrode surface-enhanced Raman spectroscopy detector, with a Ag working electrode, Pt foil auxiliary electrode and SCE reference and a cell volume of 30 µL, was evaluated for use with HPLC and flow injection analysis. In a flowing system, the analyte is rapidly removed from the electrode surface in 10 s, and spectra was obtained in 5 s with an optical multichannel analyzer.. Under stopped-flow conditions, detection limits were 175, 233 and 211 pmol for adenine, thymine and cytosine, respectively.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '3', 'urlcheck' => '2014-10-11 18:35:47', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '00965', 'pauthor' => '!Force, R.K.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1021/ac00206a005', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Surface-enhanced raman spectroscopy at a silver electrode as a detection system in flowing streams', Anal. Chem., 1990 62(7) 678-680', 'firstchar' => 'S', 'twochars' => 'Su', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 6 => array( 'id' => '008582', 'authors' => 'Ni, F.;Sheng, R.S.;Cotton, T.M.', 'authorsweb' => 'Fan Ni, Rongsheng Sheng, and Therese M. Cotton', 'title' => 'Flow injection analysis and real-time detection of RNA bases by surface-enhanced Raman spectroscopy', 'journal' => 'Anal. Chem.', 'journal_id' => '0499', 'fadid' => 'ANCH1990V0062P01958', 'year' => '1990', 'volume' => '62', 'issue' => '18', 'startpage' => '1958', 'endpage' => '1963', 'type' => 'Journal Article', 'analytes' => ';0365;', 'matrices' => '', 'techniques' => ';0410;0038;', 'keywords' => ';0216;0320;0302;', 'abstract' => 'Surface-enhanced Raman scattering (SERS) spectroscopy has been successfully interfaced with a flow injection analysis system to detect RNA bases in real time. Four of the major base components of RNA, uracil, cytosine, adenine, and guanine, were introduced into the flow injection system and were mixed with a Ag sol prior to SERS measurements. Several experimental parameters including pH, temperature, flow rate, and tubing materials were examined, and their impact on the SERS spectra is presented here. The feasibility of interfacing flow injection based SERS detection methods with liquid or high performance liquid chromatography for the detection of individual components in a complex mixture is also assessed.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '2', 'urlcheck' => '2014-10-11 18:36:03', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => null, 'pauthor' => 'Cotton, T.M.', 'address' => 'Department of Chemistry, Iowa State University, Ames, Iowa 50011 USA', 'email' => 'NA', 'notes' => null, 'url' => '10.1021/ac00217a012', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Flow injection analysis and real-time detection of RNA bases by surface-enhanced Raman spectroscopy', Anal. Chem., 1990 62(18) 1958-1963', 'firstchar' => 'F', 'twochars' => 'Fl', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 7 => array( 'id' => '009344', 'authors' => 'Laserna, J.J.;Berthod, A.;Winefordner, J.D.', 'authorsweb' => 'J. J. Laserna, A. Berthod and J. D. Winefordner*', 'title' => 'Evaluation and optimization of experimental conditions for surface-enhanced raman detection of analytes in flow injection analysis', 'journal' => 'Microchem. J.', 'journal_id' => '0639', 'fadid' => 'MCHJ1988V0038P00125', 'year' => '1988', 'volume' => '38', 'issue' => '1', 'startpage' => '125', 'endpage' => '126', 'type' => 'Journal Article', 'analytes' => ';0399;0055;', 'matrices' => '', 'techniques' => ';0410;', 'keywords' => ';0110;0302;', 'abstract' => 'The Raman instrumentation included a 100-mW Ar ion laser operated at 514.5 nm, a double monochromator and a cooled Hamamatsu R-928 photomultiplier tube with photon counting system as the detector. Vertically polarized light was used, with right-angle geometry for Raman sampling and a long-wave-pass glass filter to suppress Rayleigh-scattered light. Spectra were obtained by single scans. Flow streams of 1 mM AgNO3 and 2 mM NaBH4 were merged to form a silver hydrosol matrix, and 4-aminobenzoic acid(I) and acridin-9-amine were used successfully as test analytes. The detector flow-cell was a silica tube (3 mm x 0.5 mm;~0.6 µL). For maximum signal response with I, the total flow rate was 0.7 mL min-1 and the pH was adjusted with HNO3 to 3.2.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '14', 'urlcheck' => '2014-10-12 00:26:48', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '01400', 'pauthor' => '!Winefordner, J.D.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1016/0026-265X(88)90011-2', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Evaluation and optimization of experimental conditions for surface-enhanced raman detection of analytes in flow injection analysis', Microchem. J., 1988 38(1) 125-126', 'firstchar' => 'E', 'twochars' => 'Ev', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 8 => array( 'id' => '010331', 'authors' => 'Gouveia, V.J.P.;Gutz, I.G.R.;Rubim, J.C.', 'authorsweb' => 'Vitor J. P. Gouveia, Ivano G. Gutz and Joel C. Rubim*', 'title' => 'New spectroelectrochemical cell for flow injection analysis and its application to the determination of iron(II) down to the femtomole level by surface-enhanced resonance Raman scattering (SERRS)', 'journal' => 'J. Electroanal. Chem.', 'journal_id' => '0709', 'fadid' => 'JECH1994V0371P00037', 'year' => '1994', 'volume' => '371', 'issue' => '1-2', 'startpage' => '37', 'endpage' => '42', 'type' => 'Journal Article', 'analytes' => ';1294;', 'matrices' => ';0404;', 'techniques' => ';0226;0410;', 'keywords' => '', 'abstract' => 'A principal feature of the cell (diagrams presented) is the in situ renewal of the surface-enhanced Raman-active Ag substratum. Before injection of the analyte, Ag+ are introduced, and Ag is electro-deposited on a vitreous-carbon electrode; after the Raman spectrum of the adsorbed analyte has been recorded, the Ag is removed by anodic stripping. Fe(II) was determined in a 130 µL injected sample as its tris(bipyridyl) complex, which exhibits both a resonance Raman effect when excited with Ar+ laser 514.5 nm radiation and surface-enhanced Raman scattering when adsorbed on Ag. The calibration graph was sigmoidal, but usable for 10 nM-10 µM-Fe(II), and the detection limit was 1 nM, which represented detection of Fe(II) at the femtomole level.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '13', 'urlcheck' => '2014-10-12 09:04:46', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => null, 'pauthor' => 'Rubim, J.C.', 'address' => 'Institututo de Química da Universidade de São Paulo C.P.20780, 01498, São Paulo, SP Brazil', 'email' => 'NA', 'notes' => null, 'url' => '10.1016/0022-0728(93)03220-J', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''New spectroelectrochemical cell for flow injection analysis and its application to the determination of iron(II) down to the femtomole level by surface-enhanced resonance Raman scattering (SERRS)', J. Electroanal. Chem., 1994 371(1-2) 37-42', 'firstchar' => 'N', 'twochars' => 'Ne', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array( [maximum depth reached] ), 'Keyword' => array([maximum depth reached]) ), (int) 9 => array( 'id' => '013707', 'authors' => 'Weissenbacher, N.;Lendl, B.;Frank, J.;Wanzenbock, H.D.;Mizaikoff, B.;Kellner, R.', 'authorsweb' => 'N. Weissenbacher*, B. Lendl, J. Frank, H. D. Wanzenböck, B. Mizaikoff and R. Kellner', 'title' => 'Continuous surface-enhanced raman-spectroscopy for the detection of trace organic pollutants in aqueous systems', 'journal' => 'J. Mol. Struct.', 'journal_id' => '0628', 'fadid' => 'JMRS1997V0410P00539', 'year' => '1997', 'volume' => '410', 'issue' => '1', 'startpage' => '539', 'endpage' => '542', 'type' => 'Journal Article', 'analytes' => ';2050;1583;1774;0504;1478;', 'matrices' => '', 'techniques' => ';0410;', 'keywords' => '', 'abstract' => 'In Raman spectroscopy, detection limits for organic pollutants in water can be lowered by several orders of magnitude when surface enhanced techniques are applied. In this work a continuous analytical device based on flow injection analysis using SERS detection is proposed. This system was tested with model analytes such as pyridine and nicotinic acid as well as several pesticides (carbendazim, metazachlorine). (C) 1997 Elsevier Science B.V. 22 References', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'No', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '3', 'urlcheck' => '2014-10-12 09:49:43', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => null, 'pauthor' => 'Weissenbacher, N.', 'address' => 'Institute for Analytical Chemistry, Vienna University of Technology, Getreidemarkt 9/151, A-1060, Vienna, Austria', 'email' => 'NA', 'notes' => null, 'url' => '10.1016/S0022-2860(96)09531-2', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Continuous surface-enhanced raman-spectroscopy for the detection of trace organic pollutants in aqueous systems', J. Mol. Struct., 1997 410(1) 539-542', 'firstchar' => 'C', 'twochars' => 'Co', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array([maximum depth reached]) ), (int) 10 => array( 'id' => '014097', 'authors' => 'Sawata, S.;Kai, E.;Ikebukuro, K.;Iida, T.;Honda, T.;Karube, I.', 'authorsweb' => 'Sawata S, Kai E, Ikebukuro K, Iida T, Honda T, Karube I.', 'title' => 'Novel detection system of flow injection analysis. 1. The existence of significant relation between secondary structure of DNA and sensitivity in signal detection', 'journal' => 'Nucleic Acids Symp. Ser.', 'journal_id' => '1346', 'fadid' => 'NASS1997V0037P00247', 'year' => '1997', 'volume' => '37', 'issue' => '1', 'startpage' => '247', 'endpage' => '248', 'type' => 'Journal Article', 'analytes' => ';0847;', 'matrices' => '', 'techniques' => ';0410;', 'keywords' => ';0401;', 'abstract' => 'Polymerase Chain Reaction (PCR) products were detected quantitatively using a flow injection type sensor, based on Surface Plasmon Resonance (SPR). We used asymmetric PCR to amplify the two kinds of products; their DNA lengths are different. This novel design permitted us not only to detect PCR products with high-sensitivity, but also to develop a rapid DNA detection system for the sense of the genetic pathogen.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'No', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '0', 'urlcheck' => '2014-10-13 19:09:08', 'urlcheckcode' => 'HTTP/1.1 200 OK', 'pauthor_id' => '00227', 'pauthor' => '!Karube, I.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => 'www.ncbi.nlm.nih.gov/pubmed/9586092', 'urltype' => 'absurl', 'gotpdf' => 'no', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Novel detection system of flow injection analysis. 1. The existence of significant relation between secondary structure of DNA and sensitivity in signal detection', Nucleic Acids Symp. Ser., 1997 37(1) 247-248', 'firstchar' => 'N', 'twochars' => 'No', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 11 => array( 'id' => '014429', 'authors' => 'Storey, J.M.E.;Barber, T.E.;Shelton, R.D.;Wachter, E.A.;Carron, K.T.;Jiang, Y.', 'authorsweb' => 'NA', 'title' => 'Applications of surface-enhanced Raman scattering (SERS) to chemical detection', 'journal' => 'Spectroscopy', 'journal_id' => '0489', 'fadid' => 'STRS1995V0010P00020', 'year' => '1995', 'volume' => '10', 'issue' => '3', 'startpage' => '20', 'endpage' => '25', 'type' => 'Journal Article', 'analytes' => ';0716;1186;1582;', 'matrices' => ';0343;0372;', 'techniques' => ';0410;', 'keywords' => ';0389;', 'abstract' => 'lectrochemical surface-enhanced Raman spectrometry (SERS) was used to detect chlorinated hydrocarbons in ground water, in tobacco smoke and aqueous cyanide ions. Hybrid substrate SERS was used for the detection of organic compounds in liquid and gas phases, using a flow-through cell. The experimental protocols were described previously. (Appl Spectrosc., 1994, 48, 1265; Shelton et al., Ibid., 1994, 48, 1007; Wachter et al.,Ibid., 1995, 49, 193; and Barber et al., Ibid., 1994, 48, 1423). The detection limits for hydrocarbons in electrolytes were a few ppm; they were an order of magnitude higher in groundwater. No calibration data are given. The response to cyanide was linear for 10^-100 ppm. The detection limit for nicotine in smoke was 15 ppb (no calibration data given). The advantages and limitations of the methods are discussed and future research directions are outlined.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'No', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '0', 'urlcheck' => '2006-05-20 19:26:31', 'urlcheckcode' => '', 'pauthor_id' => null, 'pauthor' => 'NA', 'address' => 'Oak Ridge Natl. Lab., Health Sci. Res. Div., Oak Ridge, TN 37831-6113 UK', 'email' => 'NA', 'notes' => null, 'url' => 'NA', 'urltype' => 'NA', 'gotpdf' => 'no', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Applications of surface-enhanced Raman scattering (SERS) to chemical detection', Spectroscopy, 1995 10(3) 20-25', 'firstchar' => 'A', 'twochars' => 'Ap', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array( [maximum depth reached] ), 'Keyword' => array( [maximum depth reached] ) ), (int) 12 => array( 'id' => '014511', 'authors' => 'Fujiwara, K.;Ito, S.', 'authorsweb' => 'Kitao Fujiwara and Seiji Ito', 'title' => 'Application of waveguiding in solutions for absorption and fluorescence spectrometry', 'journal' => 'Trends Anal. Chem.', 'journal_id' => '0653', 'fadid' => 'TRAC1991V0010P00184', 'year' => '1991', 'volume' => '10', 'issue' => '6', 'startpage' => '184', 'endpage' => '190', 'type' => 'Journal Article', 'analytes' => '', 'matrices' => '', 'techniques' => ';0252;0410;', 'keywords' => ';0043;0167;0521;', 'abstract' => 'Several waveguiding techniques in solution are presented in the context of spectrometry. Although light propagation in dense media via total reflection is a commonly used technique with optical fibers, it is also possible in solutions. This is very useful for improving both sensitivity and spatial resolution, especially in absorption and fluorescence spectrometry, by elongating the optical path length and controlling the angle of incidence of light in the measurement area of a sample. ', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'No', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '26', 'urlcheck' => '2014-10-12 02:21:14', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => null, 'pauthor' => 'NA', 'address' => 'NA', 'email' => 'NA', 'notes' => null, 'url' => '10.1016/0165-9936(91)85019-N', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Application of waveguiding in solutions for absorption and fluorescence spectrometry', Trends Anal. Chem., 1991 10(6) 184-190', 'firstchar' => 'A', 'twochars' => 'Ap', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array([maximum depth reached]), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 13 => array( 'id' => '014536', 'authors' => 'Vo Dinh, T.', 'authorsweb' => 'Tuan Vo-Dinh', 'title' => 'Surface enhanced raman spectroscopy using metallic nanostructures', 'journal' => 'Trends Anal. Chem.', 'journal_id' => '0653', 'fadid' => 'TRAC1998V0017P00557', 'year' => '1998', 'volume' => '17', 'issue' => '8-9', 'startpage' => '557', 'endpage' => '582', 'type' => 'Journal Article', 'analytes' => '', 'matrices' => ';0404;0093;', 'techniques' => ';0410;', 'keywords' => ';0043;0215;0389;', 'abstract' => 'This article provides an overview of the development and application of the surface-enhanced Raman scattering (SERS) techniques using metal-coated nanostructures on solid substrates, An introduction to theoretical principles of the SERS effect and the different SERS-active media is presented. The focus is on nanostructured solid substrates and their practical applications in chemical, environmental and biomedical areas. Specific examples of analytical techniques, instruments and sensors developed in the author's laboratory will be discussed to illustrate the usefulness and potential of the SERS techniques.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'No', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '38', 'urlcheck' => '2014-10-12 10:04:45', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => null, 'pauthor' => 'Vo Dinh, T.', 'address' => 'Advanced Monitoring Development Group, Life Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6101, USA', 'email' => 'NA', 'notes' => null, 'url' => '10.1016/S0165-9936(98)00069-7', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Surface enhanced raman spectroscopy using metallic nanostructures', Trends Anal. Chem., 1998 17(8-9) 557-582', 'firstchar' => 'S', 'twochars' => 'Su', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array([maximum depth reached]), 'Matrix' => array( [maximum depth reached] ), 'Keyword' => array( [maximum depth reached] ) ), (int) 14 => array( 'id' => '014560', 'authors' => 'Ruperez, A.;Montes, R.;Laserna, J.J.', 'authorsweb' => 'A. Rupérez, R. Montes and J. J. Laserna*', 'title' => 'Identification of stimulant drugs by surface-enhanced raman spectrometry on colloidal silver', 'journal' => 'Vib. Spectrosc.', 'journal_id' => '0655', 'fadid' => 'VIBS1991V0002P00145', 'year' => '1991', 'volume' => '2', 'issue' => '2-3', 'startpage' => '145', 'endpage' => '154', 'type' => 'Journal Article', 'analytes' => ';0862;', 'matrices' => '', 'techniques' => ';0032;0055;0410;', 'keywords' => '', 'abstract' => 'The surface-enhanced Raman (SER) spectra of stimulant drugs, including mefenorex, pentylenetetrazole, -amphetamine and pemoline, were obtained on colloidal silver. Silver colloids are prepared in a single step, at room temperature, by chemical reduction of Ag+ with sodium tetrahydroborate. Spectra are recorded using drug concentrations at the g mL-1 level. Individual drugs can be identified by characteristic vibrational bands. The SER spectrum of human urine and that of human urine spiked with mixtures of stimulant drugs are reported.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'No', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '7', 'urlcheck' => '2014-10-12 02:21:21', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '01097', 'pauthor' => '!Laserna, J.J.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1016/0924-2031(91)85020-N', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Identification of stimulant drugs by surface-enhanced raman spectrometry on colloidal silver', Vib. Spectrosc., 1991 2(2-3) 145-154', 'firstchar' => 'I', 'twochars' => 'Id', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array([maximum depth reached]) ) ) ) $c = array( 'id' => '007977', 'authors' => 'Weissenbacher, N.;Lendl, B.;Frank, J.;Wanzenbock, H.D.;Kellner, R.', 'authorsweb' => 'N. Weißenbacher, B. Lendl, J. Frank, H. D. Wanzenböck and R. Kellner', 'title' => 'Surface enhanced raman spectroscopy as a molecular specific detection system in aqueous flow-through systems', 'journal' => 'Analyst', 'journal_id' => '0864', 'fadid' => 'ANAL1998V0123P01057', 'year' => '1998', 'volume' => '123', 'issue' => '5', 'startpage' => '1057', 'endpage' => '1060', 'type' => 'Journal Article', 'analytes' => ';1583;', 'matrices' => '', 'techniques' => ';0410;0409;', 'keywords' => ';0446;0167;0043;0258;', 'abstract' => 'Surface enhanced Raman scattering (SERS) is proposed as a mol. specific technique for direct measurements of organic molecules in aqueous solutions An FT-Raman spectrometer was interfaced with a flow injection manifold operated in the stopped-flow mode enabling reproducible collection of SERS spectra due to the automation of the anal. procedure. For SERS a solid state substrate placed in a newly developed flow-cell was used. Multiple measurements on one single SERS substrate were achieved by rinsing the substrate with reagents such as 3 M KCl or 0.1 M NaOH solutions prior to the next measurements to remove retained analytes from the surface of the SERS substrate. This procedure allowed for improved precision as compared with a conventional batch approach. Quant. aspects were studied by establishing a calibration curve for nicotinic acid which was used as a model analyte. A linear dependence of the recorded SERS intensities from the logarithm of the analyte concentration. was obtained throughout the whole studied concentration. range (0.001-0.1 M, correlation coefficient r2 = 0.97). The standard deviation of the method sx0 is 0.122 mM and detection limit 1.7 mM, respectively. The results demonstrate the potential of SERS spectroscopy to be used as a molecular specific detector in aqueous flow systems such as flow injection anal.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '5', 'urlcheck' => '2014-10-12 09:52:18', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '00241', 'pauthor' => '!Lendl, B.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1039/a705837c', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Surface enhanced raman spectroscopy as a molecular specific detection system in aqueous flow-through systems', Analyst, 1998 123(5) 1057-1060', 'firstchar' => 'S', 'twochars' => 'Su', 'CitationsTechnique' => array( 'id' => '005409', 'citation_id' => '007977', 'technique_id' => '0410' ), 'Analyte' => array( (int) 0 => array( 'id' => '01583', 'name' => 'Nicotinic acid', 'iupac_name' => 'pyridine-3-carboxylic acid', 'casrn' => '59-67-6', 'synonyms' => 'nicotinic acid, niacin, Pyridine-3-carboxylic acid, 3-pyridinecarboxylic acid, 59-67-6, 3-Carboxypyridine, wampocap, Apelagrin, Pellagrin, Akotin, Daskil, Pelonin, Acidum nicotinicum, Nicacid, Peviton, Efacin, Linic, Nicyl, nicamin, nicobid, nicocap, nicolar, Direktan, Enduracin, Nicangin, Nicodelmine, Niconacid, Nicotinipca, Pellagramin, Bionic, Diacin, Niaspan, Nyclin, Tinic, Davitamon PP, Vitaplex N, Nico-Span, Tega-Span, SK-Niacin, Nicocidin, Nicocrisina, Niconazid, Nicosan 3, Nicoside, Nicotamin, Nicotene, Nicovasan, Nicovasen, Nipellen, 3-Carboxylpyridine, Naotin, Nicodan, Nicodon, Niconat, Nicosyl, Nicotil, Niac, Nicotine acid, vitamin B3, Niacor, nicotinate, Slo-niacin, NICO, Acide nicotinique, 3-Picolinic acid, Nicotinsaure, Nico-400, PP Factor, Pyridine-β-carboxylic acid, P.P. factor, Pellagra preventive factor, anti-Pellagra vitamin, Induracin, Nicagin, Caswell No. 598, 3-Pyridylcarboxylic acid, m-Pyridinecarboxylic acid, Kyselina nikotinova, S115, Nicotinsaure [German], niacine, Acido nicotinico, Kyselina nikotinova [Czech], Pyridinecarboxylic acid, 3-, EPA Pesticide Chemical Code 056701, Niacin [USAN], CCRIS 1902, Acide nicotinique [INN-French], Acido nicotinico [INN-Spanish], Acidum nicotinicum [INN-Latin], AI3-18994, HSDB 3134, Pyridine-carboxylique-3 [French], Pyridine-carboxylique-3, CHEMBL573, β-pyridinecarboxylic acid, SR 4390, BRN 0109591, NAH, Pyridine-β-carboxylic acid, UNII-2679MF687A, CHEBI:15940, PVNIIMVLHYAWGP-UHFFFAOYSA-N, EINECS 200-441-0, NIASPAN TITRATION STARTER PACK, NSC 169454, P.P. factor-pellagra preventive factor, CAS-59-67-6, NCGC00016268-02, DSSTox_CID_932, [5, 6-3H]-niacin, DSSTox_RID_75875, DSSTox_GSID_20932, AC-907/25014105, NIO, Vitamin B3, Niacinamide, Nicotinic acid, Niacin, pellagra, Nicotinicacid, Nikotinsaeure, preventative factor, antipellagra vitamin, Niaspan (TN), 3-Pyridylcarboxylate, 3PyrCOOH, [3H]nicotinic acid, Niacin (USP), Niacor (TN), PubChem2594, Pyridylcarboxylic Acid, S1744_Selleck, [3H]-Nicotinic acid, Spectrum_001063, 5-pyridinecarboxylic acid, Prestwick0_000881, Prestwick1_000881, Prestwick2_000881, Prestwick3_000881, Pyridine-3-carbonic acid, Spectrum2_000006, Spectrum3_000515, Spectrum4_000965, Spectrum5_001287, 3-Pyridyl carboxylic acid, ACMC-1AS6M, WLN: T6NJ CVQ, 3-pyridine carboxylic acid, bmse000104, AC1L1AD5, SCHEMBL1433, Nicotinic acid [INN:BAN], Oprea1_514398, BSPBio_000662, BSPBio_002069, C6H5NO2, KBioGR_001309, KBioSS_001543, KSC236Q9T, MLS000069603, 47864_SUPELCO, BIDD:GT0644, DivK1c_000695, N0761_SIGMA, N0765_SIGMA, Nicotinic acid (JP16/INN), SPECTRUM1500430, β-Pyridinecarboxylic acid, SPBio_000011, SPBio_002881, 636-79-3 (hydrochloride), AC1Q73P3, BPBio1_000730, GTPL1588, GTPL1594, N4126_SIAL, N5410_SIAL, 3789-96-6 (tartrate), 823-77-8 (calcium salt), 72309_FLUKA, 72309_SIGMA, 72311_FLUKA, 72312_FLUKA, BDBM23515, HMDB01488, HMS502C17, KBio1_000695, KBio2_001543, KBio2_004111, KBio2_006679, KBio3_001569, 54-86-4 (hydrochloride salt), 99148-57-9 (tosylate), ABT-919, 1976-28-9 (aluminum salt), NINDS_000695, 7069-06-9 (magnesium salt), HMS1570B04, HMS1920P17, HMS2091H22, HMS2097B04, HMS2236A05, HMS3259K21, HMS3371E07, Pharmakon1600-01500430, 36321-41-2 (ammonium salt), 53890-72-5 (lithium salt), HY-B0143, STR00112, 16518-17-5 (potassium salt), Tox21_110337, Tox21_201420, Tox21_302904, ANW-75276, CCG-38340, FC1287, Niacin-Supplied by Selleck Chemicals, NSC169454, NSC757241, SBB004279, STK301803, AKOS000118980, Tox21_110337_1, 2679MF687A, AM81316, CS-1946, DB00627, EBD2198325, LS-2334, MCULE-3788394698, NC00524, NSC-169454, NSC-757241, PS-4255, RP00705, SDCCGMLS-0066610.P001, IDI1_000695, NCGC00016268-01, NCGC00016268-03, NCGC00016268-04, NCGC00016268-05, NCGC00016268-08, NCGC00016268-09, NCGC00094734-01, NCGC00094734-02, NCGC00256537-01, NCGC00258971-01, 10361-13-4 (iron(2+) salt), 28029-53-0 (cobalt(2+) salt), 28029-54-1 (manganese(2+) salt), AJ-08093, AK-46486, AN-23622, BP-21419, CPD000059024, KB-33243, NCI60_001041, SAM002554917, SC-05611, SMR000059024, ST097540, AB1002056, DB-007765, KB-259513, ST2413625, TR-032523, AB00052050, FT-0082580, FT-0616371, FT-0631238, N0082, C00253, D00049, M-5918, 11054-EP2269610A2, 11054-EP2269990A1, 11054-EP2270002A1, 11054-EP2270014A1, 11054-EP2272825A2, 11054-EP2272834A1, 11054-EP2272848A1, 11054-EP2274983A1, 11054-EP2275401A1, 11054-EP2277848A1, 11054-EP2280001A1, 11054-EP2289510A1, 11054-EP2292228A1, 11054-EP2292610A1, 11054-EP2295406A1, 11054-EP2295409A1, 11054-EP2295424A1, 11054-EP2298742A1, 11054-EP2298772A1, 11054-EP2298776A1, 11054-EP2298779A1, 11054-EP2301923A1, 11054-EP2301929A1, 11054-EP2301935A1, 11054-EP2301937A1, 11054-EP2305651A1, 11054-EP2305674A1, 11054-EP2308838A1, 11054-EP2308839A1, 11054-EP2308848A1, 11054-EP2308854A1, 11054-EP2308858A1, 11054-EP2308874A1, 11054-EP2311808A1, 11054-EP2311816A1, 11054-EP2311817A1, 11054-EP2311829A1, 11054-EP2311830A1, 11054-EP2314588A1, 11054-EP2316457A1, 11054-EP2316458A1, 11054-EP2316825A1, 11054-EP2316826A1, 11054-EP2316827A1, 11054-EP2316828A1, AB00052050-13, 5-22-02-00057 (Beilstein Handbook Reference), L001199, 3B4-1465, I02-0699, T5298026, I14-92791, 3DDB011E-F3A6-45B6-A2D2-77B2A6E8936E, InChI=1/C6H5NO2/c8-6(9)5-2-1-3-7-4-5/h1-4H,(H,8,9, 123574-58-3, 3-Picolinic acid; Niacin; Pellagra preventive factor; Pyridine-3-carboxylic acid; Vitamin B3', 'total' => '5', 'inchi' => 'InChI=1S/C6H5NO2/c8-6(9)5-2-1-3-7-4-5/h1-4H,(H,8,9)', 'inchikey' => 'PVNIIMVLHYAWGP-UHFFFAOYSA-N', 'formula' => 'C6H5NO2', 'oxstate' => 'Zero', 'url' => '', 'charge' => '0', 'class1' => '', 'class2' => '', 'class3' => '', 'class4' => '', 'class5' => '', 'isgroup' => 'no', 'checked' => 'no', 'citation_count' => '0', 'updated' => '2015-12-11 16:36:07', 'first' => 'N', 'nametotal' => 'Nicotinic acid**5', 'AnalytesCitation' => array( [maximum depth reached] ) ) ), 'Matrix' => array(), 'Keyword' => array( (int) 0 => array( 'id' => '0446', 'type' => 'Manifold process', 'keyword' => 'Stopped-flow', 'newKeyword' => '', 'synonyms' => '', 'fao' => '', 'total' => '409', 'first' => 'S', 'keytotal' => 'Stopped-flow**409', 'CitationsKeyword' => array( [maximum depth reached] ) ), (int) 1 => array( 'id' => '0167', 'type' => 'Manifold component', 'keyword' => 'Flowcell', 'newKeyword' => '', 'synonyms' => '', 'fao' => '', 'total' => '156', 'first' => 'F', 'keytotal' => 'Flowcell**156', 'CitationsKeyword' => array( [maximum depth reached] ) ), (int) 2 => array( 'id' => '0043', 'type' => 'Manifold component', 'keyword' => 'Apparatus', 'newKeyword' => '', 'synonyms' => '', 'fao' => '', 'total' => '466', 'first' => 'A', 'keytotal' => 'Apparatus**466', 'CitationsKeyword' => array( [maximum depth reached] ) ), (int) 3 => array( 'id' => '0258', 'type' => 'Chemometrics', 'keyword' => 'Method comparison', 'newKeyword' => '', 'synonyms' => '', 'fao' => '', 'total' => '1232', 'first' => 'M', 'keytotal' => 'Method comparison**1232', 'CitationsKeyword' => array( [maximum depth reached] ) ) ) ) $i = (int) 3 $path = '' $a = '' $url = 'http://dx.doi.org/10.1039/a705837c' $aus = 'N. Wei&szlig;enbacher, B. Lendl, J. Frank, H. D. Wanzenb&ouml;ck and R. Kellner'include - APP/View/Elements/citation.ctp, line 40 View::_evaluate() - CORE/Cake/View/View.php, line 971 View::_render() - CORE/Cake/View/View.php, line 933 View::_renderElement() - CORE/Cake/View/View.php, line 1224 View::element() - CORE/Cake/View/View.php, line 418 include - APP/View/Techniques/view.ctp, line 52 View::_evaluate() - CORE/Cake/View/View.php, line 971 View::_render() - CORE/Cake/View/View.php, line 933 View::render() - CORE/Cake/View/View.php, line 473 Controller::render() - CORE/Cake/Controller/Controller.php, line 968 Dispatcher::_invoke() - CORE/Cake/Routing/Dispatcher.php, line 200 Dispatcher::dispatch() - CORE/Cake/Routing/Dispatcher.php, line 167 [main] - APP/webroot/index.php, line 109
"Surface-enhanced Raman Spectroscopy At A Silver Electrode As A Detector In Flow Injection Analysis"
Anal. Chem.
1988 Volume 60, Issue 18 Pages 1987-1989
Notice (8): Undefined variable: uid [APP/View/Elements/citation.ctp, line 40]R. Ken ForceCode Context?>
<?php
if($uid!='') {
$viewFile = '/home/stuchalk/public_html/fad/app/View/Elements/citation.ctp' $dataForView = array( 'data' => array( 'Technique' => array( 'id' => '0410', 'label' => 'Raman', 'level1' => 'Raman', 'level2' => 'surface enhanced', 'level3' => '', 'level4' => '', 'level5' => '', 'synonyms' => 'Surface enhanced raman spectroscopy,SERS', 'champ' => '', 'total' => '15', 'updated' => '0000-00-00 00:00:00', 'name' => 'Raman, surface enhanced', 'nametotal' => 'Raman, surface enhanced**15', 'first' => 'R' ), 'Citation' => array( (int) 0 => array( [maximum depth reached] ), (int) 1 => array( [maximum depth reached] ), (int) 2 => array( [maximum depth reached] ), (int) 3 => array( [maximum depth reached] ), (int) 4 => array( [maximum depth reached] ), (int) 5 => array( [maximum depth reached] ), (int) 6 => array( [maximum depth reached] ), (int) 7 => array( [maximum depth reached] ), (int) 8 => array( [maximum depth reached] ), (int) 9 => array( [maximum depth reached] ), (int) 10 => array( [maximum depth reached] ), (int) 11 => array( [maximum depth reached] ), (int) 12 => array( [maximum depth reached] ), (int) 13 => array( [maximum depth reached] ), (int) 14 => array( [maximum depth reached] ) ) ), 'c' => array( 'id' => '008516', 'authors' => 'Force, R.K.', 'authorsweb' => 'R. Ken Force', 'title' => 'Surface-enhanced raman spectroscopy at a silver electrode as a detector in flow injection analysis', 'journal' => 'Anal. Chem.', 'journal_id' => '0499', 'fadid' => 'ANCH1988V0060P01987', 'year' => '1988', 'volume' => '60', 'issue' => '18', 'startpage' => '1987', 'endpage' => '1989', 'type' => 'Journal Article', 'analytes' => '', 'matrices' => '', 'techniques' => ';0214;0410;', 'keywords' => '', 'abstract' => 'A Ag-ring reference (diameter 5 mm) and a Ag-disc working electrode (diameter 3 mm) were sealed 1 mm apart in a Pyrex tube (o.d. 7 mm) and polished smooth. The Ag ring was anodized at 0.4 V (vs. a SCE) in 0.1 M KCl to produce a Ag - AgCl reference electrode with a potential of ~0.190 to ~0.200 V (vs. a NHE) in the 0.1 M KCl used as mobile phase and supporting electrolyte. The apparatus was applied in flow injection analysis for 50.0 mM pyridine (1 mL injections) in KCl flowing at 2 mL min-1. The potential was held at -0.6 V. Raman spectra were recorded from 990 to 1050 cm-1 in 2-cm-1 steps. A detection limit of ~250 nM was achieved. A Ag-ring reference (diameter 5 mm) and a Ag-disc working electrode (diameter 3 mm) were sealed 1 mm apart in a Pyrex tube (o.d. 7 mm) and polished smooth.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '0', 'urlcheck' => '2014-10-11 18:35:15', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '00965', 'pauthor' => '!Force, R.K.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1021/ac00169a033', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Surface-enhanced raman spectroscopy at a silver electrode as a detector in flow injection analysis', Anal. Chem., 1988 60(18) 1987-1989', 'firstchar' => 'S', 'twochars' => 'Su', 'CitationsTechnique' => array( 'id' => '006228', 'citation_id' => '008516', 'technique_id' => '0410' ), 'Analyte' => array(), 'Matrix' => array(), 'Keyword' => array() ), 'i' => (int) 4 ) $data = array( 'Technique' => array( 'id' => '0410', 'label' => 'Raman', 'level1' => 'Raman', 'level2' => 'surface enhanced', 'level3' => '', 'level4' => '', 'level5' => '', 'synonyms' => 'Surface enhanced raman spectroscopy,SERS', 'champ' => '', 'total' => '15', 'updated' => '0000-00-00 00:00:00', 'name' => 'Raman, surface enhanced', 'nametotal' => 'Raman, surface enhanced**15', 'first' => 'R' ), 'Citation' => array( (int) 0 => array( 'id' => '006258', 'authors' => 'Cabalin, L.M.;Ruperez, A.;Laserna, J.J.', 'authorsweb' => 'L. M. Cabalín, A. Rupérez and J. J. Laserna*', 'title' => 'Flow injection analysis and liquid chromatography: surface enhanced Raman spectrometry detection by using a windowless flow cell', 'journal' => 'Anal. Chim. Acta', 'journal_id' => '0584', 'fadid' => 'ANCA1996V0318P00203', 'year' => '1996', 'volume' => '318', 'issue' => '2', 'startpage' => '203', 'endpage' => '210', 'type' => 'Journal Article', 'analytes' => ';0146;0199;2037;1732;2402;', 'matrices' => '', 'techniques' => ';0032;0410;', 'keywords' => ';0167;0302;', 'abstract' => 'A windowless flow cell was developed for detection by surface-enhanced Raman spectrometry (SERS) in FIA and LC. The flow cell consisted of two stainless-steel tubes (0.16 mm i.d.; 1.4 mm o.d.) mounted on an Al frame so that the ends were ~e;1.6 mm apart. The liquid draining from the upper to the lower tube was supported by surface tension and formed a column (1.4 mm diameter). The mobile phase from the FIA or LC was merged with a silver hydrosol stream then propelled in to the flow cell. The Raman spectra were recorded using a focussed Ar ion laser beam (488 nm; 85 mW) as the source. The performance of the flow cell was optimized using five drugs (amiloride, amiphenazole, 2-mercaptopyridine, pemoline and triamterene) as model analytes. The maximum SERS signal was obtained with flow rates of 0.075 ml/ml and 1.5 ml/ml for the mobile phase and silver hydrosol, respectively. The reproducibility (n = 5) of the FIA-SERS system for the determination of 625 ng amiloride was 1%.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '1', 'urlcheck' => '2014-10-11 16:18:55', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '01097', 'pauthor' => '!Laserna, J.J.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1016/0003-2670(95)00441-6', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Flow injection analysis and liquid chromatography: surface enhanced Raman spectrometry detection by using a windowless flow cell', Anal. Chim. Acta, 1996 318(2) 203-210', 'firstchar' => 'F', 'twochars' => 'Fl', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 1 => array( 'id' => '006451', 'authors' => 'Somsen, G.W.;Coulter, S.K.;Gooijer, C.;Velthorst, N.H.;Brinkman, U.A.T.', 'authorsweb' => 'G. W. Somsen*, S. K. Coulter, C. Gooijer, N. H. Velthorst and U. A. Th. Brinkman', 'title' => 'Coupling of column liquid-chromatography and surface-enhanced resonance raman-spectroscopy via a thin-layer chromatographic plate', 'journal' => 'Anal. Chim. Acta', 'journal_id' => '0584', 'fadid' => 'ANCA1997V0349P00189', 'year' => '1997', 'volume' => '349', 'issue' => '1-3', 'startpage' => '189', 'endpage' => '197', 'type' => 'Journal Article', 'analytes' => '', 'matrices' => '', 'techniques' => ';0410;0038;', 'keywords' => ';0339;0302;', 'abstract' => 'Surface-enhanced resonance Raman (SERR) spectroscopy was used to characterize compounds separated by column liquid chromatography (LC). Three percent of the effluent from a conventional-size LC column were immobilized on a moving thin-layer chromatography (TLC) plate using a spray-jet solvent-elimination interface. Next, colloidal silver was applied to the analyte spots and in situ SERR spectra were recorded with a multichannel micro-Raman spectrometer. Storage of the LC effluent avoids the need to use a continuous-flow of colloidal silver and, in principle allows compounds to be detected independently of LC conditions like eluent composition and flow rate. Using dyes as test compounds, the method was optimized and aspects were studied such as type of TLC plate, LC separation of the dyes, preservation of LC integrity during immobilization, and SERR analysis of the deposited compounds. With a silica TLC plate as deposition substrate, good-quality and characteristic SERR spectra were obtained for the dyes which were separated on a cyanoproyl-modified silica LC column with methanol-water containing the volatile additives ammonium acetate and triethylamine as eluent. The minimum identifiable concentration of the dyes was about 250 ng mL-1 (750 pg applied on the plate). For some strong Raman scatterers such as nile blue and pararosaniline, the major spectral peaks could be observed down to concentrations of 25 ng mL-1. 36 References', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '3', 'urlcheck' => '2014-10-11 16:23:46', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '01300', 'pauthor' => '!Somsen, G.W.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1016/S0003-2670(97)00011-1', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Coupling of column liquid-chromatography and surface-enhanced resonance raman-spectroscopy via a thin-layer chromatographic plate', Anal. Chim. Acta, 1997 349(1-3) 189-197', 'firstchar' => 'C', 'twochars' => 'Co', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array([maximum depth reached]), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 2 => array( 'id' => '006887', 'authors' => 'Laserna, J.J.;Berthod, A.;Winefordner, J.D.', 'authorsweb' => 'J. J. Laserna, A. Berthod and J. D. Winefordner ', 'title' => 'Quantitative analysis by surface-enhanced raman spectrometry on silver hydrosols in a flow injection system', 'journal' => 'Talanta', 'journal_id' => '0569', 'fadid' => 'TALT1987V0034P00745', 'year' => '1987', 'volume' => '34', 'issue' => '8', 'startpage' => '745', 'endpage' => '747', 'type' => 'Journal Article', 'analytes' => ';0056;0401;', 'matrices' => '', 'techniques' => ';0410;', 'keywords' => ';0457;', 'abstract' => 'The application of surface-enhanced Raman scattering (SERS) in quantitative analysis is demonstrated by the determination of 4-aminobenzoic acid(I) and acridin-9-amine(II) on silver suspensions by SERS in a flow injection system. Two peristaltic pumps were used to mix 2 mM NaBH4 and 1 mM AgNO3 and pump the resulting silver suspension through the flow injection analysis system. The flow injection analysis system is described (with diagram). The sample solution contained I in aqueous 40% ethanol or II in ethanol. The calibration graph was rectilinear for 4 to 100 µg mL-1 of I, and the coefficient of variation (n = 6) was 3.2%. The system required cleaning with 40% HNO3 after 10 to 15 injections.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '7', 'urlcheck' => '2014-10-11 14:54:34', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '01400', 'pauthor' => '!Winefordner, J.D.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1016/0039-9140(87)80234-5', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Quantitative analysis by surface-enhanced raman spectrometry on silver hydrosols in a flow injection system', Talanta, 1987 34(8) 745-747', 'firstchar' => 'Q', 'twochars' => 'Qu', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 3 => array( 'id' => '007977', 'authors' => 'Weissenbacher, N.;Lendl, B.;Frank, J.;Wanzenbock, H.D.;Kellner, R.', 'authorsweb' => 'N. Weißenbacher, B. Lendl, J. Frank, H. D. Wanzenböck and R. Kellner', 'title' => 'Surface enhanced raman spectroscopy as a molecular specific detection system in aqueous flow-through systems', 'journal' => 'Analyst', 'journal_id' => '0864', 'fadid' => 'ANAL1998V0123P01057', 'year' => '1998', 'volume' => '123', 'issue' => '5', 'startpage' => '1057', 'endpage' => '1060', 'type' => 'Journal Article', 'analytes' => ';1583;', 'matrices' => '', 'techniques' => ';0410;0409;', 'keywords' => ';0446;0167;0043;0258;', 'abstract' => 'Surface enhanced Raman scattering (SERS) is proposed as a mol. specific technique for direct measurements of organic molecules in aqueous solutions An FT-Raman spectrometer was interfaced with a flow injection manifold operated in the stopped-flow mode enabling reproducible collection of SERS spectra due to the automation of the anal. procedure. For SERS a solid state substrate placed in a newly developed flow-cell was used. Multiple measurements on one single SERS substrate were achieved by rinsing the substrate with reagents such as 3 M KCl or 0.1 M NaOH solutions prior to the next measurements to remove retained analytes from the surface of the SERS substrate. This procedure allowed for improved precision as compared with a conventional batch approach. Quant. aspects were studied by establishing a calibration curve for nicotinic acid which was used as a model analyte. A linear dependence of the recorded SERS intensities from the logarithm of the analyte concentration. was obtained throughout the whole studied concentration. range (0.001-0.1 M, correlation coefficient r2 = 0.97). The standard deviation of the method sx0 is 0.122 mM and detection limit 1.7 mM, respectively. The results demonstrate the potential of SERS spectroscopy to be used as a molecular specific detector in aqueous flow systems such as flow injection anal.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '5', 'urlcheck' => '2014-10-12 09:52:18', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '00241', 'pauthor' => '!Lendl, B.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1039/a705837c', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Surface enhanced raman spectroscopy as a molecular specific detection system in aqueous flow-through systems', Analyst, 1998 123(5) 1057-1060', 'firstchar' => 'S', 'twochars' => 'Su', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 4 => array( 'id' => '008516', 'authors' => 'Force, R.K.', 'authorsweb' => 'R. Ken Force', 'title' => 'Surface-enhanced raman spectroscopy at a silver electrode as a detector in flow injection analysis', 'journal' => 'Anal. Chem.', 'journal_id' => '0499', 'fadid' => 'ANCH1988V0060P01987', 'year' => '1988', 'volume' => '60', 'issue' => '18', 'startpage' => '1987', 'endpage' => '1989', 'type' => 'Journal Article', 'analytes' => '', 'matrices' => '', 'techniques' => ';0214;0410;', 'keywords' => '', 'abstract' => 'A Ag-ring reference (diameter 5 mm) and a Ag-disc working electrode (diameter 3 mm) were sealed 1 mm apart in a Pyrex tube (o.d. 7 mm) and polished smooth. The Ag ring was anodized at 0.4 V (vs. a SCE) in 0.1 M KCl to produce a Ag - AgCl reference electrode with a potential of ~0.190 to ~0.200 V (vs. a NHE) in the 0.1 M KCl used as mobile phase and supporting electrolyte. The apparatus was applied in flow injection analysis for 50.0 mM pyridine (1 mL injections) in KCl flowing at 2 mL min-1. The potential was held at -0.6 V. Raman spectra were recorded from 990 to 1050 cm-1 in 2-cm-1 steps. A detection limit of ~250 nM was achieved. A Ag-ring reference (diameter 5 mm) and a Ag-disc working electrode (diameter 3 mm) were sealed 1 mm apart in a Pyrex tube (o.d. 7 mm) and polished smooth.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '0', 'urlcheck' => '2014-10-11 18:35:15', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '00965', 'pauthor' => '!Force, R.K.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1021/ac00169a033', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Surface-enhanced raman spectroscopy at a silver electrode as a detector in flow injection analysis', Anal. Chem., 1988 60(18) 1987-1989', 'firstchar' => 'S', 'twochars' => 'Su', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array([maximum depth reached]), 'Matrix' => array([maximum depth reached]), 'Keyword' => array([maximum depth reached]) ), (int) 5 => array( 'id' => '008566', 'authors' => 'Pothier, N.J.;Force, R.K.', 'authorsweb' => 'Neil J. Pothier and R. Ken Force', 'title' => 'Surface-enhanced raman spectroscopy at a silver electrode as a detection system in flowing streams', 'journal' => 'Anal. Chem.', 'journal_id' => '0499', 'fadid' => 'ANCH1990V0062P00678', 'year' => '1990', 'volume' => '62', 'issue' => '7', 'startpage' => '678', 'endpage' => '680', 'type' => 'Journal Article', 'analytes' => ';0064;2356;0747;', 'matrices' => '', 'techniques' => ';0410;0210;0038;', 'keywords' => ';0276;0446;0109;', 'abstract' => 'A three-electrode surface-enhanced Raman spectroscopy detector, with a Ag working electrode, Pt foil auxiliary electrode and SCE reference and a cell volume of 30 µL, was evaluated for use with HPLC and flow injection analysis. In a flowing system, the analyte is rapidly removed from the electrode surface in 10 s, and spectra was obtained in 5 s with an optical multichannel analyzer.. Under stopped-flow conditions, detection limits were 175, 233 and 211 pmol for adenine, thymine and cytosine, respectively.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '3', 'urlcheck' => '2014-10-11 18:35:47', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '00965', 'pauthor' => '!Force, R.K.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1021/ac00206a005', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Surface-enhanced raman spectroscopy at a silver electrode as a detection system in flowing streams', Anal. Chem., 1990 62(7) 678-680', 'firstchar' => 'S', 'twochars' => 'Su', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 6 => array( 'id' => '008582', 'authors' => 'Ni, F.;Sheng, R.S.;Cotton, T.M.', 'authorsweb' => 'Fan Ni, Rongsheng Sheng, and Therese M. Cotton', 'title' => 'Flow injection analysis and real-time detection of RNA bases by surface-enhanced Raman spectroscopy', 'journal' => 'Anal. Chem.', 'journal_id' => '0499', 'fadid' => 'ANCH1990V0062P01958', 'year' => '1990', 'volume' => '62', 'issue' => '18', 'startpage' => '1958', 'endpage' => '1963', 'type' => 'Journal Article', 'analytes' => ';0365;', 'matrices' => '', 'techniques' => ';0410;0038;', 'keywords' => ';0216;0320;0302;', 'abstract' => 'Surface-enhanced Raman scattering (SERS) spectroscopy has been successfully interfaced with a flow injection analysis system to detect RNA bases in real time. Four of the major base components of RNA, uracil, cytosine, adenine, and guanine, were introduced into the flow injection system and were mixed with a Ag sol prior to SERS measurements. Several experimental parameters including pH, temperature, flow rate, and tubing materials were examined, and their impact on the SERS spectra is presented here. The feasibility of interfacing flow injection based SERS detection methods with liquid or high performance liquid chromatography for the detection of individual components in a complex mixture is also assessed.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '2', 'urlcheck' => '2014-10-11 18:36:03', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => null, 'pauthor' => 'Cotton, T.M.', 'address' => 'Department of Chemistry, Iowa State University, Ames, Iowa 50011 USA', 'email' => 'NA', 'notes' => null, 'url' => '10.1021/ac00217a012', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Flow injection analysis and real-time detection of RNA bases by surface-enhanced Raman spectroscopy', Anal. Chem., 1990 62(18) 1958-1963', 'firstchar' => 'F', 'twochars' => 'Fl', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 7 => array( 'id' => '009344', 'authors' => 'Laserna, J.J.;Berthod, A.;Winefordner, J.D.', 'authorsweb' => 'J. J. Laserna, A. Berthod and J. D. Winefordner*', 'title' => 'Evaluation and optimization of experimental conditions for surface-enhanced raman detection of analytes in flow injection analysis', 'journal' => 'Microchem. J.', 'journal_id' => '0639', 'fadid' => 'MCHJ1988V0038P00125', 'year' => '1988', 'volume' => '38', 'issue' => '1', 'startpage' => '125', 'endpage' => '126', 'type' => 'Journal Article', 'analytes' => ';0399;0055;', 'matrices' => '', 'techniques' => ';0410;', 'keywords' => ';0110;0302;', 'abstract' => 'The Raman instrumentation included a 100-mW Ar ion laser operated at 514.5 nm, a double monochromator and a cooled Hamamatsu R-928 photomultiplier tube with photon counting system as the detector. Vertically polarized light was used, with right-angle geometry for Raman sampling and a long-wave-pass glass filter to suppress Rayleigh-scattered light. Spectra were obtained by single scans. Flow streams of 1 mM AgNO3 and 2 mM NaBH4 were merged to form a silver hydrosol matrix, and 4-aminobenzoic acid(I) and acridin-9-amine were used successfully as test analytes. The detector flow-cell was a silica tube (3 mm x 0.5 mm;~0.6 µL). For maximum signal response with I, the total flow rate was 0.7 mL min-1 and the pH was adjusted with HNO3 to 3.2.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '14', 'urlcheck' => '2014-10-12 00:26:48', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '01400', 'pauthor' => '!Winefordner, J.D.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1016/0026-265X(88)90011-2', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Evaluation and optimization of experimental conditions for surface-enhanced raman detection of analytes in flow injection analysis', Microchem. J., 1988 38(1) 125-126', 'firstchar' => 'E', 'twochars' => 'Ev', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 8 => array( 'id' => '010331', 'authors' => 'Gouveia, V.J.P.;Gutz, I.G.R.;Rubim, J.C.', 'authorsweb' => 'Vitor J. P. Gouveia, Ivano G. Gutz and Joel C. Rubim*', 'title' => 'New spectroelectrochemical cell for flow injection analysis and its application to the determination of iron(II) down to the femtomole level by surface-enhanced resonance Raman scattering (SERRS)', 'journal' => 'J. Electroanal. Chem.', 'journal_id' => '0709', 'fadid' => 'JECH1994V0371P00037', 'year' => '1994', 'volume' => '371', 'issue' => '1-2', 'startpage' => '37', 'endpage' => '42', 'type' => 'Journal Article', 'analytes' => ';1294;', 'matrices' => ';0404;', 'techniques' => ';0226;0410;', 'keywords' => '', 'abstract' => 'A principal feature of the cell (diagrams presented) is the in situ renewal of the surface-enhanced Raman-active Ag substratum. Before injection of the analyte, Ag+ are introduced, and Ag is electro-deposited on a vitreous-carbon electrode; after the Raman spectrum of the adsorbed analyte has been recorded, the Ag is removed by anodic stripping. Fe(II) was determined in a 130 µL injected sample as its tris(bipyridyl) complex, which exhibits both a resonance Raman effect when excited with Ar+ laser 514.5 nm radiation and surface-enhanced Raman scattering when adsorbed on Ag. The calibration graph was sigmoidal, but usable for 10 nM-10 µM-Fe(II), and the detection limit was 1 nM, which represented detection of Fe(II) at the femtomole level.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '13', 'urlcheck' => '2014-10-12 09:04:46', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => null, 'pauthor' => 'Rubim, J.C.', 'address' => 'Institututo de Química da Universidade de São Paulo C.P.20780, 01498, São Paulo, SP Brazil', 'email' => 'NA', 'notes' => null, 'url' => '10.1016/0022-0728(93)03220-J', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''New spectroelectrochemical cell for flow injection analysis and its application to the determination of iron(II) down to the femtomole level by surface-enhanced resonance Raman scattering (SERRS)', J. Electroanal. Chem., 1994 371(1-2) 37-42', 'firstchar' => 'N', 'twochars' => 'Ne', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array( [maximum depth reached] ), 'Keyword' => array([maximum depth reached]) ), (int) 9 => array( 'id' => '013707', 'authors' => 'Weissenbacher, N.;Lendl, B.;Frank, J.;Wanzenbock, H.D.;Mizaikoff, B.;Kellner, R.', 'authorsweb' => 'N. Weissenbacher*, B. Lendl, J. Frank, H. D. Wanzenböck, B. Mizaikoff and R. Kellner', 'title' => 'Continuous surface-enhanced raman-spectroscopy for the detection of trace organic pollutants in aqueous systems', 'journal' => 'J. Mol. Struct.', 'journal_id' => '0628', 'fadid' => 'JMRS1997V0410P00539', 'year' => '1997', 'volume' => '410', 'issue' => '1', 'startpage' => '539', 'endpage' => '542', 'type' => 'Journal Article', 'analytes' => ';2050;1583;1774;0504;1478;', 'matrices' => '', 'techniques' => ';0410;', 'keywords' => '', 'abstract' => 'In Raman spectroscopy, detection limits for organic pollutants in water can be lowered by several orders of magnitude when surface enhanced techniques are applied. In this work a continuous analytical device based on flow injection analysis using SERS detection is proposed. This system was tested with model analytes such as pyridine and nicotinic acid as well as several pesticides (carbendazim, metazachlorine). (C) 1997 Elsevier Science B.V. 22 References', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'No', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '3', 'urlcheck' => '2014-10-12 09:49:43', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => null, 'pauthor' => 'Weissenbacher, N.', 'address' => 'Institute for Analytical Chemistry, Vienna University of Technology, Getreidemarkt 9/151, A-1060, Vienna, Austria', 'email' => 'NA', 'notes' => null, 'url' => '10.1016/S0022-2860(96)09531-2', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Continuous surface-enhanced raman-spectroscopy for the detection of trace organic pollutants in aqueous systems', J. Mol. Struct., 1997 410(1) 539-542', 'firstchar' => 'C', 'twochars' => 'Co', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array([maximum depth reached]) ), (int) 10 => array( 'id' => '014097', 'authors' => 'Sawata, S.;Kai, E.;Ikebukuro, K.;Iida, T.;Honda, T.;Karube, I.', 'authorsweb' => 'Sawata S, Kai E, Ikebukuro K, Iida T, Honda T, Karube I.', 'title' => 'Novel detection system of flow injection analysis. 1. The existence of significant relation between secondary structure of DNA and sensitivity in signal detection', 'journal' => 'Nucleic Acids Symp. Ser.', 'journal_id' => '1346', 'fadid' => 'NASS1997V0037P00247', 'year' => '1997', 'volume' => '37', 'issue' => '1', 'startpage' => '247', 'endpage' => '248', 'type' => 'Journal Article', 'analytes' => ';0847;', 'matrices' => '', 'techniques' => ';0410;', 'keywords' => ';0401;', 'abstract' => 'Polymerase Chain Reaction (PCR) products were detected quantitatively using a flow injection type sensor, based on Surface Plasmon Resonance (SPR). We used asymmetric PCR to amplify the two kinds of products; their DNA lengths are different. This novel design permitted us not only to detect PCR products with high-sensitivity, but also to develop a rapid DNA detection system for the sense of the genetic pathogen.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'No', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '0', 'urlcheck' => '2014-10-13 19:09:08', 'urlcheckcode' => 'HTTP/1.1 200 OK', 'pauthor_id' => '00227', 'pauthor' => '!Karube, I.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => 'www.ncbi.nlm.nih.gov/pubmed/9586092', 'urltype' => 'absurl', 'gotpdf' => 'no', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Novel detection system of flow injection analysis. 1. The existence of significant relation between secondary structure of DNA and sensitivity in signal detection', Nucleic Acids Symp. Ser., 1997 37(1) 247-248', 'firstchar' => 'N', 'twochars' => 'No', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 11 => array( 'id' => '014429', 'authors' => 'Storey, J.M.E.;Barber, T.E.;Shelton, R.D.;Wachter, E.A.;Carron, K.T.;Jiang, Y.', 'authorsweb' => 'NA', 'title' => 'Applications of surface-enhanced Raman scattering (SERS) to chemical detection', 'journal' => 'Spectroscopy', 'journal_id' => '0489', 'fadid' => 'STRS1995V0010P00020', 'year' => '1995', 'volume' => '10', 'issue' => '3', 'startpage' => '20', 'endpage' => '25', 'type' => 'Journal Article', 'analytes' => ';0716;1186;1582;', 'matrices' => ';0343;0372;', 'techniques' => ';0410;', 'keywords' => ';0389;', 'abstract' => 'lectrochemical surface-enhanced Raman spectrometry (SERS) was used to detect chlorinated hydrocarbons in ground water, in tobacco smoke and aqueous cyanide ions. Hybrid substrate SERS was used for the detection of organic compounds in liquid and gas phases, using a flow-through cell. The experimental protocols were described previously. (Appl Spectrosc., 1994, 48, 1265; Shelton et al., Ibid., 1994, 48, 1007; Wachter et al.,Ibid., 1995, 49, 193; and Barber et al., Ibid., 1994, 48, 1423). The detection limits for hydrocarbons in electrolytes were a few ppm; they were an order of magnitude higher in groundwater. No calibration data are given. The response to cyanide was linear for 10^-100 ppm. The detection limit for nicotine in smoke was 15 ppb (no calibration data given). The advantages and limitations of the methods are discussed and future research directions are outlined.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'No', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '0', 'urlcheck' => '2006-05-20 19:26:31', 'urlcheckcode' => '', 'pauthor_id' => null, 'pauthor' => 'NA', 'address' => 'Oak Ridge Natl. Lab., Health Sci. Res. Div., Oak Ridge, TN 37831-6113 UK', 'email' => 'NA', 'notes' => null, 'url' => 'NA', 'urltype' => 'NA', 'gotpdf' => 'no', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Applications of surface-enhanced Raman scattering (SERS) to chemical detection', Spectroscopy, 1995 10(3) 20-25', 'firstchar' => 'A', 'twochars' => 'Ap', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array( [maximum depth reached] ), 'Keyword' => array( [maximum depth reached] ) ), (int) 12 => array( 'id' => '014511', 'authors' => 'Fujiwara, K.;Ito, S.', 'authorsweb' => 'Kitao Fujiwara and Seiji Ito', 'title' => 'Application of waveguiding in solutions for absorption and fluorescence spectrometry', 'journal' => 'Trends Anal. Chem.', 'journal_id' => '0653', 'fadid' => 'TRAC1991V0010P00184', 'year' => '1991', 'volume' => '10', 'issue' => '6', 'startpage' => '184', 'endpage' => '190', 'type' => 'Journal Article', 'analytes' => '', 'matrices' => '', 'techniques' => ';0252;0410;', 'keywords' => ';0043;0167;0521;', 'abstract' => 'Several waveguiding techniques in solution are presented in the context of spectrometry. Although light propagation in dense media via total reflection is a commonly used technique with optical fibers, it is also possible in solutions. This is very useful for improving both sensitivity and spatial resolution, especially in absorption and fluorescence spectrometry, by elongating the optical path length and controlling the angle of incidence of light in the measurement area of a sample. ', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'No', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '26', 'urlcheck' => '2014-10-12 02:21:14', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => null, 'pauthor' => 'NA', 'address' => 'NA', 'email' => 'NA', 'notes' => null, 'url' => '10.1016/0165-9936(91)85019-N', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Application of waveguiding in solutions for absorption and fluorescence spectrometry', Trends Anal. Chem., 1991 10(6) 184-190', 'firstchar' => 'A', 'twochars' => 'Ap', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array([maximum depth reached]), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 13 => array( 'id' => '014536', 'authors' => 'Vo Dinh, T.', 'authorsweb' => 'Tuan Vo-Dinh', 'title' => 'Surface enhanced raman spectroscopy using metallic nanostructures', 'journal' => 'Trends Anal. Chem.', 'journal_id' => '0653', 'fadid' => 'TRAC1998V0017P00557', 'year' => '1998', 'volume' => '17', 'issue' => '8-9', 'startpage' => '557', 'endpage' => '582', 'type' => 'Journal Article', 'analytes' => '', 'matrices' => ';0404;0093;', 'techniques' => ';0410;', 'keywords' => ';0043;0215;0389;', 'abstract' => 'This article provides an overview of the development and application of the surface-enhanced Raman scattering (SERS) techniques using metal-coated nanostructures on solid substrates, An introduction to theoretical principles of the SERS effect and the different SERS-active media is presented. The focus is on nanostructured solid substrates and their practical applications in chemical, environmental and biomedical areas. Specific examples of analytical techniques, instruments and sensors developed in the author's laboratory will be discussed to illustrate the usefulness and potential of the SERS techniques.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'No', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '38', 'urlcheck' => '2014-10-12 10:04:45', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => null, 'pauthor' => 'Vo Dinh, T.', 'address' => 'Advanced Monitoring Development Group, Life Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6101, USA', 'email' => 'NA', 'notes' => null, 'url' => '10.1016/S0165-9936(98)00069-7', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Surface enhanced raman spectroscopy using metallic nanostructures', Trends Anal. Chem., 1998 17(8-9) 557-582', 'firstchar' => 'S', 'twochars' => 'Su', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array([maximum depth reached]), 'Matrix' => array( [maximum depth reached] ), 'Keyword' => array( [maximum depth reached] ) ), (int) 14 => array( 'id' => '014560', 'authors' => 'Ruperez, A.;Montes, R.;Laserna, J.J.', 'authorsweb' => 'A. Rupérez, R. Montes and J. J. Laserna*', 'title' => 'Identification of stimulant drugs by surface-enhanced raman spectrometry on colloidal silver', 'journal' => 'Vib. Spectrosc.', 'journal_id' => '0655', 'fadid' => 'VIBS1991V0002P00145', 'year' => '1991', 'volume' => '2', 'issue' => '2-3', 'startpage' => '145', 'endpage' => '154', 'type' => 'Journal Article', 'analytes' => ';0862;', 'matrices' => '', 'techniques' => ';0032;0055;0410;', 'keywords' => '', 'abstract' => 'The surface-enhanced Raman (SER) spectra of stimulant drugs, including mefenorex, pentylenetetrazole, -amphetamine and pemoline, were obtained on colloidal silver. Silver colloids are prepared in a single step, at room temperature, by chemical reduction of Ag+ with sodium tetrahydroborate. Spectra are recorded using drug concentrations at the g mL-1 level. Individual drugs can be identified by characteristic vibrational bands. The SER spectrum of human urine and that of human urine spiked with mixtures of stimulant drugs are reported.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'No', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '7', 'urlcheck' => '2014-10-12 02:21:21', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '01097', 'pauthor' => '!Laserna, J.J.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1016/0924-2031(91)85020-N', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Identification of stimulant drugs by surface-enhanced raman spectrometry on colloidal silver', Vib. Spectrosc., 1991 2(2-3) 145-154', 'firstchar' => 'I', 'twochars' => 'Id', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array([maximum depth reached]) ) ) ) $c = array( 'id' => '008516', 'authors' => 'Force, R.K.', 'authorsweb' => 'R. Ken Force', 'title' => 'Surface-enhanced raman spectroscopy at a silver electrode as a detector in flow injection analysis', 'journal' => 'Anal. Chem.', 'journal_id' => '0499', 'fadid' => 'ANCH1988V0060P01987', 'year' => '1988', 'volume' => '60', 'issue' => '18', 'startpage' => '1987', 'endpage' => '1989', 'type' => 'Journal Article', 'analytes' => '', 'matrices' => '', 'techniques' => ';0214;0410;', 'keywords' => '', 'abstract' => 'A Ag-ring reference (diameter 5 mm) and a Ag-disc working electrode (diameter 3 mm) were sealed 1 mm apart in a Pyrex tube (o.d. 7 mm) and polished smooth. The Ag ring was anodized at 0.4 V (vs. a SCE) in 0.1 M KCl to produce a Ag - AgCl reference electrode with a potential of ~0.190 to ~0.200 V (vs. a NHE) in the 0.1 M KCl used as mobile phase and supporting electrolyte. The apparatus was applied in flow injection analysis for 50.0 mM pyridine (1 mL injections) in KCl flowing at 2 mL min-1. The potential was held at -0.6 V. Raman spectra were recorded from 990 to 1050 cm-1 in 2-cm-1 steps. A detection limit of ~250 nM was achieved. A Ag-ring reference (diameter 5 mm) and a Ag-disc working electrode (diameter 3 mm) were sealed 1 mm apart in a Pyrex tube (o.d. 7 mm) and polished smooth.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '0', 'urlcheck' => '2014-10-11 18:35:15', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '00965', 'pauthor' => '!Force, R.K.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1021/ac00169a033', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Surface-enhanced raman spectroscopy at a silver electrode as a detector in flow injection analysis', Anal. Chem., 1988 60(18) 1987-1989', 'firstchar' => 'S', 'twochars' => 'Su', 'CitationsTechnique' => array( 'id' => '006228', 'citation_id' => '008516', 'technique_id' => '0410' ), 'Analyte' => array(), 'Matrix' => array(), 'Keyword' => array() ) $i = (int) 4 $path = '' $a = '' $url = 'http://dx.doi.org/10.1021/ac00169a033' $aus = 'R. Ken Force'include - APP/View/Elements/citation.ctp, line 40 View::_evaluate() - CORE/Cake/View/View.php, line 971 View::_render() - CORE/Cake/View/View.php, line 933 View::_renderElement() - CORE/Cake/View/View.php, line 1224 View::element() - CORE/Cake/View/View.php, line 418 include - APP/View/Techniques/view.ctp, line 52 View::_evaluate() - CORE/Cake/View/View.php, line 971 View::_render() - CORE/Cake/View/View.php, line 933 View::render() - CORE/Cake/View/View.php, line 473 Controller::render() - CORE/Cake/Controller/Controller.php, line 968 Dispatcher::_invoke() - CORE/Cake/Routing/Dispatcher.php, line 200 Dispatcher::dispatch() - CORE/Cake/Routing/Dispatcher.php, line 167 [main] - APP/webroot/index.php, line 109
"Surface-enhanced Raman Spectroscopy At A Silver Electrode As A Detection System In Flowing Streams"
Anal. Chem.
1990 Volume 62, Issue 7 Pages 678-680
Notice (8): Undefined variable: uid [APP/View/Elements/citation.ctp, line 40]Neil J. Pothier and R. Ken ForceCode Context?>
<?php
if($uid!='') {
$viewFile = '/home/stuchalk/public_html/fad/app/View/Elements/citation.ctp' $dataForView = array( 'data' => array( 'Technique' => array( 'id' => '0410', 'label' => 'Raman', 'level1' => 'Raman', 'level2' => 'surface enhanced', 'level3' => '', 'level4' => '', 'level5' => '', 'synonyms' => 'Surface enhanced raman spectroscopy,SERS', 'champ' => '', 'total' => '15', 'updated' => '0000-00-00 00:00:00', 'name' => 'Raman, surface enhanced', 'nametotal' => 'Raman, surface enhanced**15', 'first' => 'R' ), 'Citation' => array( (int) 0 => array( [maximum depth reached] ), (int) 1 => array( [maximum depth reached] ), (int) 2 => array( [maximum depth reached] ), (int) 3 => array( [maximum depth reached] ), (int) 4 => array( [maximum depth reached] ), (int) 5 => array( [maximum depth reached] ), (int) 6 => array( [maximum depth reached] ), (int) 7 => array( [maximum depth reached] ), (int) 8 => array( [maximum depth reached] ), (int) 9 => array( [maximum depth reached] ), (int) 10 => array( [maximum depth reached] ), (int) 11 => array( [maximum depth reached] ), (int) 12 => array( [maximum depth reached] ), (int) 13 => array( [maximum depth reached] ), (int) 14 => array( [maximum depth reached] ) ) ), 'c' => array( 'id' => '008566', 'authors' => 'Pothier, N.J.;Force, R.K.', 'authorsweb' => 'Neil J. Pothier and R. Ken Force', 'title' => 'Surface-enhanced raman spectroscopy at a silver electrode as a detection system in flowing streams', 'journal' => 'Anal. Chem.', 'journal_id' => '0499', 'fadid' => 'ANCH1990V0062P00678', 'year' => '1990', 'volume' => '62', 'issue' => '7', 'startpage' => '678', 'endpage' => '680', 'type' => 'Journal Article', 'analytes' => ';0064;2356;0747;', 'matrices' => '', 'techniques' => ';0410;0210;0038;', 'keywords' => ';0276;0446;0109;', 'abstract' => 'A three-electrode surface-enhanced Raman spectroscopy detector, with a Ag working electrode, Pt foil auxiliary electrode and SCE reference and a cell volume of 30 µL, was evaluated for use with HPLC and flow injection analysis. In a flowing system, the analyte is rapidly removed from the electrode surface in 10 s, and spectra was obtained in 5 s with an optical multichannel analyzer.. Under stopped-flow conditions, detection limits were 175, 233 and 211 pmol for adenine, thymine and cytosine, respectively.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '3', 'urlcheck' => '2014-10-11 18:35:47', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '00965', 'pauthor' => '!Force, R.K.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1021/ac00206a005', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Surface-enhanced raman spectroscopy at a silver electrode as a detection system in flowing streams', Anal. Chem., 1990 62(7) 678-680', 'firstchar' => 'S', 'twochars' => 'Su', 'CitationsTechnique' => array( 'id' => '006310', 'citation_id' => '008566', 'technique_id' => '0410' ), 'Analyte' => array( (int) 0 => array( [maximum depth reached] ), (int) 1 => array( [maximum depth reached] ), (int) 2 => array( [maximum depth reached] ) ), 'Matrix' => array(), 'Keyword' => array( (int) 0 => array( [maximum depth reached] ), (int) 1 => array( [maximum depth reached] ), (int) 2 => array( [maximum depth reached] ) ) ), 'i' => (int) 5 ) $data = array( 'Technique' => array( 'id' => '0410', 'label' => 'Raman', 'level1' => 'Raman', 'level2' => 'surface enhanced', 'level3' => '', 'level4' => '', 'level5' => '', 'synonyms' => 'Surface enhanced raman spectroscopy,SERS', 'champ' => '', 'total' => '15', 'updated' => '0000-00-00 00:00:00', 'name' => 'Raman, surface enhanced', 'nametotal' => 'Raman, surface enhanced**15', 'first' => 'R' ), 'Citation' => array( (int) 0 => array( 'id' => '006258', 'authors' => 'Cabalin, L.M.;Ruperez, A.;Laserna, J.J.', 'authorsweb' => 'L. M. Cabalín, A. Rupérez and J. J. Laserna*', 'title' => 'Flow injection analysis and liquid chromatography: surface enhanced Raman spectrometry detection by using a windowless flow cell', 'journal' => 'Anal. Chim. Acta', 'journal_id' => '0584', 'fadid' => 'ANCA1996V0318P00203', 'year' => '1996', 'volume' => '318', 'issue' => '2', 'startpage' => '203', 'endpage' => '210', 'type' => 'Journal Article', 'analytes' => ';0146;0199;2037;1732;2402;', 'matrices' => '', 'techniques' => ';0032;0410;', 'keywords' => ';0167;0302;', 'abstract' => 'A windowless flow cell was developed for detection by surface-enhanced Raman spectrometry (SERS) in FIA and LC. The flow cell consisted of two stainless-steel tubes (0.16 mm i.d.; 1.4 mm o.d.) mounted on an Al frame so that the ends were ~e;1.6 mm apart. The liquid draining from the upper to the lower tube was supported by surface tension and formed a column (1.4 mm diameter). The mobile phase from the FIA or LC was merged with a silver hydrosol stream then propelled in to the flow cell. The Raman spectra were recorded using a focussed Ar ion laser beam (488 nm; 85 mW) as the source. The performance of the flow cell was optimized using five drugs (amiloride, amiphenazole, 2-mercaptopyridine, pemoline and triamterene) as model analytes. The maximum SERS signal was obtained with flow rates of 0.075 ml/ml and 1.5 ml/ml for the mobile phase and silver hydrosol, respectively. The reproducibility (n = 5) of the FIA-SERS system for the determination of 625 ng amiloride was 1%.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '1', 'urlcheck' => '2014-10-11 16:18:55', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '01097', 'pauthor' => '!Laserna, J.J.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1016/0003-2670(95)00441-6', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Flow injection analysis and liquid chromatography: surface enhanced Raman spectrometry detection by using a windowless flow cell', Anal. Chim. Acta, 1996 318(2) 203-210', 'firstchar' => 'F', 'twochars' => 'Fl', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 1 => array( 'id' => '006451', 'authors' => 'Somsen, G.W.;Coulter, S.K.;Gooijer, C.;Velthorst, N.H.;Brinkman, U.A.T.', 'authorsweb' => 'G. W. Somsen*, S. K. Coulter, C. Gooijer, N. H. Velthorst and U. A. Th. Brinkman', 'title' => 'Coupling of column liquid-chromatography and surface-enhanced resonance raman-spectroscopy via a thin-layer chromatographic plate', 'journal' => 'Anal. Chim. Acta', 'journal_id' => '0584', 'fadid' => 'ANCA1997V0349P00189', 'year' => '1997', 'volume' => '349', 'issue' => '1-3', 'startpage' => '189', 'endpage' => '197', 'type' => 'Journal Article', 'analytes' => '', 'matrices' => '', 'techniques' => ';0410;0038;', 'keywords' => ';0339;0302;', 'abstract' => 'Surface-enhanced resonance Raman (SERR) spectroscopy was used to characterize compounds separated by column liquid chromatography (LC). Three percent of the effluent from a conventional-size LC column were immobilized on a moving thin-layer chromatography (TLC) plate using a spray-jet solvent-elimination interface. Next, colloidal silver was applied to the analyte spots and in situ SERR spectra were recorded with a multichannel micro-Raman spectrometer. Storage of the LC effluent avoids the need to use a continuous-flow of colloidal silver and, in principle allows compounds to be detected independently of LC conditions like eluent composition and flow rate. Using dyes as test compounds, the method was optimized and aspects were studied such as type of TLC plate, LC separation of the dyes, preservation of LC integrity during immobilization, and SERR analysis of the deposited compounds. With a silica TLC plate as deposition substrate, good-quality and characteristic SERR spectra were obtained for the dyes which were separated on a cyanoproyl-modified silica LC column with methanol-water containing the volatile additives ammonium acetate and triethylamine as eluent. The minimum identifiable concentration of the dyes was about 250 ng mL-1 (750 pg applied on the plate). For some strong Raman scatterers such as nile blue and pararosaniline, the major spectral peaks could be observed down to concentrations of 25 ng mL-1. 36 References', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '3', 'urlcheck' => '2014-10-11 16:23:46', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '01300', 'pauthor' => '!Somsen, G.W.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1016/S0003-2670(97)00011-1', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Coupling of column liquid-chromatography and surface-enhanced resonance raman-spectroscopy via a thin-layer chromatographic plate', Anal. Chim. Acta, 1997 349(1-3) 189-197', 'firstchar' => 'C', 'twochars' => 'Co', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array([maximum depth reached]), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 2 => array( 'id' => '006887', 'authors' => 'Laserna, J.J.;Berthod, A.;Winefordner, J.D.', 'authorsweb' => 'J. J. Laserna, A. Berthod and J. D. Winefordner ', 'title' => 'Quantitative analysis by surface-enhanced raman spectrometry on silver hydrosols in a flow injection system', 'journal' => 'Talanta', 'journal_id' => '0569', 'fadid' => 'TALT1987V0034P00745', 'year' => '1987', 'volume' => '34', 'issue' => '8', 'startpage' => '745', 'endpage' => '747', 'type' => 'Journal Article', 'analytes' => ';0056;0401;', 'matrices' => '', 'techniques' => ';0410;', 'keywords' => ';0457;', 'abstract' => 'The application of surface-enhanced Raman scattering (SERS) in quantitative analysis is demonstrated by the determination of 4-aminobenzoic acid(I) and acridin-9-amine(II) on silver suspensions by SERS in a flow injection system. Two peristaltic pumps were used to mix 2 mM NaBH4 and 1 mM AgNO3 and pump the resulting silver suspension through the flow injection analysis system. The flow injection analysis system is described (with diagram). The sample solution contained I in aqueous 40% ethanol or II in ethanol. The calibration graph was rectilinear for 4 to 100 µg mL-1 of I, and the coefficient of variation (n = 6) was 3.2%. The system required cleaning with 40% HNO3 after 10 to 15 injections.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '7', 'urlcheck' => '2014-10-11 14:54:34', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '01400', 'pauthor' => '!Winefordner, J.D.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1016/0039-9140(87)80234-5', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Quantitative analysis by surface-enhanced raman spectrometry on silver hydrosols in a flow injection system', Talanta, 1987 34(8) 745-747', 'firstchar' => 'Q', 'twochars' => 'Qu', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 3 => array( 'id' => '007977', 'authors' => 'Weissenbacher, N.;Lendl, B.;Frank, J.;Wanzenbock, H.D.;Kellner, R.', 'authorsweb' => 'N. Weißenbacher, B. Lendl, J. Frank, H. D. Wanzenböck and R. Kellner', 'title' => 'Surface enhanced raman spectroscopy as a molecular specific detection system in aqueous flow-through systems', 'journal' => 'Analyst', 'journal_id' => '0864', 'fadid' => 'ANAL1998V0123P01057', 'year' => '1998', 'volume' => '123', 'issue' => '5', 'startpage' => '1057', 'endpage' => '1060', 'type' => 'Journal Article', 'analytes' => ';1583;', 'matrices' => '', 'techniques' => ';0410;0409;', 'keywords' => ';0446;0167;0043;0258;', 'abstract' => 'Surface enhanced Raman scattering (SERS) is proposed as a mol. specific technique for direct measurements of organic molecules in aqueous solutions An FT-Raman spectrometer was interfaced with a flow injection manifold operated in the stopped-flow mode enabling reproducible collection of SERS spectra due to the automation of the anal. procedure. For SERS a solid state substrate placed in a newly developed flow-cell was used. Multiple measurements on one single SERS substrate were achieved by rinsing the substrate with reagents such as 3 M KCl or 0.1 M NaOH solutions prior to the next measurements to remove retained analytes from the surface of the SERS substrate. This procedure allowed for improved precision as compared with a conventional batch approach. Quant. aspects were studied by establishing a calibration curve for nicotinic acid which was used as a model analyte. A linear dependence of the recorded SERS intensities from the logarithm of the analyte concentration. was obtained throughout the whole studied concentration. range (0.001-0.1 M, correlation coefficient r2 = 0.97). The standard deviation of the method sx0 is 0.122 mM and detection limit 1.7 mM, respectively. The results demonstrate the potential of SERS spectroscopy to be used as a molecular specific detector in aqueous flow systems such as flow injection anal.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '5', 'urlcheck' => '2014-10-12 09:52:18', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '00241', 'pauthor' => '!Lendl, B.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1039/a705837c', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Surface enhanced raman spectroscopy as a molecular specific detection system in aqueous flow-through systems', Analyst, 1998 123(5) 1057-1060', 'firstchar' => 'S', 'twochars' => 'Su', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 4 => array( 'id' => '008516', 'authors' => 'Force, R.K.', 'authorsweb' => 'R. Ken Force', 'title' => 'Surface-enhanced raman spectroscopy at a silver electrode as a detector in flow injection analysis', 'journal' => 'Anal. Chem.', 'journal_id' => '0499', 'fadid' => 'ANCH1988V0060P01987', 'year' => '1988', 'volume' => '60', 'issue' => '18', 'startpage' => '1987', 'endpage' => '1989', 'type' => 'Journal Article', 'analytes' => '', 'matrices' => '', 'techniques' => ';0214;0410;', 'keywords' => '', 'abstract' => 'A Ag-ring reference (diameter 5 mm) and a Ag-disc working electrode (diameter 3 mm) were sealed 1 mm apart in a Pyrex tube (o.d. 7 mm) and polished smooth. The Ag ring was anodized at 0.4 V (vs. a SCE) in 0.1 M KCl to produce a Ag - AgCl reference electrode with a potential of ~0.190 to ~0.200 V (vs. a NHE) in the 0.1 M KCl used as mobile phase and supporting electrolyte. The apparatus was applied in flow injection analysis for 50.0 mM pyridine (1 mL injections) in KCl flowing at 2 mL min-1. The potential was held at -0.6 V. Raman spectra were recorded from 990 to 1050 cm-1 in 2-cm-1 steps. A detection limit of ~250 nM was achieved. A Ag-ring reference (diameter 5 mm) and a Ag-disc working electrode (diameter 3 mm) were sealed 1 mm apart in a Pyrex tube (o.d. 7 mm) and polished smooth.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '0', 'urlcheck' => '2014-10-11 18:35:15', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '00965', 'pauthor' => '!Force, R.K.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1021/ac00169a033', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Surface-enhanced raman spectroscopy at a silver electrode as a detector in flow injection analysis', Anal. Chem., 1988 60(18) 1987-1989', 'firstchar' => 'S', 'twochars' => 'Su', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array([maximum depth reached]), 'Matrix' => array([maximum depth reached]), 'Keyword' => array([maximum depth reached]) ), (int) 5 => array( 'id' => '008566', 'authors' => 'Pothier, N.J.;Force, R.K.', 'authorsweb' => 'Neil J. Pothier and R. Ken Force', 'title' => 'Surface-enhanced raman spectroscopy at a silver electrode as a detection system in flowing streams', 'journal' => 'Anal. Chem.', 'journal_id' => '0499', 'fadid' => 'ANCH1990V0062P00678', 'year' => '1990', 'volume' => '62', 'issue' => '7', 'startpage' => '678', 'endpage' => '680', 'type' => 'Journal Article', 'analytes' => ';0064;2356;0747;', 'matrices' => '', 'techniques' => ';0410;0210;0038;', 'keywords' => ';0276;0446;0109;', 'abstract' => 'A three-electrode surface-enhanced Raman spectroscopy detector, with a Ag working electrode, Pt foil auxiliary electrode and SCE reference and a cell volume of 30 µL, was evaluated for use with HPLC and flow injection analysis. In a flowing system, the analyte is rapidly removed from the electrode surface in 10 s, and spectra was obtained in 5 s with an optical multichannel analyzer.. Under stopped-flow conditions, detection limits were 175, 233 and 211 pmol for adenine, thymine and cytosine, respectively.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '3', 'urlcheck' => '2014-10-11 18:35:47', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '00965', 'pauthor' => '!Force, R.K.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1021/ac00206a005', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Surface-enhanced raman spectroscopy at a silver electrode as a detection system in flowing streams', Anal. Chem., 1990 62(7) 678-680', 'firstchar' => 'S', 'twochars' => 'Su', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 6 => array( 'id' => '008582', 'authors' => 'Ni, F.;Sheng, R.S.;Cotton, T.M.', 'authorsweb' => 'Fan Ni, Rongsheng Sheng, and Therese M. Cotton', 'title' => 'Flow injection analysis and real-time detection of RNA bases by surface-enhanced Raman spectroscopy', 'journal' => 'Anal. Chem.', 'journal_id' => '0499', 'fadid' => 'ANCH1990V0062P01958', 'year' => '1990', 'volume' => '62', 'issue' => '18', 'startpage' => '1958', 'endpage' => '1963', 'type' => 'Journal Article', 'analytes' => ';0365;', 'matrices' => '', 'techniques' => ';0410;0038;', 'keywords' => ';0216;0320;0302;', 'abstract' => 'Surface-enhanced Raman scattering (SERS) spectroscopy has been successfully interfaced with a flow injection analysis system to detect RNA bases in real time. Four of the major base components of RNA, uracil, cytosine, adenine, and guanine, were introduced into the flow injection system and were mixed with a Ag sol prior to SERS measurements. Several experimental parameters including pH, temperature, flow rate, and tubing materials were examined, and their impact on the SERS spectra is presented here. The feasibility of interfacing flow injection based SERS detection methods with liquid or high performance liquid chromatography for the detection of individual components in a complex mixture is also assessed.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '2', 'urlcheck' => '2014-10-11 18:36:03', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => null, 'pauthor' => 'Cotton, T.M.', 'address' => 'Department of Chemistry, Iowa State University, Ames, Iowa 50011 USA', 'email' => 'NA', 'notes' => null, 'url' => '10.1021/ac00217a012', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Flow injection analysis and real-time detection of RNA bases by surface-enhanced Raman spectroscopy', Anal. Chem., 1990 62(18) 1958-1963', 'firstchar' => 'F', 'twochars' => 'Fl', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 7 => array( 'id' => '009344', 'authors' => 'Laserna, J.J.;Berthod, A.;Winefordner, J.D.', 'authorsweb' => 'J. J. Laserna, A. Berthod and J. D. Winefordner*', 'title' => 'Evaluation and optimization of experimental conditions for surface-enhanced raman detection of analytes in flow injection analysis', 'journal' => 'Microchem. J.', 'journal_id' => '0639', 'fadid' => 'MCHJ1988V0038P00125', 'year' => '1988', 'volume' => '38', 'issue' => '1', 'startpage' => '125', 'endpage' => '126', 'type' => 'Journal Article', 'analytes' => ';0399;0055;', 'matrices' => '', 'techniques' => ';0410;', 'keywords' => ';0110;0302;', 'abstract' => 'The Raman instrumentation included a 100-mW Ar ion laser operated at 514.5 nm, a double monochromator and a cooled Hamamatsu R-928 photomultiplier tube with photon counting system as the detector. Vertically polarized light was used, with right-angle geometry for Raman sampling and a long-wave-pass glass filter to suppress Rayleigh-scattered light. Spectra were obtained by single scans. Flow streams of 1 mM AgNO3 and 2 mM NaBH4 were merged to form a silver hydrosol matrix, and 4-aminobenzoic acid(I) and acridin-9-amine were used successfully as test analytes. The detector flow-cell was a silica tube (3 mm x 0.5 mm;~0.6 µL). For maximum signal response with I, the total flow rate was 0.7 mL min-1 and the pH was adjusted with HNO3 to 3.2.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '14', 'urlcheck' => '2014-10-12 00:26:48', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '01400', 'pauthor' => '!Winefordner, J.D.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1016/0026-265X(88)90011-2', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Evaluation and optimization of experimental conditions for surface-enhanced raman detection of analytes in flow injection analysis', Microchem. J., 1988 38(1) 125-126', 'firstchar' => 'E', 'twochars' => 'Ev', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 8 => array( 'id' => '010331', 'authors' => 'Gouveia, V.J.P.;Gutz, I.G.R.;Rubim, J.C.', 'authorsweb' => 'Vitor J. P. Gouveia, Ivano G. Gutz and Joel C. Rubim*', 'title' => 'New spectroelectrochemical cell for flow injection analysis and its application to the determination of iron(II) down to the femtomole level by surface-enhanced resonance Raman scattering (SERRS)', 'journal' => 'J. Electroanal. Chem.', 'journal_id' => '0709', 'fadid' => 'JECH1994V0371P00037', 'year' => '1994', 'volume' => '371', 'issue' => '1-2', 'startpage' => '37', 'endpage' => '42', 'type' => 'Journal Article', 'analytes' => ';1294;', 'matrices' => ';0404;', 'techniques' => ';0226;0410;', 'keywords' => '', 'abstract' => 'A principal feature of the cell (diagrams presented) is the in situ renewal of the surface-enhanced Raman-active Ag substratum. Before injection of the analyte, Ag+ are introduced, and Ag is electro-deposited on a vitreous-carbon electrode; after the Raman spectrum of the adsorbed analyte has been recorded, the Ag is removed by anodic stripping. Fe(II) was determined in a 130 µL injected sample as its tris(bipyridyl) complex, which exhibits both a resonance Raman effect when excited with Ar+ laser 514.5 nm radiation and surface-enhanced Raman scattering when adsorbed on Ag. The calibration graph was sigmoidal, but usable for 10 nM-10 µM-Fe(II), and the detection limit was 1 nM, which represented detection of Fe(II) at the femtomole level.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '13', 'urlcheck' => '2014-10-12 09:04:46', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => null, 'pauthor' => 'Rubim, J.C.', 'address' => 'Institututo de Química da Universidade de São Paulo C.P.20780, 01498, São Paulo, SP Brazil', 'email' => 'NA', 'notes' => null, 'url' => '10.1016/0022-0728(93)03220-J', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''New spectroelectrochemical cell for flow injection analysis and its application to the determination of iron(II) down to the femtomole level by surface-enhanced resonance Raman scattering (SERRS)', J. Electroanal. Chem., 1994 371(1-2) 37-42', 'firstchar' => 'N', 'twochars' => 'Ne', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array( [maximum depth reached] ), 'Keyword' => array([maximum depth reached]) ), (int) 9 => array( 'id' => '013707', 'authors' => 'Weissenbacher, N.;Lendl, B.;Frank, J.;Wanzenbock, H.D.;Mizaikoff, B.;Kellner, R.', 'authorsweb' => 'N. Weissenbacher*, B. Lendl, J. Frank, H. D. Wanzenböck, B. Mizaikoff and R. Kellner', 'title' => 'Continuous surface-enhanced raman-spectroscopy for the detection of trace organic pollutants in aqueous systems', 'journal' => 'J. Mol. Struct.', 'journal_id' => '0628', 'fadid' => 'JMRS1997V0410P00539', 'year' => '1997', 'volume' => '410', 'issue' => '1', 'startpage' => '539', 'endpage' => '542', 'type' => 'Journal Article', 'analytes' => ';2050;1583;1774;0504;1478;', 'matrices' => '', 'techniques' => ';0410;', 'keywords' => '', 'abstract' => 'In Raman spectroscopy, detection limits for organic pollutants in water can be lowered by several orders of magnitude when surface enhanced techniques are applied. In this work a continuous analytical device based on flow injection analysis using SERS detection is proposed. This system was tested with model analytes such as pyridine and nicotinic acid as well as several pesticides (carbendazim, metazachlorine). (C) 1997 Elsevier Science B.V. 22 References', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'No', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '3', 'urlcheck' => '2014-10-12 09:49:43', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => null, 'pauthor' => 'Weissenbacher, N.', 'address' => 'Institute for Analytical Chemistry, Vienna University of Technology, Getreidemarkt 9/151, A-1060, Vienna, Austria', 'email' => 'NA', 'notes' => null, 'url' => '10.1016/S0022-2860(96)09531-2', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Continuous surface-enhanced raman-spectroscopy for the detection of trace organic pollutants in aqueous systems', J. Mol. Struct., 1997 410(1) 539-542', 'firstchar' => 'C', 'twochars' => 'Co', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array([maximum depth reached]) ), (int) 10 => array( 'id' => '014097', 'authors' => 'Sawata, S.;Kai, E.;Ikebukuro, K.;Iida, T.;Honda, T.;Karube, I.', 'authorsweb' => 'Sawata S, Kai E, Ikebukuro K, Iida T, Honda T, Karube I.', 'title' => 'Novel detection system of flow injection analysis. 1. The existence of significant relation between secondary structure of DNA and sensitivity in signal detection', 'journal' => 'Nucleic Acids Symp. Ser.', 'journal_id' => '1346', 'fadid' => 'NASS1997V0037P00247', 'year' => '1997', 'volume' => '37', 'issue' => '1', 'startpage' => '247', 'endpage' => '248', 'type' => 'Journal Article', 'analytes' => ';0847;', 'matrices' => '', 'techniques' => ';0410;', 'keywords' => ';0401;', 'abstract' => 'Polymerase Chain Reaction (PCR) products were detected quantitatively using a flow injection type sensor, based on Surface Plasmon Resonance (SPR). We used asymmetric PCR to amplify the two kinds of products; their DNA lengths are different. This novel design permitted us not only to detect PCR products with high-sensitivity, but also to develop a rapid DNA detection system for the sense of the genetic pathogen.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'No', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '0', 'urlcheck' => '2014-10-13 19:09:08', 'urlcheckcode' => 'HTTP/1.1 200 OK', 'pauthor_id' => '00227', 'pauthor' => '!Karube, I.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => 'www.ncbi.nlm.nih.gov/pubmed/9586092', 'urltype' => 'absurl', 'gotpdf' => 'no', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Novel detection system of flow injection analysis. 1. The existence of significant relation between secondary structure of DNA and sensitivity in signal detection', Nucleic Acids Symp. Ser., 1997 37(1) 247-248', 'firstchar' => 'N', 'twochars' => 'No', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 11 => array( 'id' => '014429', 'authors' => 'Storey, J.M.E.;Barber, T.E.;Shelton, R.D.;Wachter, E.A.;Carron, K.T.;Jiang, Y.', 'authorsweb' => 'NA', 'title' => 'Applications of surface-enhanced Raman scattering (SERS) to chemical detection', 'journal' => 'Spectroscopy', 'journal_id' => '0489', 'fadid' => 'STRS1995V0010P00020', 'year' => '1995', 'volume' => '10', 'issue' => '3', 'startpage' => '20', 'endpage' => '25', 'type' => 'Journal Article', 'analytes' => ';0716;1186;1582;', 'matrices' => ';0343;0372;', 'techniques' => ';0410;', 'keywords' => ';0389;', 'abstract' => 'lectrochemical surface-enhanced Raman spectrometry (SERS) was used to detect chlorinated hydrocarbons in ground water, in tobacco smoke and aqueous cyanide ions. Hybrid substrate SERS was used for the detection of organic compounds in liquid and gas phases, using a flow-through cell. The experimental protocols were described previously. (Appl Spectrosc., 1994, 48, 1265; Shelton et al., Ibid., 1994, 48, 1007; Wachter et al.,Ibid., 1995, 49, 193; and Barber et al., Ibid., 1994, 48, 1423). The detection limits for hydrocarbons in electrolytes were a few ppm; they were an order of magnitude higher in groundwater. No calibration data are given. The response to cyanide was linear for 10^-100 ppm. The detection limit for nicotine in smoke was 15 ppb (no calibration data given). The advantages and limitations of the methods are discussed and future research directions are outlined.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'No', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '0', 'urlcheck' => '2006-05-20 19:26:31', 'urlcheckcode' => '', 'pauthor_id' => null, 'pauthor' => 'NA', 'address' => 'Oak Ridge Natl. Lab., Health Sci. Res. Div., Oak Ridge, TN 37831-6113 UK', 'email' => 'NA', 'notes' => null, 'url' => 'NA', 'urltype' => 'NA', 'gotpdf' => 'no', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Applications of surface-enhanced Raman scattering (SERS) to chemical detection', Spectroscopy, 1995 10(3) 20-25', 'firstchar' => 'A', 'twochars' => 'Ap', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array( [maximum depth reached] ), 'Keyword' => array( [maximum depth reached] ) ), (int) 12 => array( 'id' => '014511', 'authors' => 'Fujiwara, K.;Ito, S.', 'authorsweb' => 'Kitao Fujiwara and Seiji Ito', 'title' => 'Application of waveguiding in solutions for absorption and fluorescence spectrometry', 'journal' => 'Trends Anal. Chem.', 'journal_id' => '0653', 'fadid' => 'TRAC1991V0010P00184', 'year' => '1991', 'volume' => '10', 'issue' => '6', 'startpage' => '184', 'endpage' => '190', 'type' => 'Journal Article', 'analytes' => '', 'matrices' => '', 'techniques' => ';0252;0410;', 'keywords' => ';0043;0167;0521;', 'abstract' => 'Several waveguiding techniques in solution are presented in the context of spectrometry. Although light propagation in dense media via total reflection is a commonly used technique with optical fibers, it is also possible in solutions. This is very useful for improving both sensitivity and spatial resolution, especially in absorption and fluorescence spectrometry, by elongating the optical path length and controlling the angle of incidence of light in the measurement area of a sample. ', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'No', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '26', 'urlcheck' => '2014-10-12 02:21:14', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => null, 'pauthor' => 'NA', 'address' => 'NA', 'email' => 'NA', 'notes' => null, 'url' => '10.1016/0165-9936(91)85019-N', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Application of waveguiding in solutions for absorption and fluorescence spectrometry', Trends Anal. Chem., 1991 10(6) 184-190', 'firstchar' => 'A', 'twochars' => 'Ap', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array([maximum depth reached]), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 13 => array( 'id' => '014536', 'authors' => 'Vo Dinh, T.', 'authorsweb' => 'Tuan Vo-Dinh', 'title' => 'Surface enhanced raman spectroscopy using metallic nanostructures', 'journal' => 'Trends Anal. Chem.', 'journal_id' => '0653', 'fadid' => 'TRAC1998V0017P00557', 'year' => '1998', 'volume' => '17', 'issue' => '8-9', 'startpage' => '557', 'endpage' => '582', 'type' => 'Journal Article', 'analytes' => '', 'matrices' => ';0404;0093;', 'techniques' => ';0410;', 'keywords' => ';0043;0215;0389;', 'abstract' => 'This article provides an overview of the development and application of the surface-enhanced Raman scattering (SERS) techniques using metal-coated nanostructures on solid substrates, An introduction to theoretical principles of the SERS effect and the different SERS-active media is presented. The focus is on nanostructured solid substrates and their practical applications in chemical, environmental and biomedical areas. Specific examples of analytical techniques, instruments and sensors developed in the author's laboratory will be discussed to illustrate the usefulness and potential of the SERS techniques.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'No', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '38', 'urlcheck' => '2014-10-12 10:04:45', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => null, 'pauthor' => 'Vo Dinh, T.', 'address' => 'Advanced Monitoring Development Group, Life Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6101, USA', 'email' => 'NA', 'notes' => null, 'url' => '10.1016/S0165-9936(98)00069-7', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Surface enhanced raman spectroscopy using metallic nanostructures', Trends Anal. Chem., 1998 17(8-9) 557-582', 'firstchar' => 'S', 'twochars' => 'Su', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array([maximum depth reached]), 'Matrix' => array( [maximum depth reached] ), 'Keyword' => array( [maximum depth reached] ) ), (int) 14 => array( 'id' => '014560', 'authors' => 'Ruperez, A.;Montes, R.;Laserna, J.J.', 'authorsweb' => 'A. Rupérez, R. Montes and J. J. Laserna*', 'title' => 'Identification of stimulant drugs by surface-enhanced raman spectrometry on colloidal silver', 'journal' => 'Vib. Spectrosc.', 'journal_id' => '0655', 'fadid' => 'VIBS1991V0002P00145', 'year' => '1991', 'volume' => '2', 'issue' => '2-3', 'startpage' => '145', 'endpage' => '154', 'type' => 'Journal Article', 'analytes' => ';0862;', 'matrices' => '', 'techniques' => ';0032;0055;0410;', 'keywords' => '', 'abstract' => 'The surface-enhanced Raman (SER) spectra of stimulant drugs, including mefenorex, pentylenetetrazole, -amphetamine and pemoline, were obtained on colloidal silver. Silver colloids are prepared in a single step, at room temperature, by chemical reduction of Ag+ with sodium tetrahydroborate. Spectra are recorded using drug concentrations at the g mL-1 level. Individual drugs can be identified by characteristic vibrational bands. The SER spectrum of human urine and that of human urine spiked with mixtures of stimulant drugs are reported.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'No', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '7', 'urlcheck' => '2014-10-12 02:21:21', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '01097', 'pauthor' => '!Laserna, J.J.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1016/0924-2031(91)85020-N', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Identification of stimulant drugs by surface-enhanced raman spectrometry on colloidal silver', Vib. Spectrosc., 1991 2(2-3) 145-154', 'firstchar' => 'I', 'twochars' => 'Id', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array([maximum depth reached]) ) ) ) $c = array( 'id' => '008566', 'authors' => 'Pothier, N.J.;Force, R.K.', 'authorsweb' => 'Neil J. Pothier and R. Ken Force', 'title' => 'Surface-enhanced raman spectroscopy at a silver electrode as a detection system in flowing streams', 'journal' => 'Anal. Chem.', 'journal_id' => '0499', 'fadid' => 'ANCH1990V0062P00678', 'year' => '1990', 'volume' => '62', 'issue' => '7', 'startpage' => '678', 'endpage' => '680', 'type' => 'Journal Article', 'analytes' => ';0064;2356;0747;', 'matrices' => '', 'techniques' => ';0410;0210;0038;', 'keywords' => ';0276;0446;0109;', 'abstract' => 'A three-electrode surface-enhanced Raman spectroscopy detector, with a Ag working electrode, Pt foil auxiliary electrode and SCE reference and a cell volume of 30 µL, was evaluated for use with HPLC and flow injection analysis. In a flowing system, the analyte is rapidly removed from the electrode surface in 10 s, and spectra was obtained in 5 s with an optical multichannel analyzer.. Under stopped-flow conditions, detection limits were 175, 233 and 211 pmol for adenine, thymine and cytosine, respectively.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '3', 'urlcheck' => '2014-10-11 18:35:47', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '00965', 'pauthor' => '!Force, R.K.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1021/ac00206a005', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Surface-enhanced raman spectroscopy at a silver electrode as a detection system in flowing streams', Anal. Chem., 1990 62(7) 678-680', 'firstchar' => 'S', 'twochars' => 'Su', 'CitationsTechnique' => array( 'id' => '006310', 'citation_id' => '008566', 'technique_id' => '0410' ), 'Analyte' => array( (int) 0 => array( 'id' => '00064', 'name' => 'Adenine', 'iupac_name' => '7H-purin-6-amine', 'casrn' => '73-24-5', 'synonyms' => 'adenine, 6-Aminopurine, 1H-Purin-6-amine, 73-24-5, 9H-Purin-6-amine, Adenin, Vitamin B4, 7H-Purin-6-amine, Adeninimine, Leuco-4, 6-Amino-1H-purine, 6-Amino-3H-purine, 6-Amino-7H-purine, 6-Amino-9H-purine, Purine, 6-amino-, 1,6-Dihydro-6-iminopurine, 3,6-Dihydro-6-iminopurine, USAF CB-18, 1H-Purine, 6-amino, ADE, Pedatisectine B, 9H-Purine, 1,6-dihydro-6-imino-, Adenine [JAN], CCRIS 2556, adenine-ring, CHEBI:16708, 1H-Purine, 6-amino-, AI3-50679, 1jys, 1nli, 1wei, 2pqj, NSC 14666, purine, 6, Vitamin-?B4, Leucon (TN), Adenine (8CI), CHEMBL226345, 1H-Purine-6-amine, 9H-Purine-6-amine, 9H-purin-6-ylamine, Adenine-8-14C, Adenine (JAN/USP), Spectrum_001106, 2p8n, SpecPlus_000535, ALBB-005925, Spectrum2_000583, Spectrum3_000616, Spectrum4_001891, Spectrum5_000542, EINECS 200-796-1, bmse000060, 1,6-Dihydro-6-Imnopurine, AC1L18OI, AC1Q52XT, Oprea1_057274, NCGC00094856-01, BSPBio_002152, KBioGR_002447, KBioGR_002562, KBioSS_001586, KBioSS_002571, 1H-Purin-6-amine (9CI), A2426_SIGMA, A2786_SIGMA, A5665_SIGMA, A8626_SIGMA, DivK1c_006631, SPBio_000426, SPECTRUM1500807, UNII-JAC85A2161, MLS001066342, AC1Q52Y5, STOCK1N-48520, KBio1_001575, KBio2_001586, KBio2_002562, KBio2_004154, KBio2_005130, KBio2_006722, KBio2_007698, KBio3_001652, KBio3_003040, purine-6-ylamine, cMAP_000085, GFFGJBXGBJISGV-UHFFFAOYSA-N, MolPort-001-785-186, MolPort-004-759-679, HMS1921I14, HMS2092K20, NSC14666, WLN: T56 BM DN FN HNJ IZ, STK387542, ZINC00000882, AKOS000118903, 66224-65-5, AC-2028, DB00173, SDCCGMLS-0066584.P001, NCGC00094856-02, NCGC00094856-03, LS-15058, NCI60_000998, SMR000471871, TL806440, AB1004094, TL8005091, A0149, FT-0082877, DSSTox_CID_2557, 2'-DEOXY-ADENOSINE-3'-5'-DIPHOSPHATE, C00147, D00034, DSSTox_RID_76627, DSSTox_GSID_22557, 5426-35-7, 71660-29-2, 71660-30-5, I06-0527, I07-0071, I14-7794, 6379C0E0-C1BB-4087-96C5-1DE281B8EA4C, CAS-73-24-5, InChI=1/C5H5N5/c6-4-3-5(9-1-7-3)10-2-8-4/h1-2H,(H3,6,7,8,9,10, 22051-90-7, 42911-33-1, 42911-34-2, 520-75-2, 66224-68-8, AD2, ANE, Vitamin B 4, 4, Vitamin B, B 4, Vitamin, CID190, 6-amino purine, 6-amino-Purine, 3kpv, [3H]adenine, Adenine, 1, 3H-purin-6-ylamine, 7H-purin-6-ylamine, PubChem9587, Adenine [USP:JAN], 9H-Purin-6-yl-amin, PubChem14133, 9H-Purin-6-yl-amine, 9H-Purin-6-amine #, 6-Aminopurine (Adenine), nchembio.186-comp107, bmse000861, bmse000995, Epitope ID:140097, 3H-PURIN-6-AMINE, SCHEMBL8110, 6-Aminopurine; Vitamin B4, ACMC-1BC21, D000225, KSC375M3B, 3H-Purin-6-amine (9CI), 7H-Purin-6-amine (9CI), 9H-Purin-6-amine (9CI), nchembio.2007.56-comp15, GTPL4788, 9H-Purine,6-dihydro-6-imino-, BDBM33218, CTK1I0610, CTK1I0611, CTK2H5630, CTK2H5631, CTK8C4706, CTK8J9100, CTK8J9101, CTK8J9102, HMDB00034, MolPort-001-785-762, MolPort-004-758-262, MolPort-004-758-263, MolPort-004-758-264, MolPort-004-758-265, MolPort-004-758-653, BCPP000433, HMS2269I04, JAC85A2161, Pharmakon1600-01500807, 6H-Purin-6-imine,1,7-dihydro-, 6H-Purin-6-imine,1,9-dihydro-, HY-B0152, 6H-Purin-6-imine, 1,9-dihydro-, Tox21_111348, Tox21_302108, ANW-36312, ANW-72859, BBL007925, CA0118, CCG-38506, DAP000982, HTS027705, NSC-14666, NSC757793, SBB017528, AKOS005171607, AKOS016000265, Tox21_111348_1, 6H-Purin-6-imine,1,7-dihydro-, -, 6H-Purin-6-imine,1,9-dihydro-, -, AM83908, BCP9000233, CS-1984, MCULE-6556342774, NSC-757793, RP17323, RTR-023809, NCGC00094856-05, NCGC00255120-01, AJ-07930, AK-96693, AN-14387, BL008313, CJ-00019, KB-46998, SC-09021, ZB000195, AB1009319, DB-013503, KB-199046, KB-249881, ST2408921, TC-161604, TR-023809, FT-0620943, FT-0656198, FT-0659112, ST50298870, T6972, 4175-EP2270010A1, 4175-EP2270015A1, 4175-EP2270505A1, 4175-EP2272517A1, 4175-EP2275404A1, 4175-EP2292088A1, 4175-EP2292593A2, 4175-EP2295441A2, 4175-EP2295503A1, 4175-EP2295550A2, 4175-EP2298783A1, 4175-EP2301536A1, 4175-EP2301538A1, 4175-EP2303884A1, 4175-EP2305250A1, 4175-EP2305808A1, 4175-EP2311455A1, 4175-EP2316452A1, C-4677, AB00052833-18, AB00052833-19, 6-Aminopurine hemisulfate salt; Adenine sulfate salt, T7106651, I14-23800, 3B3-000567, 3B3-064890, 1000264-10-7, 134434-49-4, 134454-76-5, 66224-66-6', 'total' => '3', 'inchi' => 'InChI=1S/C5H5N5/c6-4-3-5(9-1-7-3)10-2-8-4/h1-2H,(H3,6,7,8,9,10)', 'inchikey' => 'GFFGJBXGBJISGV-UHFFFAOYSA-N', 'formula' => 'C5H5N5', 'oxstate' => 'Zero', 'url' => '', 'charge' => '0', 'class1' => '', 'class2' => '', 'class3' => '', 'class4' => '', 'class5' => '', 'isgroup' => 'no', 'checked' => 'no', 'citation_count' => '0', 'updated' => '2015-10-23 09:27:52', 'first' => 'A', 'nametotal' => 'Adenine**3', 'AnalytesCitation' => array( [maximum depth reached] ) ), (int) 1 => array( 'id' => '02356', 'name' => 'Thymine', 'iupac_name' => '5-methyl-1H-pyrimidine-2,4-dione', 'casrn' => '65-71-4', 'synonyms' => '2,4(1H,3H)-Pyrimidinedione, 5-methyl-; Thymin; 2,4-Dihydroxy-5-methylpyrimidine; 5-Methyluracil; 5-Methyl-2,4-dioxypyrimidine; 5-Methyl-2,4(1H,3H)-pyrimidinedione', 'total' => '1', 'inchi' => 'InChI=1S/C5H6N2O2/c1-3-2-6-5(9)7-4(3)8/h2H,1H3,(H2,6,7,8,9)', 'inchikey' => 'RWQNBRDOKXIBIV-UHFFFAOYSA-N', 'formula' => ' C5H6N2O2', 'oxstate' => 'Zero', 'url' => '', 'charge' => '0', 'class1' => 'Biological', 'class2' => 'NA', 'class3' => 'NA', 'class4' => 'Molecule', 'class5' => '', 'isgroup' => '', 'checked' => 'yes', 'citation_count' => '0', 'updated' => '2015-10-23 21:38:32', 'first' => 'T', 'nametotal' => 'Thymine**1', 'AnalytesCitation' => array( [maximum depth reached] ) ), (int) 2 => array( 'id' => '00747', 'name' => 'Cytosine', 'iupac_name' => '6-amino-1H-pyrimidin-2-one', 'casrn' => '71-30-7', 'synonyms' => 'Cytosine; Cyt; Cytosinimine; 4-Amino-2(1H)-pyrimidinone; 4-Amino-2-hydroxypyrimidine; 4-Amino-2(1H)pyrimidone; 4-Amino-2-oxypyrimidine', 'total' => '1', 'inchi' => 'InChI=1S/C4H5N3O/c5-3-1-2-6-4(8)7-3/h1-2H,(H3,5,6,7,8)', 'inchikey' => 'OPTASPLRGRRNAP-UHFFFAOYSA-N', 'formula' => 'C4H5N3O', 'oxstate' => 'Zero', 'url' => '', 'charge' => '0', 'class1' => 'Biological', 'class2' => 'NA', 'class3' => 'NA', 'class4' => 'Molecule', 'class5' => '', 'isgroup' => '', 'checked' => 'yes', 'citation_count' => '0', 'updated' => '2015-12-11 16:18:02', 'first' => 'C', 'nametotal' => 'Cytosine**1', 'AnalytesCitation' => array( [maximum depth reached] ) ) ), 'Matrix' => array(), 'Keyword' => array( (int) 0 => array( 'id' => '0276', 'type' => 'Manifold process', 'keyword' => 'Multichannel', 'newKeyword' => '', 'synonyms' => '', 'fao' => '', 'total' => '31', 'first' => 'M', 'keytotal' => 'Multichannel**31', 'CitationsKeyword' => array( [maximum depth reached] ) ), (int) 1 => array( 'id' => '0446', 'type' => 'Manifold process', 'keyword' => 'Stopped-flow', 'newKeyword' => '', 'synonyms' => '', 'fao' => '', 'total' => '409', 'first' => 'S', 'keytotal' => 'Stopped-flow**409', 'CitationsKeyword' => array( [maximum depth reached] ) ), (int) 2 => array( 'id' => '0109', 'type' => 'Detection limit', 'keyword' => 'Detection limit', 'newKeyword' => '', 'synonyms' => '', 'fao' => '', 'total' => '296', 'first' => 'D', 'keytotal' => 'Detection limit**296', 'CitationsKeyword' => array( [maximum depth reached] ) ) ) ) $i = (int) 5 $path = '' $a = '' $url = 'http://dx.doi.org/10.1021/ac00206a005' $aus = 'Neil J. Pothier and R. Ken Force'include - APP/View/Elements/citation.ctp, line 40 View::_evaluate() - CORE/Cake/View/View.php, line 971 View::_render() - CORE/Cake/View/View.php, line 933 View::_renderElement() - CORE/Cake/View/View.php, line 1224 View::element() - CORE/Cake/View/View.php, line 418 include - APP/View/Techniques/view.ctp, line 52 View::_evaluate() - CORE/Cake/View/View.php, line 971 View::_render() - CORE/Cake/View/View.php, line 933 View::render() - CORE/Cake/View/View.php, line 473 Controller::render() - CORE/Cake/Controller/Controller.php, line 968 Dispatcher::_invoke() - CORE/Cake/Routing/Dispatcher.php, line 200 Dispatcher::dispatch() - CORE/Cake/Routing/Dispatcher.php, line 167 [main] - APP/webroot/index.php, line 109
"Flow Injection Analysis And Real-time Detection Of RNA Bases By Surface-enhanced Raman Spectroscopy"
Anal. Chem.
1990 Volume 62, Issue 18 Pages 1958-1963
Notice (8): Undefined variable: uid [APP/View/Elements/citation.ctp, line 40]Fan Ni, Rongsheng Sheng, and Therese M. CottonCode Context?>
<?php
if($uid!='') {
$viewFile = '/home/stuchalk/public_html/fad/app/View/Elements/citation.ctp' $dataForView = array( 'data' => array( 'Technique' => array( 'id' => '0410', 'label' => 'Raman', 'level1' => 'Raman', 'level2' => 'surface enhanced', 'level3' => '', 'level4' => '', 'level5' => '', 'synonyms' => 'Surface enhanced raman spectroscopy,SERS', 'champ' => '', 'total' => '15', 'updated' => '0000-00-00 00:00:00', 'name' => 'Raman, surface enhanced', 'nametotal' => 'Raman, surface enhanced**15', 'first' => 'R' ), 'Citation' => array( (int) 0 => array( [maximum depth reached] ), (int) 1 => array( [maximum depth reached] ), (int) 2 => array( [maximum depth reached] ), (int) 3 => array( [maximum depth reached] ), (int) 4 => array( [maximum depth reached] ), (int) 5 => array( [maximum depth reached] ), (int) 6 => array( [maximum depth reached] ), (int) 7 => array( [maximum depth reached] ), (int) 8 => array( [maximum depth reached] ), (int) 9 => array( [maximum depth reached] ), (int) 10 => array( [maximum depth reached] ), (int) 11 => array( [maximum depth reached] ), (int) 12 => array( [maximum depth reached] ), (int) 13 => array( [maximum depth reached] ), (int) 14 => array( [maximum depth reached] ) ) ), 'c' => array( 'id' => '008582', 'authors' => 'Ni, F.;Sheng, R.S.;Cotton, T.M.', 'authorsweb' => 'Fan Ni, Rongsheng Sheng, and Therese M. Cotton', 'title' => 'Flow injection analysis and real-time detection of RNA bases by surface-enhanced Raman spectroscopy', 'journal' => 'Anal. Chem.', 'journal_id' => '0499', 'fadid' => 'ANCH1990V0062P01958', 'year' => '1990', 'volume' => '62', 'issue' => '18', 'startpage' => '1958', 'endpage' => '1963', 'type' => 'Journal Article', 'analytes' => ';0365;', 'matrices' => '', 'techniques' => ';0410;0038;', 'keywords' => ';0216;0320;0302;', 'abstract' => 'Surface-enhanced Raman scattering (SERS) spectroscopy has been successfully interfaced with a flow injection analysis system to detect RNA bases in real time. Four of the major base components of RNA, uracil, cytosine, adenine, and guanine, were introduced into the flow injection system and were mixed with a Ag sol prior to SERS measurements. Several experimental parameters including pH, temperature, flow rate, and tubing materials were examined, and their impact on the SERS spectra is presented here. The feasibility of interfacing flow injection based SERS detection methods with liquid or high performance liquid chromatography for the detection of individual components in a complex mixture is also assessed.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '2', 'urlcheck' => '2014-10-11 18:36:03', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => null, 'pauthor' => 'Cotton, T.M.', 'address' => 'Department of Chemistry, Iowa State University, Ames, Iowa 50011 USA', 'email' => 'NA', 'notes' => null, 'url' => '10.1021/ac00217a012', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Flow injection analysis and real-time detection of RNA bases by surface-enhanced Raman spectroscopy', Anal. Chem., 1990 62(18) 1958-1963', 'firstchar' => 'F', 'twochars' => 'Fl', 'CitationsTechnique' => array( 'id' => '006347', 'citation_id' => '008582', 'technique_id' => '0410' ), 'Analyte' => array( (int) 0 => array( [maximum depth reached] ) ), 'Matrix' => array(), 'Keyword' => array( (int) 0 => array( [maximum depth reached] ), (int) 1 => array( [maximum depth reached] ), (int) 2 => array( [maximum depth reached] ) ) ), 'i' => (int) 6 ) $data = array( 'Technique' => array( 'id' => '0410', 'label' => 'Raman', 'level1' => 'Raman', 'level2' => 'surface enhanced', 'level3' => '', 'level4' => '', 'level5' => '', 'synonyms' => 'Surface enhanced raman spectroscopy,SERS', 'champ' => '', 'total' => '15', 'updated' => '0000-00-00 00:00:00', 'name' => 'Raman, surface enhanced', 'nametotal' => 'Raman, surface enhanced**15', 'first' => 'R' ), 'Citation' => array( (int) 0 => array( 'id' => '006258', 'authors' => 'Cabalin, L.M.;Ruperez, A.;Laserna, J.J.', 'authorsweb' => 'L. M. Cabalín, A. Rupérez and J. J. Laserna*', 'title' => 'Flow injection analysis and liquid chromatography: surface enhanced Raman spectrometry detection by using a windowless flow cell', 'journal' => 'Anal. Chim. Acta', 'journal_id' => '0584', 'fadid' => 'ANCA1996V0318P00203', 'year' => '1996', 'volume' => '318', 'issue' => '2', 'startpage' => '203', 'endpage' => '210', 'type' => 'Journal Article', 'analytes' => ';0146;0199;2037;1732;2402;', 'matrices' => '', 'techniques' => ';0032;0410;', 'keywords' => ';0167;0302;', 'abstract' => 'A windowless flow cell was developed for detection by surface-enhanced Raman spectrometry (SERS) in FIA and LC. The flow cell consisted of two stainless-steel tubes (0.16 mm i.d.; 1.4 mm o.d.) mounted on an Al frame so that the ends were ~e;1.6 mm apart. The liquid draining from the upper to the lower tube was supported by surface tension and formed a column (1.4 mm diameter). The mobile phase from the FIA or LC was merged with a silver hydrosol stream then propelled in to the flow cell. The Raman spectra were recorded using a focussed Ar ion laser beam (488 nm; 85 mW) as the source. The performance of the flow cell was optimized using five drugs (amiloride, amiphenazole, 2-mercaptopyridine, pemoline and triamterene) as model analytes. The maximum SERS signal was obtained with flow rates of 0.075 ml/ml and 1.5 ml/ml for the mobile phase and silver hydrosol, respectively. The reproducibility (n = 5) of the FIA-SERS system for the determination of 625 ng amiloride was 1%.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '1', 'urlcheck' => '2014-10-11 16:18:55', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '01097', 'pauthor' => '!Laserna, J.J.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1016/0003-2670(95)00441-6', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Flow injection analysis and liquid chromatography: surface enhanced Raman spectrometry detection by using a windowless flow cell', Anal. Chim. Acta, 1996 318(2) 203-210', 'firstchar' => 'F', 'twochars' => 'Fl', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 1 => array( 'id' => '006451', 'authors' => 'Somsen, G.W.;Coulter, S.K.;Gooijer, C.;Velthorst, N.H.;Brinkman, U.A.T.', 'authorsweb' => 'G. W. Somsen*, S. K. Coulter, C. Gooijer, N. H. Velthorst and U. A. Th. Brinkman', 'title' => 'Coupling of column liquid-chromatography and surface-enhanced resonance raman-spectroscopy via a thin-layer chromatographic plate', 'journal' => 'Anal. Chim. Acta', 'journal_id' => '0584', 'fadid' => 'ANCA1997V0349P00189', 'year' => '1997', 'volume' => '349', 'issue' => '1-3', 'startpage' => '189', 'endpage' => '197', 'type' => 'Journal Article', 'analytes' => '', 'matrices' => '', 'techniques' => ';0410;0038;', 'keywords' => ';0339;0302;', 'abstract' => 'Surface-enhanced resonance Raman (SERR) spectroscopy was used to characterize compounds separated by column liquid chromatography (LC). Three percent of the effluent from a conventional-size LC column were immobilized on a moving thin-layer chromatography (TLC) plate using a spray-jet solvent-elimination interface. Next, colloidal silver was applied to the analyte spots and in situ SERR spectra were recorded with a multichannel micro-Raman spectrometer. Storage of the LC effluent avoids the need to use a continuous-flow of colloidal silver and, in principle allows compounds to be detected independently of LC conditions like eluent composition and flow rate. Using dyes as test compounds, the method was optimized and aspects were studied such as type of TLC plate, LC separation of the dyes, preservation of LC integrity during immobilization, and SERR analysis of the deposited compounds. With a silica TLC plate as deposition substrate, good-quality and characteristic SERR spectra were obtained for the dyes which were separated on a cyanoproyl-modified silica LC column with methanol-water containing the volatile additives ammonium acetate and triethylamine as eluent. The minimum identifiable concentration of the dyes was about 250 ng mL-1 (750 pg applied on the plate). For some strong Raman scatterers such as nile blue and pararosaniline, the major spectral peaks could be observed down to concentrations of 25 ng mL-1. 36 References', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '3', 'urlcheck' => '2014-10-11 16:23:46', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '01300', 'pauthor' => '!Somsen, G.W.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1016/S0003-2670(97)00011-1', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Coupling of column liquid-chromatography and surface-enhanced resonance raman-spectroscopy via a thin-layer chromatographic plate', Anal. Chim. Acta, 1997 349(1-3) 189-197', 'firstchar' => 'C', 'twochars' => 'Co', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array([maximum depth reached]), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 2 => array( 'id' => '006887', 'authors' => 'Laserna, J.J.;Berthod, A.;Winefordner, J.D.', 'authorsweb' => 'J. J. Laserna, A. Berthod and J. D. Winefordner ', 'title' => 'Quantitative analysis by surface-enhanced raman spectrometry on silver hydrosols in a flow injection system', 'journal' => 'Talanta', 'journal_id' => '0569', 'fadid' => 'TALT1987V0034P00745', 'year' => '1987', 'volume' => '34', 'issue' => '8', 'startpage' => '745', 'endpage' => '747', 'type' => 'Journal Article', 'analytes' => ';0056;0401;', 'matrices' => '', 'techniques' => ';0410;', 'keywords' => ';0457;', 'abstract' => 'The application of surface-enhanced Raman scattering (SERS) in quantitative analysis is demonstrated by the determination of 4-aminobenzoic acid(I) and acridin-9-amine(II) on silver suspensions by SERS in a flow injection system. Two peristaltic pumps were used to mix 2 mM NaBH4 and 1 mM AgNO3 and pump the resulting silver suspension through the flow injection analysis system. The flow injection analysis system is described (with diagram). The sample solution contained I in aqueous 40% ethanol or II in ethanol. The calibration graph was rectilinear for 4 to 100 µg mL-1 of I, and the coefficient of variation (n = 6) was 3.2%. The system required cleaning with 40% HNO3 after 10 to 15 injections.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '7', 'urlcheck' => '2014-10-11 14:54:34', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '01400', 'pauthor' => '!Winefordner, J.D.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1016/0039-9140(87)80234-5', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Quantitative analysis by surface-enhanced raman spectrometry on silver hydrosols in a flow injection system', Talanta, 1987 34(8) 745-747', 'firstchar' => 'Q', 'twochars' => 'Qu', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 3 => array( 'id' => '007977', 'authors' => 'Weissenbacher, N.;Lendl, B.;Frank, J.;Wanzenbock, H.D.;Kellner, R.', 'authorsweb' => 'N. Weißenbacher, B. Lendl, J. Frank, H. D. Wanzenböck and R. Kellner', 'title' => 'Surface enhanced raman spectroscopy as a molecular specific detection system in aqueous flow-through systems', 'journal' => 'Analyst', 'journal_id' => '0864', 'fadid' => 'ANAL1998V0123P01057', 'year' => '1998', 'volume' => '123', 'issue' => '5', 'startpage' => '1057', 'endpage' => '1060', 'type' => 'Journal Article', 'analytes' => ';1583;', 'matrices' => '', 'techniques' => ';0410;0409;', 'keywords' => ';0446;0167;0043;0258;', 'abstract' => 'Surface enhanced Raman scattering (SERS) is proposed as a mol. specific technique for direct measurements of organic molecules in aqueous solutions An FT-Raman spectrometer was interfaced with a flow injection manifold operated in the stopped-flow mode enabling reproducible collection of SERS spectra due to the automation of the anal. procedure. For SERS a solid state substrate placed in a newly developed flow-cell was used. Multiple measurements on one single SERS substrate were achieved by rinsing the substrate with reagents such as 3 M KCl or 0.1 M NaOH solutions prior to the next measurements to remove retained analytes from the surface of the SERS substrate. This procedure allowed for improved precision as compared with a conventional batch approach. Quant. aspects were studied by establishing a calibration curve for nicotinic acid which was used as a model analyte. A linear dependence of the recorded SERS intensities from the logarithm of the analyte concentration. was obtained throughout the whole studied concentration. range (0.001-0.1 M, correlation coefficient r2 = 0.97). The standard deviation of the method sx0 is 0.122 mM and detection limit 1.7 mM, respectively. The results demonstrate the potential of SERS spectroscopy to be used as a molecular specific detector in aqueous flow systems such as flow injection anal.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '5', 'urlcheck' => '2014-10-12 09:52:18', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '00241', 'pauthor' => '!Lendl, B.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1039/a705837c', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Surface enhanced raman spectroscopy as a molecular specific detection system in aqueous flow-through systems', Analyst, 1998 123(5) 1057-1060', 'firstchar' => 'S', 'twochars' => 'Su', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 4 => array( 'id' => '008516', 'authors' => 'Force, R.K.', 'authorsweb' => 'R. Ken Force', 'title' => 'Surface-enhanced raman spectroscopy at a silver electrode as a detector in flow injection analysis', 'journal' => 'Anal. Chem.', 'journal_id' => '0499', 'fadid' => 'ANCH1988V0060P01987', 'year' => '1988', 'volume' => '60', 'issue' => '18', 'startpage' => '1987', 'endpage' => '1989', 'type' => 'Journal Article', 'analytes' => '', 'matrices' => '', 'techniques' => ';0214;0410;', 'keywords' => '', 'abstract' => 'A Ag-ring reference (diameter 5 mm) and a Ag-disc working electrode (diameter 3 mm) were sealed 1 mm apart in a Pyrex tube (o.d. 7 mm) and polished smooth. The Ag ring was anodized at 0.4 V (vs. a SCE) in 0.1 M KCl to produce a Ag - AgCl reference electrode with a potential of ~0.190 to ~0.200 V (vs. a NHE) in the 0.1 M KCl used as mobile phase and supporting electrolyte. The apparatus was applied in flow injection analysis for 50.0 mM pyridine (1 mL injections) in KCl flowing at 2 mL min-1. The potential was held at -0.6 V. Raman spectra were recorded from 990 to 1050 cm-1 in 2-cm-1 steps. A detection limit of ~250 nM was achieved. A Ag-ring reference (diameter 5 mm) and a Ag-disc working electrode (diameter 3 mm) were sealed 1 mm apart in a Pyrex tube (o.d. 7 mm) and polished smooth.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '0', 'urlcheck' => '2014-10-11 18:35:15', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '00965', 'pauthor' => '!Force, R.K.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1021/ac00169a033', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Surface-enhanced raman spectroscopy at a silver electrode as a detector in flow injection analysis', Anal. Chem., 1988 60(18) 1987-1989', 'firstchar' => 'S', 'twochars' => 'Su', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array([maximum depth reached]), 'Matrix' => array([maximum depth reached]), 'Keyword' => array([maximum depth reached]) ), (int) 5 => array( 'id' => '008566', 'authors' => 'Pothier, N.J.;Force, R.K.', 'authorsweb' => 'Neil J. Pothier and R. Ken Force', 'title' => 'Surface-enhanced raman spectroscopy at a silver electrode as a detection system in flowing streams', 'journal' => 'Anal. Chem.', 'journal_id' => '0499', 'fadid' => 'ANCH1990V0062P00678', 'year' => '1990', 'volume' => '62', 'issue' => '7', 'startpage' => '678', 'endpage' => '680', 'type' => 'Journal Article', 'analytes' => ';0064;2356;0747;', 'matrices' => '', 'techniques' => ';0410;0210;0038;', 'keywords' => ';0276;0446;0109;', 'abstract' => 'A three-electrode surface-enhanced Raman spectroscopy detector, with a Ag working electrode, Pt foil auxiliary electrode and SCE reference and a cell volume of 30 µL, was evaluated for use with HPLC and flow injection analysis. In a flowing system, the analyte is rapidly removed from the electrode surface in 10 s, and spectra was obtained in 5 s with an optical multichannel analyzer.. Under stopped-flow conditions, detection limits were 175, 233 and 211 pmol for adenine, thymine and cytosine, respectively.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '3', 'urlcheck' => '2014-10-11 18:35:47', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '00965', 'pauthor' => '!Force, R.K.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1021/ac00206a005', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Surface-enhanced raman spectroscopy at a silver electrode as a detection system in flowing streams', Anal. Chem., 1990 62(7) 678-680', 'firstchar' => 'S', 'twochars' => 'Su', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 6 => array( 'id' => '008582', 'authors' => 'Ni, F.;Sheng, R.S.;Cotton, T.M.', 'authorsweb' => 'Fan Ni, Rongsheng Sheng, and Therese M. Cotton', 'title' => 'Flow injection analysis and real-time detection of RNA bases by surface-enhanced Raman spectroscopy', 'journal' => 'Anal. Chem.', 'journal_id' => '0499', 'fadid' => 'ANCH1990V0062P01958', 'year' => '1990', 'volume' => '62', 'issue' => '18', 'startpage' => '1958', 'endpage' => '1963', 'type' => 'Journal Article', 'analytes' => ';0365;', 'matrices' => '', 'techniques' => ';0410;0038;', 'keywords' => ';0216;0320;0302;', 'abstract' => 'Surface-enhanced Raman scattering (SERS) spectroscopy has been successfully interfaced with a flow injection analysis system to detect RNA bases in real time. Four of the major base components of RNA, uracil, cytosine, adenine, and guanine, were introduced into the flow injection system and were mixed with a Ag sol prior to SERS measurements. Several experimental parameters including pH, temperature, flow rate, and tubing materials were examined, and their impact on the SERS spectra is presented here. The feasibility of interfacing flow injection based SERS detection methods with liquid or high performance liquid chromatography for the detection of individual components in a complex mixture is also assessed.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '2', 'urlcheck' => '2014-10-11 18:36:03', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => null, 'pauthor' => 'Cotton, T.M.', 'address' => 'Department of Chemistry, Iowa State University, Ames, Iowa 50011 USA', 'email' => 'NA', 'notes' => null, 'url' => '10.1021/ac00217a012', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Flow injection analysis and real-time detection of RNA bases by surface-enhanced Raman spectroscopy', Anal. Chem., 1990 62(18) 1958-1963', 'firstchar' => 'F', 'twochars' => 'Fl', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 7 => array( 'id' => '009344', 'authors' => 'Laserna, J.J.;Berthod, A.;Winefordner, J.D.', 'authorsweb' => 'J. J. Laserna, A. Berthod and J. D. Winefordner*', 'title' => 'Evaluation and optimization of experimental conditions for surface-enhanced raman detection of analytes in flow injection analysis', 'journal' => 'Microchem. J.', 'journal_id' => '0639', 'fadid' => 'MCHJ1988V0038P00125', 'year' => '1988', 'volume' => '38', 'issue' => '1', 'startpage' => '125', 'endpage' => '126', 'type' => 'Journal Article', 'analytes' => ';0399;0055;', 'matrices' => '', 'techniques' => ';0410;', 'keywords' => ';0110;0302;', 'abstract' => 'The Raman instrumentation included a 100-mW Ar ion laser operated at 514.5 nm, a double monochromator and a cooled Hamamatsu R-928 photomultiplier tube with photon counting system as the detector. Vertically polarized light was used, with right-angle geometry for Raman sampling and a long-wave-pass glass filter to suppress Rayleigh-scattered light. Spectra were obtained by single scans. Flow streams of 1 mM AgNO3 and 2 mM NaBH4 were merged to form a silver hydrosol matrix, and 4-aminobenzoic acid(I) and acridin-9-amine were used successfully as test analytes. The detector flow-cell was a silica tube (3 mm x 0.5 mm;~0.6 µL). For maximum signal response with I, the total flow rate was 0.7 mL min-1 and the pH was adjusted with HNO3 to 3.2.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '14', 'urlcheck' => '2014-10-12 00:26:48', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '01400', 'pauthor' => '!Winefordner, J.D.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1016/0026-265X(88)90011-2', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Evaluation and optimization of experimental conditions for surface-enhanced raman detection of analytes in flow injection analysis', Microchem. J., 1988 38(1) 125-126', 'firstchar' => 'E', 'twochars' => 'Ev', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 8 => array( 'id' => '010331', 'authors' => 'Gouveia, V.J.P.;Gutz, I.G.R.;Rubim, J.C.', 'authorsweb' => 'Vitor J. P. Gouveia, Ivano G. Gutz and Joel C. Rubim*', 'title' => 'New spectroelectrochemical cell for flow injection analysis and its application to the determination of iron(II) down to the femtomole level by surface-enhanced resonance Raman scattering (SERRS)', 'journal' => 'J. Electroanal. Chem.', 'journal_id' => '0709', 'fadid' => 'JECH1994V0371P00037', 'year' => '1994', 'volume' => '371', 'issue' => '1-2', 'startpage' => '37', 'endpage' => '42', 'type' => 'Journal Article', 'analytes' => ';1294;', 'matrices' => ';0404;', 'techniques' => ';0226;0410;', 'keywords' => '', 'abstract' => 'A principal feature of the cell (diagrams presented) is the in situ renewal of the surface-enhanced Raman-active Ag substratum. Before injection of the analyte, Ag+ are introduced, and Ag is electro-deposited on a vitreous-carbon electrode; after the Raman spectrum of the adsorbed analyte has been recorded, the Ag is removed by anodic stripping. Fe(II) was determined in a 130 µL injected sample as its tris(bipyridyl) complex, which exhibits both a resonance Raman effect when excited with Ar+ laser 514.5 nm radiation and surface-enhanced Raman scattering when adsorbed on Ag. The calibration graph was sigmoidal, but usable for 10 nM-10 µM-Fe(II), and the detection limit was 1 nM, which represented detection of Fe(II) at the femtomole level.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '13', 'urlcheck' => '2014-10-12 09:04:46', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => null, 'pauthor' => 'Rubim, J.C.', 'address' => 'Institututo de Química da Universidade de São Paulo C.P.20780, 01498, São Paulo, SP Brazil', 'email' => 'NA', 'notes' => null, 'url' => '10.1016/0022-0728(93)03220-J', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''New spectroelectrochemical cell for flow injection analysis and its application to the determination of iron(II) down to the femtomole level by surface-enhanced resonance Raman scattering (SERRS)', J. Electroanal. Chem., 1994 371(1-2) 37-42', 'firstchar' => 'N', 'twochars' => 'Ne', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array( [maximum depth reached] ), 'Keyword' => array([maximum depth reached]) ), (int) 9 => array( 'id' => '013707', 'authors' => 'Weissenbacher, N.;Lendl, B.;Frank, J.;Wanzenbock, H.D.;Mizaikoff, B.;Kellner, R.', 'authorsweb' => 'N. Weissenbacher*, B. Lendl, J. Frank, H. D. Wanzenböck, B. Mizaikoff and R. Kellner', 'title' => 'Continuous surface-enhanced raman-spectroscopy for the detection of trace organic pollutants in aqueous systems', 'journal' => 'J. Mol. Struct.', 'journal_id' => '0628', 'fadid' => 'JMRS1997V0410P00539', 'year' => '1997', 'volume' => '410', 'issue' => '1', 'startpage' => '539', 'endpage' => '542', 'type' => 'Journal Article', 'analytes' => ';2050;1583;1774;0504;1478;', 'matrices' => '', 'techniques' => ';0410;', 'keywords' => '', 'abstract' => 'In Raman spectroscopy, detection limits for organic pollutants in water can be lowered by several orders of magnitude when surface enhanced techniques are applied. In this work a continuous analytical device based on flow injection analysis using SERS detection is proposed. This system was tested with model analytes such as pyridine and nicotinic acid as well as several pesticides (carbendazim, metazachlorine). (C) 1997 Elsevier Science B.V. 22 References', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'No', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '3', 'urlcheck' => '2014-10-12 09:49:43', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => null, 'pauthor' => 'Weissenbacher, N.', 'address' => 'Institute for Analytical Chemistry, Vienna University of Technology, Getreidemarkt 9/151, A-1060, Vienna, Austria', 'email' => 'NA', 'notes' => null, 'url' => '10.1016/S0022-2860(96)09531-2', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Continuous surface-enhanced raman-spectroscopy for the detection of trace organic pollutants in aqueous systems', J. Mol. Struct., 1997 410(1) 539-542', 'firstchar' => 'C', 'twochars' => 'Co', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array([maximum depth reached]) ), (int) 10 => array( 'id' => '014097', 'authors' => 'Sawata, S.;Kai, E.;Ikebukuro, K.;Iida, T.;Honda, T.;Karube, I.', 'authorsweb' => 'Sawata S, Kai E, Ikebukuro K, Iida T, Honda T, Karube I.', 'title' => 'Novel detection system of flow injection analysis. 1. The existence of significant relation between secondary structure of DNA and sensitivity in signal detection', 'journal' => 'Nucleic Acids Symp. Ser.', 'journal_id' => '1346', 'fadid' => 'NASS1997V0037P00247', 'year' => '1997', 'volume' => '37', 'issue' => '1', 'startpage' => '247', 'endpage' => '248', 'type' => 'Journal Article', 'analytes' => ';0847;', 'matrices' => '', 'techniques' => ';0410;', 'keywords' => ';0401;', 'abstract' => 'Polymerase Chain Reaction (PCR) products were detected quantitatively using a flow injection type sensor, based on Surface Plasmon Resonance (SPR). We used asymmetric PCR to amplify the two kinds of products; their DNA lengths are different. This novel design permitted us not only to detect PCR products with high-sensitivity, but also to develop a rapid DNA detection system for the sense of the genetic pathogen.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'No', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '0', 'urlcheck' => '2014-10-13 19:09:08', 'urlcheckcode' => 'HTTP/1.1 200 OK', 'pauthor_id' => '00227', 'pauthor' => '!Karube, I.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => 'www.ncbi.nlm.nih.gov/pubmed/9586092', 'urltype' => 'absurl', 'gotpdf' => 'no', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Novel detection system of flow injection analysis. 1. The existence of significant relation between secondary structure of DNA and sensitivity in signal detection', Nucleic Acids Symp. Ser., 1997 37(1) 247-248', 'firstchar' => 'N', 'twochars' => 'No', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 11 => array( 'id' => '014429', 'authors' => 'Storey, J.M.E.;Barber, T.E.;Shelton, R.D.;Wachter, E.A.;Carron, K.T.;Jiang, Y.', 'authorsweb' => 'NA', 'title' => 'Applications of surface-enhanced Raman scattering (SERS) to chemical detection', 'journal' => 'Spectroscopy', 'journal_id' => '0489', 'fadid' => 'STRS1995V0010P00020', 'year' => '1995', 'volume' => '10', 'issue' => '3', 'startpage' => '20', 'endpage' => '25', 'type' => 'Journal Article', 'analytes' => ';0716;1186;1582;', 'matrices' => ';0343;0372;', 'techniques' => ';0410;', 'keywords' => ';0389;', 'abstract' => 'lectrochemical surface-enhanced Raman spectrometry (SERS) was used to detect chlorinated hydrocarbons in ground water, in tobacco smoke and aqueous cyanide ions. Hybrid substrate SERS was used for the detection of organic compounds in liquid and gas phases, using a flow-through cell. The experimental protocols were described previously. (Appl Spectrosc., 1994, 48, 1265; Shelton et al., Ibid., 1994, 48, 1007; Wachter et al.,Ibid., 1995, 49, 193; and Barber et al., Ibid., 1994, 48, 1423). The detection limits for hydrocarbons in electrolytes were a few ppm; they were an order of magnitude higher in groundwater. No calibration data are given. The response to cyanide was linear for 10^-100 ppm. The detection limit for nicotine in smoke was 15 ppb (no calibration data given). The advantages and limitations of the methods are discussed and future research directions are outlined.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'No', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '0', 'urlcheck' => '2006-05-20 19:26:31', 'urlcheckcode' => '', 'pauthor_id' => null, 'pauthor' => 'NA', 'address' => 'Oak Ridge Natl. Lab., Health Sci. Res. Div., Oak Ridge, TN 37831-6113 UK', 'email' => 'NA', 'notes' => null, 'url' => 'NA', 'urltype' => 'NA', 'gotpdf' => 'no', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Applications of surface-enhanced Raman scattering (SERS) to chemical detection', Spectroscopy, 1995 10(3) 20-25', 'firstchar' => 'A', 'twochars' => 'Ap', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array( [maximum depth reached] ), 'Keyword' => array( [maximum depth reached] ) ), (int) 12 => array( 'id' => '014511', 'authors' => 'Fujiwara, K.;Ito, S.', 'authorsweb' => 'Kitao Fujiwara and Seiji Ito', 'title' => 'Application of waveguiding in solutions for absorption and fluorescence spectrometry', 'journal' => 'Trends Anal. Chem.', 'journal_id' => '0653', 'fadid' => 'TRAC1991V0010P00184', 'year' => '1991', 'volume' => '10', 'issue' => '6', 'startpage' => '184', 'endpage' => '190', 'type' => 'Journal Article', 'analytes' => '', 'matrices' => '', 'techniques' => ';0252;0410;', 'keywords' => ';0043;0167;0521;', 'abstract' => 'Several waveguiding techniques in solution are presented in the context of spectrometry. Although light propagation in dense media via total reflection is a commonly used technique with optical fibers, it is also possible in solutions. This is very useful for improving both sensitivity and spatial resolution, especially in absorption and fluorescence spectrometry, by elongating the optical path length and controlling the angle of incidence of light in the measurement area of a sample. ', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'No', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '26', 'urlcheck' => '2014-10-12 02:21:14', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => null, 'pauthor' => 'NA', 'address' => 'NA', 'email' => 'NA', 'notes' => null, 'url' => '10.1016/0165-9936(91)85019-N', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Application of waveguiding in solutions for absorption and fluorescence spectrometry', Trends Anal. Chem., 1991 10(6) 184-190', 'firstchar' => 'A', 'twochars' => 'Ap', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array([maximum depth reached]), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 13 => array( 'id' => '014536', 'authors' => 'Vo Dinh, T.', 'authorsweb' => 'Tuan Vo-Dinh', 'title' => 'Surface enhanced raman spectroscopy using metallic nanostructures', 'journal' => 'Trends Anal. Chem.', 'journal_id' => '0653', 'fadid' => 'TRAC1998V0017P00557', 'year' => '1998', 'volume' => '17', 'issue' => '8-9', 'startpage' => '557', 'endpage' => '582', 'type' => 'Journal Article', 'analytes' => '', 'matrices' => ';0404;0093;', 'techniques' => ';0410;', 'keywords' => ';0043;0215;0389;', 'abstract' => 'This article provides an overview of the development and application of the surface-enhanced Raman scattering (SERS) techniques using metal-coated nanostructures on solid substrates, An introduction to theoretical principles of the SERS effect and the different SERS-active media is presented. The focus is on nanostructured solid substrates and their practical applications in chemical, environmental and biomedical areas. Specific examples of analytical techniques, instruments and sensors developed in the author's laboratory will be discussed to illustrate the usefulness and potential of the SERS techniques.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'No', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '38', 'urlcheck' => '2014-10-12 10:04:45', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => null, 'pauthor' => 'Vo Dinh, T.', 'address' => 'Advanced Monitoring Development Group, Life Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6101, USA', 'email' => 'NA', 'notes' => null, 'url' => '10.1016/S0165-9936(98)00069-7', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Surface enhanced raman spectroscopy using metallic nanostructures', Trends Anal. Chem., 1998 17(8-9) 557-582', 'firstchar' => 'S', 'twochars' => 'Su', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array([maximum depth reached]), 'Matrix' => array( [maximum depth reached] ), 'Keyword' => array( [maximum depth reached] ) ), (int) 14 => array( 'id' => '014560', 'authors' => 'Ruperez, A.;Montes, R.;Laserna, J.J.', 'authorsweb' => 'A. Rupérez, R. Montes and J. J. Laserna*', 'title' => 'Identification of stimulant drugs by surface-enhanced raman spectrometry on colloidal silver', 'journal' => 'Vib. Spectrosc.', 'journal_id' => '0655', 'fadid' => 'VIBS1991V0002P00145', 'year' => '1991', 'volume' => '2', 'issue' => '2-3', 'startpage' => '145', 'endpage' => '154', 'type' => 'Journal Article', 'analytes' => ';0862;', 'matrices' => '', 'techniques' => ';0032;0055;0410;', 'keywords' => '', 'abstract' => 'The surface-enhanced Raman (SER) spectra of stimulant drugs, including mefenorex, pentylenetetrazole, -amphetamine and pemoline, were obtained on colloidal silver. Silver colloids are prepared in a single step, at room temperature, by chemical reduction of Ag+ with sodium tetrahydroborate. Spectra are recorded using drug concentrations at the g mL-1 level. Individual drugs can be identified by characteristic vibrational bands. The SER spectrum of human urine and that of human urine spiked with mixtures of stimulant drugs are reported.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'No', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '7', 'urlcheck' => '2014-10-12 02:21:21', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '01097', 'pauthor' => '!Laserna, J.J.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1016/0924-2031(91)85020-N', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Identification of stimulant drugs by surface-enhanced raman spectrometry on colloidal silver', Vib. Spectrosc., 1991 2(2-3) 145-154', 'firstchar' => 'I', 'twochars' => 'Id', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array([maximum depth reached]) ) ) ) $c = array( 'id' => '008582', 'authors' => 'Ni, F.;Sheng, R.S.;Cotton, T.M.', 'authorsweb' => 'Fan Ni, Rongsheng Sheng, and Therese M. Cotton', 'title' => 'Flow injection analysis and real-time detection of RNA bases by surface-enhanced Raman spectroscopy', 'journal' => 'Anal. Chem.', 'journal_id' => '0499', 'fadid' => 'ANCH1990V0062P01958', 'year' => '1990', 'volume' => '62', 'issue' => '18', 'startpage' => '1958', 'endpage' => '1963', 'type' => 'Journal Article', 'analytes' => ';0365;', 'matrices' => '', 'techniques' => ';0410;0038;', 'keywords' => ';0216;0320;0302;', 'abstract' => 'Surface-enhanced Raman scattering (SERS) spectroscopy has been successfully interfaced with a flow injection analysis system to detect RNA bases in real time. Four of the major base components of RNA, uracil, cytosine, adenine, and guanine, were introduced into the flow injection system and were mixed with a Ag sol prior to SERS measurements. Several experimental parameters including pH, temperature, flow rate, and tubing materials were examined, and their impact on the SERS spectra is presented here. The feasibility of interfacing flow injection based SERS detection methods with liquid or high performance liquid chromatography for the detection of individual components in a complex mixture is also assessed.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '2', 'urlcheck' => '2014-10-11 18:36:03', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => null, 'pauthor' => 'Cotton, T.M.', 'address' => 'Department of Chemistry, Iowa State University, Ames, Iowa 50011 USA', 'email' => 'NA', 'notes' => null, 'url' => '10.1021/ac00217a012', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Flow injection analysis and real-time detection of RNA bases by surface-enhanced Raman spectroscopy', Anal. Chem., 1990 62(18) 1958-1963', 'firstchar' => 'F', 'twochars' => 'Fl', 'CitationsTechnique' => array( 'id' => '006347', 'citation_id' => '008582', 'technique_id' => '0410' ), 'Analyte' => array( (int) 0 => array( 'id' => '00365', 'name' => 'Bases, RNA', 'iupac_name' => '', 'casrn' => '', 'synonyms' => '', 'total' => '1', 'inchi' => '', 'inchikey' => '', 'formula' => '', 'oxstate' => null, 'url' => '', 'charge' => null, 'class1' => '', 'class2' => '', 'class3' => '', 'class4' => '', 'class5' => '', 'isgroup' => 'no', 'checked' => 'no', 'citation_count' => '0', 'updated' => '2015-12-11 09:53:17', 'first' => 'B', 'nametotal' => 'Bases, RNA**1', 'AnalytesCitation' => array( [maximum depth reached] ) ) ), 'Matrix' => array(), 'Keyword' => array( (int) 0 => array( 'id' => '0216', 'type' => 'Hardware', 'keyword' => 'Interface', 'newKeyword' => '', 'synonyms' => '', 'fao' => '', 'total' => '130', 'first' => 'I', 'keytotal' => 'Interface**130', 'CitationsKeyword' => array( [maximum depth reached] ) ), (int) 1 => array( 'id' => '0320', 'type' => 'Reagent', 'keyword' => 'pH', 'newKeyword' => '', 'synonyms' => '', 'fao' => '', 'total' => '264', 'first' => 'P', 'keytotal' => 'pH**264', 'CitationsKeyword' => array( [maximum depth reached] ) ), (int) 2 => array( 'id' => '0302', 'type' => 'Feature', 'keyword' => 'Optimization', 'newKeyword' => '', 'synonyms' => '', 'fao' => '', 'total' => '1069', 'first' => 'O', 'keytotal' => 'Optimization**1069', 'CitationsKeyword' => array( [maximum depth reached] ) ) ) ) $i = (int) 6 $path = '' $a = '' $url = 'http://dx.doi.org/10.1021/ac00217a012' $aus = 'Fan Ni, Rongsheng Sheng, and Therese M. Cotton'include - APP/View/Elements/citation.ctp, line 40 View::_evaluate() - CORE/Cake/View/View.php, line 971 View::_render() - CORE/Cake/View/View.php, line 933 View::_renderElement() - CORE/Cake/View/View.php, line 1224 View::element() - CORE/Cake/View/View.php, line 418 include - APP/View/Techniques/view.ctp, line 52 View::_evaluate() - CORE/Cake/View/View.php, line 971 View::_render() - CORE/Cake/View/View.php, line 933 View::render() - CORE/Cake/View/View.php, line 473 Controller::render() - CORE/Cake/Controller/Controller.php, line 968 Dispatcher::_invoke() - CORE/Cake/Routing/Dispatcher.php, line 200 Dispatcher::dispatch() - CORE/Cake/Routing/Dispatcher.php, line 167 [main] - APP/webroot/index.php, line 109
"Evaluation And Optimization Of Experimental Conditions For Surface-enhanced Raman Detection Of Analytes In Flow Injection Analysis"
Microchem. J.
1988 Volume 38, Issue 1 Pages 125-126
Notice (8): Undefined variable: uid [APP/View/Elements/citation.ctp, line 40]J. J. Laserna, A. Berthod and J. D. Winefordner*Code Context?>
<?php
if($uid!='') {
$viewFile = '/home/stuchalk/public_html/fad/app/View/Elements/citation.ctp' $dataForView = array( 'data' => array( 'Technique' => array( 'id' => '0410', 'label' => 'Raman', 'level1' => 'Raman', 'level2' => 'surface enhanced', 'level3' => '', 'level4' => '', 'level5' => '', 'synonyms' => 'Surface enhanced raman spectroscopy,SERS', 'champ' => '', 'total' => '15', 'updated' => '0000-00-00 00:00:00', 'name' => 'Raman, surface enhanced', 'nametotal' => 'Raman, surface enhanced**15', 'first' => 'R' ), 'Citation' => array( (int) 0 => array( [maximum depth reached] ), (int) 1 => array( [maximum depth reached] ), (int) 2 => array( [maximum depth reached] ), (int) 3 => array( [maximum depth reached] ), (int) 4 => array( [maximum depth reached] ), (int) 5 => array( [maximum depth reached] ), (int) 6 => array( [maximum depth reached] ), (int) 7 => array( [maximum depth reached] ), (int) 8 => array( [maximum depth reached] ), (int) 9 => array( [maximum depth reached] ), (int) 10 => array( [maximum depth reached] ), (int) 11 => array( [maximum depth reached] ), (int) 12 => array( [maximum depth reached] ), (int) 13 => array( [maximum depth reached] ), (int) 14 => array( [maximum depth reached] ) ) ), 'c' => array( 'id' => '009344', 'authors' => 'Laserna, J.J.;Berthod, A.;Winefordner, J.D.', 'authorsweb' => 'J. J. Laserna, A. Berthod and J. D. Winefordner*', 'title' => 'Evaluation and optimization of experimental conditions for surface-enhanced raman detection of analytes in flow injection analysis', 'journal' => 'Microchem. J.', 'journal_id' => '0639', 'fadid' => 'MCHJ1988V0038P00125', 'year' => '1988', 'volume' => '38', 'issue' => '1', 'startpage' => '125', 'endpage' => '126', 'type' => 'Journal Article', 'analytes' => ';0399;0055;', 'matrices' => '', 'techniques' => ';0410;', 'keywords' => ';0110;0302;', 'abstract' => 'The Raman instrumentation included a 100-mW Ar ion laser operated at 514.5 nm, a double monochromator and a cooled Hamamatsu R-928 photomultiplier tube with photon counting system as the detector. Vertically polarized light was used, with right-angle geometry for Raman sampling and a long-wave-pass glass filter to suppress Rayleigh-scattered light. Spectra were obtained by single scans. Flow streams of 1 mM AgNO3 and 2 mM NaBH4 were merged to form a silver hydrosol matrix, and 4-aminobenzoic acid(I) and acridin-9-amine were used successfully as test analytes. The detector flow-cell was a silica tube (3 mm x 0.5 mm;~0.6 µL). For maximum signal response with I, the total flow rate was 0.7 mL min-1 and the pH was adjusted with HNO3 to 3.2.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '14', 'urlcheck' => '2014-10-12 00:26:48', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '01400', 'pauthor' => '!Winefordner, J.D.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1016/0026-265X(88)90011-2', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Evaluation and optimization of experimental conditions for surface-enhanced raman detection of analytes in flow injection analysis', Microchem. J., 1988 38(1) 125-126', 'firstchar' => 'E', 'twochars' => 'Ev', 'CitationsTechnique' => array( 'id' => '007597', 'citation_id' => '009344', 'technique_id' => '0410' ), 'Analyte' => array( (int) 0 => array( [maximum depth reached] ), (int) 1 => array( [maximum depth reached] ) ), 'Matrix' => array(), 'Keyword' => array( (int) 0 => array( [maximum depth reached] ), (int) 1 => array( [maximum depth reached] ) ) ), 'i' => (int) 7 ) $data = array( 'Technique' => array( 'id' => '0410', 'label' => 'Raman', 'level1' => 'Raman', 'level2' => 'surface enhanced', 'level3' => '', 'level4' => '', 'level5' => '', 'synonyms' => 'Surface enhanced raman spectroscopy,SERS', 'champ' => '', 'total' => '15', 'updated' => '0000-00-00 00:00:00', 'name' => 'Raman, surface enhanced', 'nametotal' => 'Raman, surface enhanced**15', 'first' => 'R' ), 'Citation' => array( (int) 0 => array( 'id' => '006258', 'authors' => 'Cabalin, L.M.;Ruperez, A.;Laserna, J.J.', 'authorsweb' => 'L. M. Cabalín, A. Rupérez and J. J. Laserna*', 'title' => 'Flow injection analysis and liquid chromatography: surface enhanced Raman spectrometry detection by using a windowless flow cell', 'journal' => 'Anal. Chim. Acta', 'journal_id' => '0584', 'fadid' => 'ANCA1996V0318P00203', 'year' => '1996', 'volume' => '318', 'issue' => '2', 'startpage' => '203', 'endpage' => '210', 'type' => 'Journal Article', 'analytes' => ';0146;0199;2037;1732;2402;', 'matrices' => '', 'techniques' => ';0032;0410;', 'keywords' => ';0167;0302;', 'abstract' => 'A windowless flow cell was developed for detection by surface-enhanced Raman spectrometry (SERS) in FIA and LC. The flow cell consisted of two stainless-steel tubes (0.16 mm i.d.; 1.4 mm o.d.) mounted on an Al frame so that the ends were ~e;1.6 mm apart. The liquid draining from the upper to the lower tube was supported by surface tension and formed a column (1.4 mm diameter). The mobile phase from the FIA or LC was merged with a silver hydrosol stream then propelled in to the flow cell. The Raman spectra were recorded using a focussed Ar ion laser beam (488 nm; 85 mW) as the source. The performance of the flow cell was optimized using five drugs (amiloride, amiphenazole, 2-mercaptopyridine, pemoline and triamterene) as model analytes. The maximum SERS signal was obtained with flow rates of 0.075 ml/ml and 1.5 ml/ml for the mobile phase and silver hydrosol, respectively. The reproducibility (n = 5) of the FIA-SERS system for the determination of 625 ng amiloride was 1%.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '1', 'urlcheck' => '2014-10-11 16:18:55', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '01097', 'pauthor' => '!Laserna, J.J.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1016/0003-2670(95)00441-6', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Flow injection analysis and liquid chromatography: surface enhanced Raman spectrometry detection by using a windowless flow cell', Anal. Chim. Acta, 1996 318(2) 203-210', 'firstchar' => 'F', 'twochars' => 'Fl', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 1 => array( 'id' => '006451', 'authors' => 'Somsen, G.W.;Coulter, S.K.;Gooijer, C.;Velthorst, N.H.;Brinkman, U.A.T.', 'authorsweb' => 'G. W. Somsen*, S. K. Coulter, C. Gooijer, N. H. Velthorst and U. A. Th. Brinkman', 'title' => 'Coupling of column liquid-chromatography and surface-enhanced resonance raman-spectroscopy via a thin-layer chromatographic plate', 'journal' => 'Anal. Chim. Acta', 'journal_id' => '0584', 'fadid' => 'ANCA1997V0349P00189', 'year' => '1997', 'volume' => '349', 'issue' => '1-3', 'startpage' => '189', 'endpage' => '197', 'type' => 'Journal Article', 'analytes' => '', 'matrices' => '', 'techniques' => ';0410;0038;', 'keywords' => ';0339;0302;', 'abstract' => 'Surface-enhanced resonance Raman (SERR) spectroscopy was used to characterize compounds separated by column liquid chromatography (LC). Three percent of the effluent from a conventional-size LC column were immobilized on a moving thin-layer chromatography (TLC) plate using a spray-jet solvent-elimination interface. Next, colloidal silver was applied to the analyte spots and in situ SERR spectra were recorded with a multichannel micro-Raman spectrometer. Storage of the LC effluent avoids the need to use a continuous-flow of colloidal silver and, in principle allows compounds to be detected independently of LC conditions like eluent composition and flow rate. Using dyes as test compounds, the method was optimized and aspects were studied such as type of TLC plate, LC separation of the dyes, preservation of LC integrity during immobilization, and SERR analysis of the deposited compounds. With a silica TLC plate as deposition substrate, good-quality and characteristic SERR spectra were obtained for the dyes which were separated on a cyanoproyl-modified silica LC column with methanol-water containing the volatile additives ammonium acetate and triethylamine as eluent. The minimum identifiable concentration of the dyes was about 250 ng mL-1 (750 pg applied on the plate). For some strong Raman scatterers such as nile blue and pararosaniline, the major spectral peaks could be observed down to concentrations of 25 ng mL-1. 36 References', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '3', 'urlcheck' => '2014-10-11 16:23:46', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '01300', 'pauthor' => '!Somsen, G.W.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1016/S0003-2670(97)00011-1', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Coupling of column liquid-chromatography and surface-enhanced resonance raman-spectroscopy via a thin-layer chromatographic plate', Anal. Chim. Acta, 1997 349(1-3) 189-197', 'firstchar' => 'C', 'twochars' => 'Co', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array([maximum depth reached]), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 2 => array( 'id' => '006887', 'authors' => 'Laserna, J.J.;Berthod, A.;Winefordner, J.D.', 'authorsweb' => 'J. J. Laserna, A. Berthod and J. D. Winefordner ', 'title' => 'Quantitative analysis by surface-enhanced raman spectrometry on silver hydrosols in a flow injection system', 'journal' => 'Talanta', 'journal_id' => '0569', 'fadid' => 'TALT1987V0034P00745', 'year' => '1987', 'volume' => '34', 'issue' => '8', 'startpage' => '745', 'endpage' => '747', 'type' => 'Journal Article', 'analytes' => ';0056;0401;', 'matrices' => '', 'techniques' => ';0410;', 'keywords' => ';0457;', 'abstract' => 'The application of surface-enhanced Raman scattering (SERS) in quantitative analysis is demonstrated by the determination of 4-aminobenzoic acid(I) and acridin-9-amine(II) on silver suspensions by SERS in a flow injection system. Two peristaltic pumps were used to mix 2 mM NaBH4 and 1 mM AgNO3 and pump the resulting silver suspension through the flow injection analysis system. The flow injection analysis system is described (with diagram). The sample solution contained I in aqueous 40% ethanol or II in ethanol. The calibration graph was rectilinear for 4 to 100 µg mL-1 of I, and the coefficient of variation (n = 6) was 3.2%. The system required cleaning with 40% HNO3 after 10 to 15 injections.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '7', 'urlcheck' => '2014-10-11 14:54:34', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '01400', 'pauthor' => '!Winefordner, J.D.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1016/0039-9140(87)80234-5', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Quantitative analysis by surface-enhanced raman spectrometry on silver hydrosols in a flow injection system', Talanta, 1987 34(8) 745-747', 'firstchar' => 'Q', 'twochars' => 'Qu', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 3 => array( 'id' => '007977', 'authors' => 'Weissenbacher, N.;Lendl, B.;Frank, J.;Wanzenbock, H.D.;Kellner, R.', 'authorsweb' => 'N. Weißenbacher, B. Lendl, J. Frank, H. D. Wanzenböck and R. Kellner', 'title' => 'Surface enhanced raman spectroscopy as a molecular specific detection system in aqueous flow-through systems', 'journal' => 'Analyst', 'journal_id' => '0864', 'fadid' => 'ANAL1998V0123P01057', 'year' => '1998', 'volume' => '123', 'issue' => '5', 'startpage' => '1057', 'endpage' => '1060', 'type' => 'Journal Article', 'analytes' => ';1583;', 'matrices' => '', 'techniques' => ';0410;0409;', 'keywords' => ';0446;0167;0043;0258;', 'abstract' => 'Surface enhanced Raman scattering (SERS) is proposed as a mol. specific technique for direct measurements of organic molecules in aqueous solutions An FT-Raman spectrometer was interfaced with a flow injection manifold operated in the stopped-flow mode enabling reproducible collection of SERS spectra due to the automation of the anal. procedure. For SERS a solid state substrate placed in a newly developed flow-cell was used. Multiple measurements on one single SERS substrate were achieved by rinsing the substrate with reagents such as 3 M KCl or 0.1 M NaOH solutions prior to the next measurements to remove retained analytes from the surface of the SERS substrate. This procedure allowed for improved precision as compared with a conventional batch approach. Quant. aspects were studied by establishing a calibration curve for nicotinic acid which was used as a model analyte. A linear dependence of the recorded SERS intensities from the logarithm of the analyte concentration. was obtained throughout the whole studied concentration. range (0.001-0.1 M, correlation coefficient r2 = 0.97). The standard deviation of the method sx0 is 0.122 mM and detection limit 1.7 mM, respectively. The results demonstrate the potential of SERS spectroscopy to be used as a molecular specific detector in aqueous flow systems such as flow injection anal.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '5', 'urlcheck' => '2014-10-12 09:52:18', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '00241', 'pauthor' => '!Lendl, B.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1039/a705837c', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Surface enhanced raman spectroscopy as a molecular specific detection system in aqueous flow-through systems', Analyst, 1998 123(5) 1057-1060', 'firstchar' => 'S', 'twochars' => 'Su', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 4 => array( 'id' => '008516', 'authors' => 'Force, R.K.', 'authorsweb' => 'R. Ken Force', 'title' => 'Surface-enhanced raman spectroscopy at a silver electrode as a detector in flow injection analysis', 'journal' => 'Anal. Chem.', 'journal_id' => '0499', 'fadid' => 'ANCH1988V0060P01987', 'year' => '1988', 'volume' => '60', 'issue' => '18', 'startpage' => '1987', 'endpage' => '1989', 'type' => 'Journal Article', 'analytes' => '', 'matrices' => '', 'techniques' => ';0214;0410;', 'keywords' => '', 'abstract' => 'A Ag-ring reference (diameter 5 mm) and a Ag-disc working electrode (diameter 3 mm) were sealed 1 mm apart in a Pyrex tube (o.d. 7 mm) and polished smooth. The Ag ring was anodized at 0.4 V (vs. a SCE) in 0.1 M KCl to produce a Ag - AgCl reference electrode with a potential of ~0.190 to ~0.200 V (vs. a NHE) in the 0.1 M KCl used as mobile phase and supporting electrolyte. The apparatus was applied in flow injection analysis for 50.0 mM pyridine (1 mL injections) in KCl flowing at 2 mL min-1. The potential was held at -0.6 V. Raman spectra were recorded from 990 to 1050 cm-1 in 2-cm-1 steps. A detection limit of ~250 nM was achieved. A Ag-ring reference (diameter 5 mm) and a Ag-disc working electrode (diameter 3 mm) were sealed 1 mm apart in a Pyrex tube (o.d. 7 mm) and polished smooth.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '0', 'urlcheck' => '2014-10-11 18:35:15', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '00965', 'pauthor' => '!Force, R.K.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1021/ac00169a033', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Surface-enhanced raman spectroscopy at a silver electrode as a detector in flow injection analysis', Anal. Chem., 1988 60(18) 1987-1989', 'firstchar' => 'S', 'twochars' => 'Su', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array([maximum depth reached]), 'Matrix' => array([maximum depth reached]), 'Keyword' => array([maximum depth reached]) ), (int) 5 => array( 'id' => '008566', 'authors' => 'Pothier, N.J.;Force, R.K.', 'authorsweb' => 'Neil J. Pothier and R. Ken Force', 'title' => 'Surface-enhanced raman spectroscopy at a silver electrode as a detection system in flowing streams', 'journal' => 'Anal. Chem.', 'journal_id' => '0499', 'fadid' => 'ANCH1990V0062P00678', 'year' => '1990', 'volume' => '62', 'issue' => '7', 'startpage' => '678', 'endpage' => '680', 'type' => 'Journal Article', 'analytes' => ';0064;2356;0747;', 'matrices' => '', 'techniques' => ';0410;0210;0038;', 'keywords' => ';0276;0446;0109;', 'abstract' => 'A three-electrode surface-enhanced Raman spectroscopy detector, with a Ag working electrode, Pt foil auxiliary electrode and SCE reference and a cell volume of 30 µL, was evaluated for use with HPLC and flow injection analysis. In a flowing system, the analyte is rapidly removed from the electrode surface in 10 s, and spectra was obtained in 5 s with an optical multichannel analyzer.. Under stopped-flow conditions, detection limits were 175, 233 and 211 pmol for adenine, thymine and cytosine, respectively.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '3', 'urlcheck' => '2014-10-11 18:35:47', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '00965', 'pauthor' => '!Force, R.K.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1021/ac00206a005', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Surface-enhanced raman spectroscopy at a silver electrode as a detection system in flowing streams', Anal. Chem., 1990 62(7) 678-680', 'firstchar' => 'S', 'twochars' => 'Su', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 6 => array( 'id' => '008582', 'authors' => 'Ni, F.;Sheng, R.S.;Cotton, T.M.', 'authorsweb' => 'Fan Ni, Rongsheng Sheng, and Therese M. Cotton', 'title' => 'Flow injection analysis and real-time detection of RNA bases by surface-enhanced Raman spectroscopy', 'journal' => 'Anal. Chem.', 'journal_id' => '0499', 'fadid' => 'ANCH1990V0062P01958', 'year' => '1990', 'volume' => '62', 'issue' => '18', 'startpage' => '1958', 'endpage' => '1963', 'type' => 'Journal Article', 'analytes' => ';0365;', 'matrices' => '', 'techniques' => ';0410;0038;', 'keywords' => ';0216;0320;0302;', 'abstract' => 'Surface-enhanced Raman scattering (SERS) spectroscopy has been successfully interfaced with a flow injection analysis system to detect RNA bases in real time. Four of the major base components of RNA, uracil, cytosine, adenine, and guanine, were introduced into the flow injection system and were mixed with a Ag sol prior to SERS measurements. Several experimental parameters including pH, temperature, flow rate, and tubing materials were examined, and their impact on the SERS spectra is presented here. The feasibility of interfacing flow injection based SERS detection methods with liquid or high performance liquid chromatography for the detection of individual components in a complex mixture is also assessed.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '2', 'urlcheck' => '2014-10-11 18:36:03', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => null, 'pauthor' => 'Cotton, T.M.', 'address' => 'Department of Chemistry, Iowa State University, Ames, Iowa 50011 USA', 'email' => 'NA', 'notes' => null, 'url' => '10.1021/ac00217a012', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Flow injection analysis and real-time detection of RNA bases by surface-enhanced Raman spectroscopy', Anal. Chem., 1990 62(18) 1958-1963', 'firstchar' => 'F', 'twochars' => 'Fl', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 7 => array( 'id' => '009344', 'authors' => 'Laserna, J.J.;Berthod, A.;Winefordner, J.D.', 'authorsweb' => 'J. J. Laserna, A. Berthod and J. D. Winefordner*', 'title' => 'Evaluation and optimization of experimental conditions for surface-enhanced raman detection of analytes in flow injection analysis', 'journal' => 'Microchem. J.', 'journal_id' => '0639', 'fadid' => 'MCHJ1988V0038P00125', 'year' => '1988', 'volume' => '38', 'issue' => '1', 'startpage' => '125', 'endpage' => '126', 'type' => 'Journal Article', 'analytes' => ';0399;0055;', 'matrices' => '', 'techniques' => ';0410;', 'keywords' => ';0110;0302;', 'abstract' => 'The Raman instrumentation included a 100-mW Ar ion laser operated at 514.5 nm, a double monochromator and a cooled Hamamatsu R-928 photomultiplier tube with photon counting system as the detector. Vertically polarized light was used, with right-angle geometry for Raman sampling and a long-wave-pass glass filter to suppress Rayleigh-scattered light. Spectra were obtained by single scans. Flow streams of 1 mM AgNO3 and 2 mM NaBH4 were merged to form a silver hydrosol matrix, and 4-aminobenzoic acid(I) and acridin-9-amine were used successfully as test analytes. The detector flow-cell was a silica tube (3 mm x 0.5 mm;~0.6 µL). For maximum signal response with I, the total flow rate was 0.7 mL min-1 and the pH was adjusted with HNO3 to 3.2.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '14', 'urlcheck' => '2014-10-12 00:26:48', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '01400', 'pauthor' => '!Winefordner, J.D.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1016/0026-265X(88)90011-2', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Evaluation and optimization of experimental conditions for surface-enhanced raman detection of analytes in flow injection analysis', Microchem. J., 1988 38(1) 125-126', 'firstchar' => 'E', 'twochars' => 'Ev', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 8 => array( 'id' => '010331', 'authors' => 'Gouveia, V.J.P.;Gutz, I.G.R.;Rubim, J.C.', 'authorsweb' => 'Vitor J. P. Gouveia, Ivano G. Gutz and Joel C. Rubim*', 'title' => 'New spectroelectrochemical cell for flow injection analysis and its application to the determination of iron(II) down to the femtomole level by surface-enhanced resonance Raman scattering (SERRS)', 'journal' => 'J. Electroanal. Chem.', 'journal_id' => '0709', 'fadid' => 'JECH1994V0371P00037', 'year' => '1994', 'volume' => '371', 'issue' => '1-2', 'startpage' => '37', 'endpage' => '42', 'type' => 'Journal Article', 'analytes' => ';1294;', 'matrices' => ';0404;', 'techniques' => ';0226;0410;', 'keywords' => '', 'abstract' => 'A principal feature of the cell (diagrams presented) is the in situ renewal of the surface-enhanced Raman-active Ag substratum. Before injection of the analyte, Ag+ are introduced, and Ag is electro-deposited on a vitreous-carbon electrode; after the Raman spectrum of the adsorbed analyte has been recorded, the Ag is removed by anodic stripping. Fe(II) was determined in a 130 µL injected sample as its tris(bipyridyl) complex, which exhibits both a resonance Raman effect when excited with Ar+ laser 514.5 nm radiation and surface-enhanced Raman scattering when adsorbed on Ag. The calibration graph was sigmoidal, but usable for 10 nM-10 µM-Fe(II), and the detection limit was 1 nM, which represented detection of Fe(II) at the femtomole level.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '13', 'urlcheck' => '2014-10-12 09:04:46', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => null, 'pauthor' => 'Rubim, J.C.', 'address' => 'Institututo de Química da Universidade de São Paulo C.P.20780, 01498, São Paulo, SP Brazil', 'email' => 'NA', 'notes' => null, 'url' => '10.1016/0022-0728(93)03220-J', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''New spectroelectrochemical cell for flow injection analysis and its application to the determination of iron(II) down to the femtomole level by surface-enhanced resonance Raman scattering (SERRS)', J. Electroanal. Chem., 1994 371(1-2) 37-42', 'firstchar' => 'N', 'twochars' => 'Ne', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array( [maximum depth reached] ), 'Keyword' => array([maximum depth reached]) ), (int) 9 => array( 'id' => '013707', 'authors' => 'Weissenbacher, N.;Lendl, B.;Frank, J.;Wanzenbock, H.D.;Mizaikoff, B.;Kellner, R.', 'authorsweb' => 'N. Weissenbacher*, B. Lendl, J. Frank, H. D. Wanzenböck, B. Mizaikoff and R. Kellner', 'title' => 'Continuous surface-enhanced raman-spectroscopy for the detection of trace organic pollutants in aqueous systems', 'journal' => 'J. Mol. Struct.', 'journal_id' => '0628', 'fadid' => 'JMRS1997V0410P00539', 'year' => '1997', 'volume' => '410', 'issue' => '1', 'startpage' => '539', 'endpage' => '542', 'type' => 'Journal Article', 'analytes' => ';2050;1583;1774;0504;1478;', 'matrices' => '', 'techniques' => ';0410;', 'keywords' => '', 'abstract' => 'In Raman spectroscopy, detection limits for organic pollutants in water can be lowered by several orders of magnitude when surface enhanced techniques are applied. In this work a continuous analytical device based on flow injection analysis using SERS detection is proposed. This system was tested with model analytes such as pyridine and nicotinic acid as well as several pesticides (carbendazim, metazachlorine). (C) 1997 Elsevier Science B.V. 22 References', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'No', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '3', 'urlcheck' => '2014-10-12 09:49:43', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => null, 'pauthor' => 'Weissenbacher, N.', 'address' => 'Institute for Analytical Chemistry, Vienna University of Technology, Getreidemarkt 9/151, A-1060, Vienna, Austria', 'email' => 'NA', 'notes' => null, 'url' => '10.1016/S0022-2860(96)09531-2', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Continuous surface-enhanced raman-spectroscopy for the detection of trace organic pollutants in aqueous systems', J. Mol. Struct., 1997 410(1) 539-542', 'firstchar' => 'C', 'twochars' => 'Co', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array([maximum depth reached]) ), (int) 10 => array( 'id' => '014097', 'authors' => 'Sawata, S.;Kai, E.;Ikebukuro, K.;Iida, T.;Honda, T.;Karube, I.', 'authorsweb' => 'Sawata S, Kai E, Ikebukuro K, Iida T, Honda T, Karube I.', 'title' => 'Novel detection system of flow injection analysis. 1. The existence of significant relation between secondary structure of DNA and sensitivity in signal detection', 'journal' => 'Nucleic Acids Symp. Ser.', 'journal_id' => '1346', 'fadid' => 'NASS1997V0037P00247', 'year' => '1997', 'volume' => '37', 'issue' => '1', 'startpage' => '247', 'endpage' => '248', 'type' => 'Journal Article', 'analytes' => ';0847;', 'matrices' => '', 'techniques' => ';0410;', 'keywords' => ';0401;', 'abstract' => 'Polymerase Chain Reaction (PCR) products were detected quantitatively using a flow injection type sensor, based on Surface Plasmon Resonance (SPR). We used asymmetric PCR to amplify the two kinds of products; their DNA lengths are different. This novel design permitted us not only to detect PCR products with high-sensitivity, but also to develop a rapid DNA detection system for the sense of the genetic pathogen.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'No', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '0', 'urlcheck' => '2014-10-13 19:09:08', 'urlcheckcode' => 'HTTP/1.1 200 OK', 'pauthor_id' => '00227', 'pauthor' => '!Karube, I.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => 'www.ncbi.nlm.nih.gov/pubmed/9586092', 'urltype' => 'absurl', 'gotpdf' => 'no', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Novel detection system of flow injection analysis. 1. The existence of significant relation between secondary structure of DNA and sensitivity in signal detection', Nucleic Acids Symp. Ser., 1997 37(1) 247-248', 'firstchar' => 'N', 'twochars' => 'No', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 11 => array( 'id' => '014429', 'authors' => 'Storey, J.M.E.;Barber, T.E.;Shelton, R.D.;Wachter, E.A.;Carron, K.T.;Jiang, Y.', 'authorsweb' => 'NA', 'title' => 'Applications of surface-enhanced Raman scattering (SERS) to chemical detection', 'journal' => 'Spectroscopy', 'journal_id' => '0489', 'fadid' => 'STRS1995V0010P00020', 'year' => '1995', 'volume' => '10', 'issue' => '3', 'startpage' => '20', 'endpage' => '25', 'type' => 'Journal Article', 'analytes' => ';0716;1186;1582;', 'matrices' => ';0343;0372;', 'techniques' => ';0410;', 'keywords' => ';0389;', 'abstract' => 'lectrochemical surface-enhanced Raman spectrometry (SERS) was used to detect chlorinated hydrocarbons in ground water, in tobacco smoke and aqueous cyanide ions. Hybrid substrate SERS was used for the detection of organic compounds in liquid and gas phases, using a flow-through cell. The experimental protocols were described previously. (Appl Spectrosc., 1994, 48, 1265; Shelton et al., Ibid., 1994, 48, 1007; Wachter et al.,Ibid., 1995, 49, 193; and Barber et al., Ibid., 1994, 48, 1423). The detection limits for hydrocarbons in electrolytes were a few ppm; they were an order of magnitude higher in groundwater. No calibration data are given. The response to cyanide was linear for 10^-100 ppm. The detection limit for nicotine in smoke was 15 ppb (no calibration data given). The advantages and limitations of the methods are discussed and future research directions are outlined.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'No', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '0', 'urlcheck' => '2006-05-20 19:26:31', 'urlcheckcode' => '', 'pauthor_id' => null, 'pauthor' => 'NA', 'address' => 'Oak Ridge Natl. Lab., Health Sci. Res. Div., Oak Ridge, TN 37831-6113 UK', 'email' => 'NA', 'notes' => null, 'url' => 'NA', 'urltype' => 'NA', 'gotpdf' => 'no', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Applications of surface-enhanced Raman scattering (SERS) to chemical detection', Spectroscopy, 1995 10(3) 20-25', 'firstchar' => 'A', 'twochars' => 'Ap', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array( [maximum depth reached] ), 'Keyword' => array( [maximum depth reached] ) ), (int) 12 => array( 'id' => '014511', 'authors' => 'Fujiwara, K.;Ito, S.', 'authorsweb' => 'Kitao Fujiwara and Seiji Ito', 'title' => 'Application of waveguiding in solutions for absorption and fluorescence spectrometry', 'journal' => 'Trends Anal. Chem.', 'journal_id' => '0653', 'fadid' => 'TRAC1991V0010P00184', 'year' => '1991', 'volume' => '10', 'issue' => '6', 'startpage' => '184', 'endpage' => '190', 'type' => 'Journal Article', 'analytes' => '', 'matrices' => '', 'techniques' => ';0252;0410;', 'keywords' => ';0043;0167;0521;', 'abstract' => 'Several waveguiding techniques in solution are presented in the context of spectrometry. Although light propagation in dense media via total reflection is a commonly used technique with optical fibers, it is also possible in solutions. This is very useful for improving both sensitivity and spatial resolution, especially in absorption and fluorescence spectrometry, by elongating the optical path length and controlling the angle of incidence of light in the measurement area of a sample. ', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'No', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '26', 'urlcheck' => '2014-10-12 02:21:14', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => null, 'pauthor' => 'NA', 'address' => 'NA', 'email' => 'NA', 'notes' => null, 'url' => '10.1016/0165-9936(91)85019-N', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Application of waveguiding in solutions for absorption and fluorescence spectrometry', Trends Anal. Chem., 1991 10(6) 184-190', 'firstchar' => 'A', 'twochars' => 'Ap', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array([maximum depth reached]), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 13 => array( 'id' => '014536', 'authors' => 'Vo Dinh, T.', 'authorsweb' => 'Tuan Vo-Dinh', 'title' => 'Surface enhanced raman spectroscopy using metallic nanostructures', 'journal' => 'Trends Anal. Chem.', 'journal_id' => '0653', 'fadid' => 'TRAC1998V0017P00557', 'year' => '1998', 'volume' => '17', 'issue' => '8-9', 'startpage' => '557', 'endpage' => '582', 'type' => 'Journal Article', 'analytes' => '', 'matrices' => ';0404;0093;', 'techniques' => ';0410;', 'keywords' => ';0043;0215;0389;', 'abstract' => 'This article provides an overview of the development and application of the surface-enhanced Raman scattering (SERS) techniques using metal-coated nanostructures on solid substrates, An introduction to theoretical principles of the SERS effect and the different SERS-active media is presented. The focus is on nanostructured solid substrates and their practical applications in chemical, environmental and biomedical areas. Specific examples of analytical techniques, instruments and sensors developed in the author's laboratory will be discussed to illustrate the usefulness and potential of the SERS techniques.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'No', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '38', 'urlcheck' => '2014-10-12 10:04:45', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => null, 'pauthor' => 'Vo Dinh, T.', 'address' => 'Advanced Monitoring Development Group, Life Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6101, USA', 'email' => 'NA', 'notes' => null, 'url' => '10.1016/S0165-9936(98)00069-7', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Surface enhanced raman spectroscopy using metallic nanostructures', Trends Anal. Chem., 1998 17(8-9) 557-582', 'firstchar' => 'S', 'twochars' => 'Su', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array([maximum depth reached]), 'Matrix' => array( [maximum depth reached] ), 'Keyword' => array( [maximum depth reached] ) ), (int) 14 => array( 'id' => '014560', 'authors' => 'Ruperez, A.;Montes, R.;Laserna, J.J.', 'authorsweb' => 'A. Rupérez, R. Montes and J. J. Laserna*', 'title' => 'Identification of stimulant drugs by surface-enhanced raman spectrometry on colloidal silver', 'journal' => 'Vib. Spectrosc.', 'journal_id' => '0655', 'fadid' => 'VIBS1991V0002P00145', 'year' => '1991', 'volume' => '2', 'issue' => '2-3', 'startpage' => '145', 'endpage' => '154', 'type' => 'Journal Article', 'analytes' => ';0862;', 'matrices' => '', 'techniques' => ';0032;0055;0410;', 'keywords' => '', 'abstract' => 'The surface-enhanced Raman (SER) spectra of stimulant drugs, including mefenorex, pentylenetetrazole, -amphetamine and pemoline, were obtained on colloidal silver. Silver colloids are prepared in a single step, at room temperature, by chemical reduction of Ag+ with sodium tetrahydroborate. Spectra are recorded using drug concentrations at the g mL-1 level. Individual drugs can be identified by characteristic vibrational bands. The SER spectrum of human urine and that of human urine spiked with mixtures of stimulant drugs are reported.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'No', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '7', 'urlcheck' => '2014-10-12 02:21:21', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '01097', 'pauthor' => '!Laserna, J.J.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1016/0924-2031(91)85020-N', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Identification of stimulant drugs by surface-enhanced raman spectrometry on colloidal silver', Vib. Spectrosc., 1991 2(2-3) 145-154', 'firstchar' => 'I', 'twochars' => 'Id', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array([maximum depth reached]) ) ) ) $c = array( 'id' => '009344', 'authors' => 'Laserna, J.J.;Berthod, A.;Winefordner, J.D.', 'authorsweb' => 'J. J. Laserna, A. Berthod and J. D. Winefordner*', 'title' => 'Evaluation and optimization of experimental conditions for surface-enhanced raman detection of analytes in flow injection analysis', 'journal' => 'Microchem. J.', 'journal_id' => '0639', 'fadid' => 'MCHJ1988V0038P00125', 'year' => '1988', 'volume' => '38', 'issue' => '1', 'startpage' => '125', 'endpage' => '126', 'type' => 'Journal Article', 'analytes' => ';0399;0055;', 'matrices' => '', 'techniques' => ';0410;', 'keywords' => ';0110;0302;', 'abstract' => 'The Raman instrumentation included a 100-mW Ar ion laser operated at 514.5 nm, a double monochromator and a cooled Hamamatsu R-928 photomultiplier tube with photon counting system as the detector. Vertically polarized light was used, with right-angle geometry for Raman sampling and a long-wave-pass glass filter to suppress Rayleigh-scattered light. Spectra were obtained by single scans. Flow streams of 1 mM AgNO3 and 2 mM NaBH4 were merged to form a silver hydrosol matrix, and 4-aminobenzoic acid(I) and acridin-9-amine were used successfully as test analytes. The detector flow-cell was a silica tube (3 mm x 0.5 mm;~0.6 µL). For maximum signal response with I, the total flow rate was 0.7 mL min-1 and the pH was adjusted with HNO3 to 3.2.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '14', 'urlcheck' => '2014-10-12 00:26:48', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '01400', 'pauthor' => '!Winefordner, J.D.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1016/0026-265X(88)90011-2', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Evaluation and optimization of experimental conditions for surface-enhanced raman detection of analytes in flow injection analysis', Microchem. J., 1988 38(1) 125-126', 'firstchar' => 'E', 'twochars' => 'Ev', 'CitationsTechnique' => array( 'id' => '007597', 'citation_id' => '009344', 'technique_id' => '0410' ), 'Analyte' => array( (int) 0 => array( 'id' => '00399', 'name' => '4-Aminobenzoic acid', 'iupac_name' => '4-aminobenzoic acid', 'casrn' => '150-13-0', 'synonyms' => '4-Aminobenzoic acid; Aminobenzoic Acid; Benzoic acid, 4-amino-; Benzoic acid, p-amino-; p-Carboxyaniline; p-Carboxyphenylamine; Amben; anti-Chromotrichia Factor; Anticanitic vitamin; Chromotrichia factor; Hachemina; Pabacyd; Pabafilm; Pabamine; Paraminol; Paranate; PAB; PABA; Trichochromogenic Factor; Vitamin BX; Vitamin H\'; 4-Carboxyaniline; ?-Aminobenzoic acid; Aminobenzoic acid, para; Bacterial vitamin H1; Pabanol; Super Shade by Coppertone; 1-Amino-4-carboxybenzene; Kyselina p-aminobenzoova; Sunbrella; RVPaba Lipstick; para-Aminobenzoic Acid; Romavit; Aniline-4-carboxylic acid; Anticantic vitamin; Pabagel; component of Pabanol; component of Presun; Trochromogenic factor', 'total' => '2', 'inchi' => 'InChI=1S/C7H7NO2/c8-6-3-1-5(2-4-6)7(9)10/h1-4H,8H2,(H,9,10)', 'inchikey' => 'ALYNCZNDIQEVRV-UHFFFAOYSA-N', 'formula' => ' C7H7NO2', 'oxstate' => 'Zero', 'url' => '', 'charge' => '0', 'class1' => 'Organic compound', 'class2' => 'NA', 'class3' => 'NA', 'class4' => 'Molecule', 'class5' => '', 'isgroup' => '', 'checked' => 'yes', 'citation_count' => '0', 'updated' => '2015-10-23 09:53:22', 'first' => '4', 'nametotal' => '4-Aminobenzoic acid**2', 'AnalytesCitation' => array( [maximum depth reached] ) ), (int) 1 => array( 'id' => '00055', 'name' => '9-Aminoacridine', 'iupac_name' => 'acridin-9-amine', 'casrn' => '90-45-9', 'synonyms' => '9-AMINOACRIDINE, Aminacrine, Acridin-9-amine, 9-Acridinamine, Aminoacridine, Aminacrin, 90-45-9, Izoacridina, 10-Amino-5-azaanthracene, Acridine, 9-amino-, Monacrin, Aminoacridina, Aminoacridinum, 9-Aminoakridin, 9-Aminoacridin, 9-Acridinylamine, Acridin-9-ylamine, 9(10H)-Acridinimine, 9-Aminoakridin [Czech], NSC 13000, 9AA, Aminoacridine [INN:BAN], UNII-78OY3Z0P7Z, CCRIS 748, CHEBI:74789, XJGFWWJLMVZSIG-UHFFFAOYSA-N, acridine-9-ylamine, NSC 7571, EINECS 201-995-6, BRN 0141171, AI3-51012, WLN: T C666 BNJ IZ, Aminopt, Mykocert, MLS000780068, NSC7571, 110166-26-2, 7AD, 8AD, C13H10N2, 9-Aminoacridine hydrochloride hydrate, SMR000420251, 5-Aminoacridin, 4bds, 9-Amino-acridine, F2179-0009, acridin-9-yl-amine, Quench (Salt/Mix), ACMC-20mczt, Mycosert (Salt/Mix), Spectrum_001108, SpecPlus_000861, 9-Acridinamine (9CI), AC1L1NTJ, 52417-22-8, Spectrum2_001112, Spectrum3_000617, Spectrum4_000580, Spectrum5_001498, AC1Q4W9J, AC1Q51BO, Acramine Yellow (Salt/Mix), SCHEMBL14999, BSPBio_002154, KBioGR_001020, KBioSS_001588, BIDD:GT0816, CHEMBL43184, DivK1c_006957, SPECTRUM1500810, SPBio_001244, 78OY3Z0P7Z, 9-AA, STOCK1S-10695, BDBM72700, cid_2723598, CTK0G2217, KBio1_001901, KBio2_001588, KBio2_004156, KBio2_006724, KBio3_001654, XJGFWWJLMVZSIG-UHFFFAOYSA-, MolPort-001-738-830, HMS1921I16, HMS2092K22, Pharmakon1600-01500810, 9-acridinamine;hydrate;hydrochloride, NSC13000, NSC28747, acridin-9-amine;hydrate;hydrochloride, ANW-75188, AR-1H5411, BBL011755, CCG-39037, NSC-13000, NSC-28747, NSC757794, SBB003606, STK387428, AKOS000120447, acridin-9-ylamine;hydrate;hydrochloride, LS-1913, MCULE-4734217474, NSC-757794, NCGC00094857-01, NCGC00094857-02, NCGC00094857-03, AJ-45955, AK109135, ST093685, U978, DB-026983, KB-250613, TC-163933, FT-0621612, ST24045903, M-2337, CS-003/03975023, CU-01000012501-2, BRD-K00535541-001-02-2, 3B3-019151, T0512-4846, 9-AMINO-(N-(2-DIMETHYLAMINO)BUTYL)ACRIDINE-4-CARBOXAMIDE, 9-AMINOACRIDINE (SEE ALSO 9-AMINOACRIDINE HCL AND 9-AMINOACRIDINE HCL-H2O), 148651-03-0, InChI=1/C13H10N2/c14-13-9-5-1-3-7-11(9)15-12-8-4-2-6-10(12)13/h1-8H,(H2,14,15)', 'total' => '2', 'inchi' => 'InChI=1S/C13H10N2/c14-13-9-5-1-3-7-11(9)15-12-8-4-2-6-10(12)13/h1-8H,(H2,14,15)', 'inchikey' => 'XJGFWWJLMVZSIG-UHFFFAOYSA-N', 'formula' => 'C13H10N2', 'oxstate' => 'Zero', 'url' => '', 'charge' => '0', 'class1' => '', 'class2' => '', 'class3' => '', 'class4' => '', 'class5' => '', 'isgroup' => 'no', 'checked' => 'no', 'citation_count' => '0', 'updated' => '2015-10-23 09:27:50', 'first' => '9', 'nametotal' => '9-Aminoacridine**2', 'AnalytesCitation' => array( [maximum depth reached] ) ) ), 'Matrix' => array(), 'Keyword' => array( (int) 0 => array( 'id' => '0110', 'type' => 'Manifold component', 'keyword' => 'Detector', 'newKeyword' => '', 'synonyms' => '', 'fao' => '', 'total' => '354', 'first' => 'D', 'keytotal' => 'Detector**354', 'CitationsKeyword' => array( [maximum depth reached] ) ), (int) 1 => array( 'id' => '0302', 'type' => 'Feature', 'keyword' => 'Optimization', 'newKeyword' => '', 'synonyms' => '', 'fao' => '', 'total' => '1069', 'first' => 'O', 'keytotal' => 'Optimization**1069', 'CitationsKeyword' => array( [maximum depth reached] ) ) ) ) $i = (int) 7 $path = '' $a = '' $url = 'http://dx.doi.org/10.1016/0026-265X(88)90011-2' $aus = 'J. J. Laserna, A. Berthod and J. D. Winefordner*'include - APP/View/Elements/citation.ctp, line 40 View::_evaluate() - CORE/Cake/View/View.php, line 971 View::_render() - CORE/Cake/View/View.php, line 933 View::_renderElement() - CORE/Cake/View/View.php, line 1224 View::element() - CORE/Cake/View/View.php, line 418 include - APP/View/Techniques/view.ctp, line 52 View::_evaluate() - CORE/Cake/View/View.php, line 971 View::_render() - CORE/Cake/View/View.php, line 933 View::render() - CORE/Cake/View/View.php, line 473 Controller::render() - CORE/Cake/Controller/Controller.php, line 968 Dispatcher::_invoke() - CORE/Cake/Routing/Dispatcher.php, line 200 Dispatcher::dispatch() - CORE/Cake/Routing/Dispatcher.php, line 167 [main] - APP/webroot/index.php, line 109
"New Spectroelectrochemical Cell For Flow Injection Analysis And Its Application To The Determination Of Iron(II) Down To The Femtomole Level By Surface-enhanced Resonance Raman Scattering (SERRS)"
J. Electroanal. Chem.
1994 Volume 371, Issue 1-2 Pages 37-42
Notice (8): Undefined variable: uid [APP/View/Elements/citation.ctp, line 40]Vitor J. P. Gouveia, Ivano G. Gutz and Joel C. Rubim*Code Context?>
<?php
if($uid!='') {
$viewFile = '/home/stuchalk/public_html/fad/app/View/Elements/citation.ctp' $dataForView = array( 'data' => array( 'Technique' => array( 'id' => '0410', 'label' => 'Raman', 'level1' => 'Raman', 'level2' => 'surface enhanced', 'level3' => '', 'level4' => '', 'level5' => '', 'synonyms' => 'Surface enhanced raman spectroscopy,SERS', 'champ' => '', 'total' => '15', 'updated' => '0000-00-00 00:00:00', 'name' => 'Raman, surface enhanced', 'nametotal' => 'Raman, surface enhanced**15', 'first' => 'R' ), 'Citation' => array( (int) 0 => array( [maximum depth reached] ), (int) 1 => array( [maximum depth reached] ), (int) 2 => array( [maximum depth reached] ), (int) 3 => array( [maximum depth reached] ), (int) 4 => array( [maximum depth reached] ), (int) 5 => array( [maximum depth reached] ), (int) 6 => array( [maximum depth reached] ), (int) 7 => array( [maximum depth reached] ), (int) 8 => array( [maximum depth reached] ), (int) 9 => array( [maximum depth reached] ), (int) 10 => array( [maximum depth reached] ), (int) 11 => array( [maximum depth reached] ), (int) 12 => array( [maximum depth reached] ), (int) 13 => array( [maximum depth reached] ), (int) 14 => array( [maximum depth reached] ) ) ), 'c' => array( 'id' => '010331', 'authors' => 'Gouveia, V.J.P.;Gutz, I.G.R.;Rubim, J.C.', 'authorsweb' => 'Vitor J. P. Gouveia, Ivano G. Gutz and Joel C. Rubim*', 'title' => 'New spectroelectrochemical cell for flow injection analysis and its application to the determination of iron(II) down to the femtomole level by surface-enhanced resonance Raman scattering (SERRS)', 'journal' => 'J. Electroanal. Chem.', 'journal_id' => '0709', 'fadid' => 'JECH1994V0371P00037', 'year' => '1994', 'volume' => '371', 'issue' => '1-2', 'startpage' => '37', 'endpage' => '42', 'type' => 'Journal Article', 'analytes' => ';1294;', 'matrices' => ';0404;', 'techniques' => ';0226;0410;', 'keywords' => '', 'abstract' => 'A principal feature of the cell (diagrams presented) is the in situ renewal of the surface-enhanced Raman-active Ag substratum. Before injection of the analyte, Ag+ are introduced, and Ag is electro-deposited on a vitreous-carbon electrode; after the Raman spectrum of the adsorbed analyte has been recorded, the Ag is removed by anodic stripping. Fe(II) was determined in a 130 µL injected sample as its tris(bipyridyl) complex, which exhibits both a resonance Raman effect when excited with Ar+ laser 514.5 nm radiation and surface-enhanced Raman scattering when adsorbed on Ag. The calibration graph was sigmoidal, but usable for 10 nM-10 µM-Fe(II), and the detection limit was 1 nM, which represented detection of Fe(II) at the femtomole level.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '13', 'urlcheck' => '2014-10-12 09:04:46', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => null, 'pauthor' => 'Rubim, J.C.', 'address' => 'Institututo de Química da Universidade de São Paulo C.P.20780, 01498, São Paulo, SP Brazil', 'email' => 'NA', 'notes' => null, 'url' => '10.1016/0022-0728(93)03220-J', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''New spectroelectrochemical cell for flow injection analysis and its application to the determination of iron(II) down to the femtomole level by surface-enhanced resonance Raman scattering (SERRS)', J. Electroanal. Chem., 1994 371(1-2) 37-42', 'firstchar' => 'N', 'twochars' => 'Ne', 'CitationsTechnique' => array( 'id' => '009503', 'citation_id' => '010331', 'technique_id' => '0410' ), 'Analyte' => array( (int) 0 => array( [maximum depth reached] ) ), 'Matrix' => array( (int) 0 => array( [maximum depth reached] ) ), 'Keyword' => array() ), 'i' => (int) 8 ) $data = array( 'Technique' => array( 'id' => '0410', 'label' => 'Raman', 'level1' => 'Raman', 'level2' => 'surface enhanced', 'level3' => '', 'level4' => '', 'level5' => '', 'synonyms' => 'Surface enhanced raman spectroscopy,SERS', 'champ' => '', 'total' => '15', 'updated' => '0000-00-00 00:00:00', 'name' => 'Raman, surface enhanced', 'nametotal' => 'Raman, surface enhanced**15', 'first' => 'R' ), 'Citation' => array( (int) 0 => array( 'id' => '006258', 'authors' => 'Cabalin, L.M.;Ruperez, A.;Laserna, J.J.', 'authorsweb' => 'L. M. Cabalín, A. Rupérez and J. J. Laserna*', 'title' => 'Flow injection analysis and liquid chromatography: surface enhanced Raman spectrometry detection by using a windowless flow cell', 'journal' => 'Anal. Chim. Acta', 'journal_id' => '0584', 'fadid' => 'ANCA1996V0318P00203', 'year' => '1996', 'volume' => '318', 'issue' => '2', 'startpage' => '203', 'endpage' => '210', 'type' => 'Journal Article', 'analytes' => ';0146;0199;2037;1732;2402;', 'matrices' => '', 'techniques' => ';0032;0410;', 'keywords' => ';0167;0302;', 'abstract' => 'A windowless flow cell was developed for detection by surface-enhanced Raman spectrometry (SERS) in FIA and LC. The flow cell consisted of two stainless-steel tubes (0.16 mm i.d.; 1.4 mm o.d.) mounted on an Al frame so that the ends were ~e;1.6 mm apart. The liquid draining from the upper to the lower tube was supported by surface tension and formed a column (1.4 mm diameter). The mobile phase from the FIA or LC was merged with a silver hydrosol stream then propelled in to the flow cell. The Raman spectra were recorded using a focussed Ar ion laser beam (488 nm; 85 mW) as the source. The performance of the flow cell was optimized using five drugs (amiloride, amiphenazole, 2-mercaptopyridine, pemoline and triamterene) as model analytes. The maximum SERS signal was obtained with flow rates of 0.075 ml/ml and 1.5 ml/ml for the mobile phase and silver hydrosol, respectively. The reproducibility (n = 5) of the FIA-SERS system for the determination of 625 ng amiloride was 1%.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '1', 'urlcheck' => '2014-10-11 16:18:55', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '01097', 'pauthor' => '!Laserna, J.J.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1016/0003-2670(95)00441-6', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Flow injection analysis and liquid chromatography: surface enhanced Raman spectrometry detection by using a windowless flow cell', Anal. Chim. Acta, 1996 318(2) 203-210', 'firstchar' => 'F', 'twochars' => 'Fl', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 1 => array( 'id' => '006451', 'authors' => 'Somsen, G.W.;Coulter, S.K.;Gooijer, C.;Velthorst, N.H.;Brinkman, U.A.T.', 'authorsweb' => 'G. W. Somsen*, S. K. Coulter, C. Gooijer, N. H. Velthorst and U. A. Th. Brinkman', 'title' => 'Coupling of column liquid-chromatography and surface-enhanced resonance raman-spectroscopy via a thin-layer chromatographic plate', 'journal' => 'Anal. Chim. Acta', 'journal_id' => '0584', 'fadid' => 'ANCA1997V0349P00189', 'year' => '1997', 'volume' => '349', 'issue' => '1-3', 'startpage' => '189', 'endpage' => '197', 'type' => 'Journal Article', 'analytes' => '', 'matrices' => '', 'techniques' => ';0410;0038;', 'keywords' => ';0339;0302;', 'abstract' => 'Surface-enhanced resonance Raman (SERR) spectroscopy was used to characterize compounds separated by column liquid chromatography (LC). Three percent of the effluent from a conventional-size LC column were immobilized on a moving thin-layer chromatography (TLC) plate using a spray-jet solvent-elimination interface. Next, colloidal silver was applied to the analyte spots and in situ SERR spectra were recorded with a multichannel micro-Raman spectrometer. Storage of the LC effluent avoids the need to use a continuous-flow of colloidal silver and, in principle allows compounds to be detected independently of LC conditions like eluent composition and flow rate. Using dyes as test compounds, the method was optimized and aspects were studied such as type of TLC plate, LC separation of the dyes, preservation of LC integrity during immobilization, and SERR analysis of the deposited compounds. With a silica TLC plate as deposition substrate, good-quality and characteristic SERR spectra were obtained for the dyes which were separated on a cyanoproyl-modified silica LC column with methanol-water containing the volatile additives ammonium acetate and triethylamine as eluent. The minimum identifiable concentration of the dyes was about 250 ng mL-1 (750 pg applied on the plate). For some strong Raman scatterers such as nile blue and pararosaniline, the major spectral peaks could be observed down to concentrations of 25 ng mL-1. 36 References', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '3', 'urlcheck' => '2014-10-11 16:23:46', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '01300', 'pauthor' => '!Somsen, G.W.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1016/S0003-2670(97)00011-1', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Coupling of column liquid-chromatography and surface-enhanced resonance raman-spectroscopy via a thin-layer chromatographic plate', Anal. Chim. Acta, 1997 349(1-3) 189-197', 'firstchar' => 'C', 'twochars' => 'Co', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array([maximum depth reached]), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 2 => array( 'id' => '006887', 'authors' => 'Laserna, J.J.;Berthod, A.;Winefordner, J.D.', 'authorsweb' => 'J. J. Laserna, A. Berthod and J. D. Winefordner ', 'title' => 'Quantitative analysis by surface-enhanced raman spectrometry on silver hydrosols in a flow injection system', 'journal' => 'Talanta', 'journal_id' => '0569', 'fadid' => 'TALT1987V0034P00745', 'year' => '1987', 'volume' => '34', 'issue' => '8', 'startpage' => '745', 'endpage' => '747', 'type' => 'Journal Article', 'analytes' => ';0056;0401;', 'matrices' => '', 'techniques' => ';0410;', 'keywords' => ';0457;', 'abstract' => 'The application of surface-enhanced Raman scattering (SERS) in quantitative analysis is demonstrated by the determination of 4-aminobenzoic acid(I) and acridin-9-amine(II) on silver suspensions by SERS in a flow injection system. Two peristaltic pumps were used to mix 2 mM NaBH4 and 1 mM AgNO3 and pump the resulting silver suspension through the flow injection analysis system. The flow injection analysis system is described (with diagram). The sample solution contained I in aqueous 40% ethanol or II in ethanol. The calibration graph was rectilinear for 4 to 100 µg mL-1 of I, and the coefficient of variation (n = 6) was 3.2%. The system required cleaning with 40% HNO3 after 10 to 15 injections.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '7', 'urlcheck' => '2014-10-11 14:54:34', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '01400', 'pauthor' => '!Winefordner, J.D.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1016/0039-9140(87)80234-5', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Quantitative analysis by surface-enhanced raman spectrometry on silver hydrosols in a flow injection system', Talanta, 1987 34(8) 745-747', 'firstchar' => 'Q', 'twochars' => 'Qu', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 3 => array( 'id' => '007977', 'authors' => 'Weissenbacher, N.;Lendl, B.;Frank, J.;Wanzenbock, H.D.;Kellner, R.', 'authorsweb' => 'N. Weißenbacher, B. Lendl, J. Frank, H. D. Wanzenböck and R. Kellner', 'title' => 'Surface enhanced raman spectroscopy as a molecular specific detection system in aqueous flow-through systems', 'journal' => 'Analyst', 'journal_id' => '0864', 'fadid' => 'ANAL1998V0123P01057', 'year' => '1998', 'volume' => '123', 'issue' => '5', 'startpage' => '1057', 'endpage' => '1060', 'type' => 'Journal Article', 'analytes' => ';1583;', 'matrices' => '', 'techniques' => ';0410;0409;', 'keywords' => ';0446;0167;0043;0258;', 'abstract' => 'Surface enhanced Raman scattering (SERS) is proposed as a mol. specific technique for direct measurements of organic molecules in aqueous solutions An FT-Raman spectrometer was interfaced with a flow injection manifold operated in the stopped-flow mode enabling reproducible collection of SERS spectra due to the automation of the anal. procedure. For SERS a solid state substrate placed in a newly developed flow-cell was used. Multiple measurements on one single SERS substrate were achieved by rinsing the substrate with reagents such as 3 M KCl or 0.1 M NaOH solutions prior to the next measurements to remove retained analytes from the surface of the SERS substrate. This procedure allowed for improved precision as compared with a conventional batch approach. Quant. aspects were studied by establishing a calibration curve for nicotinic acid which was used as a model analyte. A linear dependence of the recorded SERS intensities from the logarithm of the analyte concentration. was obtained throughout the whole studied concentration. range (0.001-0.1 M, correlation coefficient r2 = 0.97). The standard deviation of the method sx0 is 0.122 mM and detection limit 1.7 mM, respectively. The results demonstrate the potential of SERS spectroscopy to be used as a molecular specific detector in aqueous flow systems such as flow injection anal.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '5', 'urlcheck' => '2014-10-12 09:52:18', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '00241', 'pauthor' => '!Lendl, B.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1039/a705837c', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Surface enhanced raman spectroscopy as a molecular specific detection system in aqueous flow-through systems', Analyst, 1998 123(5) 1057-1060', 'firstchar' => 'S', 'twochars' => 'Su', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 4 => array( 'id' => '008516', 'authors' => 'Force, R.K.', 'authorsweb' => 'R. Ken Force', 'title' => 'Surface-enhanced raman spectroscopy at a silver electrode as a detector in flow injection analysis', 'journal' => 'Anal. Chem.', 'journal_id' => '0499', 'fadid' => 'ANCH1988V0060P01987', 'year' => '1988', 'volume' => '60', 'issue' => '18', 'startpage' => '1987', 'endpage' => '1989', 'type' => 'Journal Article', 'analytes' => '', 'matrices' => '', 'techniques' => ';0214;0410;', 'keywords' => '', 'abstract' => 'A Ag-ring reference (diameter 5 mm) and a Ag-disc working electrode (diameter 3 mm) were sealed 1 mm apart in a Pyrex tube (o.d. 7 mm) and polished smooth. The Ag ring was anodized at 0.4 V (vs. a SCE) in 0.1 M KCl to produce a Ag - AgCl reference electrode with a potential of ~0.190 to ~0.200 V (vs. a NHE) in the 0.1 M KCl used as mobile phase and supporting electrolyte. The apparatus was applied in flow injection analysis for 50.0 mM pyridine (1 mL injections) in KCl flowing at 2 mL min-1. The potential was held at -0.6 V. Raman spectra were recorded from 990 to 1050 cm-1 in 2-cm-1 steps. A detection limit of ~250 nM was achieved. A Ag-ring reference (diameter 5 mm) and a Ag-disc working electrode (diameter 3 mm) were sealed 1 mm apart in a Pyrex tube (o.d. 7 mm) and polished smooth.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '0', 'urlcheck' => '2014-10-11 18:35:15', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '00965', 'pauthor' => '!Force, R.K.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1021/ac00169a033', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Surface-enhanced raman spectroscopy at a silver electrode as a detector in flow injection analysis', Anal. Chem., 1988 60(18) 1987-1989', 'firstchar' => 'S', 'twochars' => 'Su', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array([maximum depth reached]), 'Matrix' => array([maximum depth reached]), 'Keyword' => array([maximum depth reached]) ), (int) 5 => array( 'id' => '008566', 'authors' => 'Pothier, N.J.;Force, R.K.', 'authorsweb' => 'Neil J. Pothier and R. Ken Force', 'title' => 'Surface-enhanced raman spectroscopy at a silver electrode as a detection system in flowing streams', 'journal' => 'Anal. Chem.', 'journal_id' => '0499', 'fadid' => 'ANCH1990V0062P00678', 'year' => '1990', 'volume' => '62', 'issue' => '7', 'startpage' => '678', 'endpage' => '680', 'type' => 'Journal Article', 'analytes' => ';0064;2356;0747;', 'matrices' => '', 'techniques' => ';0410;0210;0038;', 'keywords' => ';0276;0446;0109;', 'abstract' => 'A three-electrode surface-enhanced Raman spectroscopy detector, with a Ag working electrode, Pt foil auxiliary electrode and SCE reference and a cell volume of 30 µL, was evaluated for use with HPLC and flow injection analysis. In a flowing system, the analyte is rapidly removed from the electrode surface in 10 s, and spectra was obtained in 5 s with an optical multichannel analyzer.. Under stopped-flow conditions, detection limits were 175, 233 and 211 pmol for adenine, thymine and cytosine, respectively.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '3', 'urlcheck' => '2014-10-11 18:35:47', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '00965', 'pauthor' => '!Force, R.K.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1021/ac00206a005', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Surface-enhanced raman spectroscopy at a silver electrode as a detection system in flowing streams', Anal. Chem., 1990 62(7) 678-680', 'firstchar' => 'S', 'twochars' => 'Su', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 6 => array( 'id' => '008582', 'authors' => 'Ni, F.;Sheng, R.S.;Cotton, T.M.', 'authorsweb' => 'Fan Ni, Rongsheng Sheng, and Therese M. Cotton', 'title' => 'Flow injection analysis and real-time detection of RNA bases by surface-enhanced Raman spectroscopy', 'journal' => 'Anal. Chem.', 'journal_id' => '0499', 'fadid' => 'ANCH1990V0062P01958', 'year' => '1990', 'volume' => '62', 'issue' => '18', 'startpage' => '1958', 'endpage' => '1963', 'type' => 'Journal Article', 'analytes' => ';0365;', 'matrices' => '', 'techniques' => ';0410;0038;', 'keywords' => ';0216;0320;0302;', 'abstract' => 'Surface-enhanced Raman scattering (SERS) spectroscopy has been successfully interfaced with a flow injection analysis system to detect RNA bases in real time. Four of the major base components of RNA, uracil, cytosine, adenine, and guanine, were introduced into the flow injection system and were mixed with a Ag sol prior to SERS measurements. Several experimental parameters including pH, temperature, flow rate, and tubing materials were examined, and their impact on the SERS spectra is presented here. The feasibility of interfacing flow injection based SERS detection methods with liquid or high performance liquid chromatography for the detection of individual components in a complex mixture is also assessed.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '2', 'urlcheck' => '2014-10-11 18:36:03', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => null, 'pauthor' => 'Cotton, T.M.', 'address' => 'Department of Chemistry, Iowa State University, Ames, Iowa 50011 USA', 'email' => 'NA', 'notes' => null, 'url' => '10.1021/ac00217a012', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Flow injection analysis and real-time detection of RNA bases by surface-enhanced Raman spectroscopy', Anal. Chem., 1990 62(18) 1958-1963', 'firstchar' => 'F', 'twochars' => 'Fl', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 7 => array( 'id' => '009344', 'authors' => 'Laserna, J.J.;Berthod, A.;Winefordner, J.D.', 'authorsweb' => 'J. J. Laserna, A. Berthod and J. D. Winefordner*', 'title' => 'Evaluation and optimization of experimental conditions for surface-enhanced raman detection of analytes in flow injection analysis', 'journal' => 'Microchem. J.', 'journal_id' => '0639', 'fadid' => 'MCHJ1988V0038P00125', 'year' => '1988', 'volume' => '38', 'issue' => '1', 'startpage' => '125', 'endpage' => '126', 'type' => 'Journal Article', 'analytes' => ';0399;0055;', 'matrices' => '', 'techniques' => ';0410;', 'keywords' => ';0110;0302;', 'abstract' => 'The Raman instrumentation included a 100-mW Ar ion laser operated at 514.5 nm, a double monochromator and a cooled Hamamatsu R-928 photomultiplier tube with photon counting system as the detector. Vertically polarized light was used, with right-angle geometry for Raman sampling and a long-wave-pass glass filter to suppress Rayleigh-scattered light. Spectra were obtained by single scans. Flow streams of 1 mM AgNO3 and 2 mM NaBH4 were merged to form a silver hydrosol matrix, and 4-aminobenzoic acid(I) and acridin-9-amine were used successfully as test analytes. The detector flow-cell was a silica tube (3 mm x 0.5 mm;~0.6 µL). For maximum signal response with I, the total flow rate was 0.7 mL min-1 and the pH was adjusted with HNO3 to 3.2.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '14', 'urlcheck' => '2014-10-12 00:26:48', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '01400', 'pauthor' => '!Winefordner, J.D.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1016/0026-265X(88)90011-2', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Evaluation and optimization of experimental conditions for surface-enhanced raman detection of analytes in flow injection analysis', Microchem. J., 1988 38(1) 125-126', 'firstchar' => 'E', 'twochars' => 'Ev', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 8 => array( 'id' => '010331', 'authors' => 'Gouveia, V.J.P.;Gutz, I.G.R.;Rubim, J.C.', 'authorsweb' => 'Vitor J. P. Gouveia, Ivano G. Gutz and Joel C. Rubim*', 'title' => 'New spectroelectrochemical cell for flow injection analysis and its application to the determination of iron(II) down to the femtomole level by surface-enhanced resonance Raman scattering (SERRS)', 'journal' => 'J. Electroanal. Chem.', 'journal_id' => '0709', 'fadid' => 'JECH1994V0371P00037', 'year' => '1994', 'volume' => '371', 'issue' => '1-2', 'startpage' => '37', 'endpage' => '42', 'type' => 'Journal Article', 'analytes' => ';1294;', 'matrices' => ';0404;', 'techniques' => ';0226;0410;', 'keywords' => '', 'abstract' => 'A principal feature of the cell (diagrams presented) is the in situ renewal of the surface-enhanced Raman-active Ag substratum. Before injection of the analyte, Ag+ are introduced, and Ag is electro-deposited on a vitreous-carbon electrode; after the Raman spectrum of the adsorbed analyte has been recorded, the Ag is removed by anodic stripping. Fe(II) was determined in a 130 µL injected sample as its tris(bipyridyl) complex, which exhibits both a resonance Raman effect when excited with Ar+ laser 514.5 nm radiation and surface-enhanced Raman scattering when adsorbed on Ag. The calibration graph was sigmoidal, but usable for 10 nM-10 µM-Fe(II), and the detection limit was 1 nM, which represented detection of Fe(II) at the femtomole level.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '13', 'urlcheck' => '2014-10-12 09:04:46', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => null, 'pauthor' => 'Rubim, J.C.', 'address' => 'Institututo de Química da Universidade de São Paulo C.P.20780, 01498, São Paulo, SP Brazil', 'email' => 'NA', 'notes' => null, 'url' => '10.1016/0022-0728(93)03220-J', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''New spectroelectrochemical cell for flow injection analysis and its application to the determination of iron(II) down to the femtomole level by surface-enhanced resonance Raman scattering (SERRS)', J. Electroanal. Chem., 1994 371(1-2) 37-42', 'firstchar' => 'N', 'twochars' => 'Ne', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array( [maximum depth reached] ), 'Keyword' => array([maximum depth reached]) ), (int) 9 => array( 'id' => '013707', 'authors' => 'Weissenbacher, N.;Lendl, B.;Frank, J.;Wanzenbock, H.D.;Mizaikoff, B.;Kellner, R.', 'authorsweb' => 'N. Weissenbacher*, B. Lendl, J. Frank, H. D. Wanzenböck, B. Mizaikoff and R. Kellner', 'title' => 'Continuous surface-enhanced raman-spectroscopy for the detection of trace organic pollutants in aqueous systems', 'journal' => 'J. Mol. Struct.', 'journal_id' => '0628', 'fadid' => 'JMRS1997V0410P00539', 'year' => '1997', 'volume' => '410', 'issue' => '1', 'startpage' => '539', 'endpage' => '542', 'type' => 'Journal Article', 'analytes' => ';2050;1583;1774;0504;1478;', 'matrices' => '', 'techniques' => ';0410;', 'keywords' => '', 'abstract' => 'In Raman spectroscopy, detection limits for organic pollutants in water can be lowered by several orders of magnitude when surface enhanced techniques are applied. In this work a continuous analytical device based on flow injection analysis using SERS detection is proposed. This system was tested with model analytes such as pyridine and nicotinic acid as well as several pesticides (carbendazim, metazachlorine). (C) 1997 Elsevier Science B.V. 22 References', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'No', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '3', 'urlcheck' => '2014-10-12 09:49:43', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => null, 'pauthor' => 'Weissenbacher, N.', 'address' => 'Institute for Analytical Chemistry, Vienna University of Technology, Getreidemarkt 9/151, A-1060, Vienna, Austria', 'email' => 'NA', 'notes' => null, 'url' => '10.1016/S0022-2860(96)09531-2', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Continuous surface-enhanced raman-spectroscopy for the detection of trace organic pollutants in aqueous systems', J. Mol. Struct., 1997 410(1) 539-542', 'firstchar' => 'C', 'twochars' => 'Co', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array([maximum depth reached]) ), (int) 10 => array( 'id' => '014097', 'authors' => 'Sawata, S.;Kai, E.;Ikebukuro, K.;Iida, T.;Honda, T.;Karube, I.', 'authorsweb' => 'Sawata S, Kai E, Ikebukuro K, Iida T, Honda T, Karube I.', 'title' => 'Novel detection system of flow injection analysis. 1. The existence of significant relation between secondary structure of DNA and sensitivity in signal detection', 'journal' => 'Nucleic Acids Symp. Ser.', 'journal_id' => '1346', 'fadid' => 'NASS1997V0037P00247', 'year' => '1997', 'volume' => '37', 'issue' => '1', 'startpage' => '247', 'endpage' => '248', 'type' => 'Journal Article', 'analytes' => ';0847;', 'matrices' => '', 'techniques' => ';0410;', 'keywords' => ';0401;', 'abstract' => 'Polymerase Chain Reaction (PCR) products were detected quantitatively using a flow injection type sensor, based on Surface Plasmon Resonance (SPR). We used asymmetric PCR to amplify the two kinds of products; their DNA lengths are different. This novel design permitted us not only to detect PCR products with high-sensitivity, but also to develop a rapid DNA detection system for the sense of the genetic pathogen.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'No', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '0', 'urlcheck' => '2014-10-13 19:09:08', 'urlcheckcode' => 'HTTP/1.1 200 OK', 'pauthor_id' => '00227', 'pauthor' => '!Karube, I.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => 'www.ncbi.nlm.nih.gov/pubmed/9586092', 'urltype' => 'absurl', 'gotpdf' => 'no', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Novel detection system of flow injection analysis. 1. The existence of significant relation between secondary structure of DNA and sensitivity in signal detection', Nucleic Acids Symp. Ser., 1997 37(1) 247-248', 'firstchar' => 'N', 'twochars' => 'No', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 11 => array( 'id' => '014429', 'authors' => 'Storey, J.M.E.;Barber, T.E.;Shelton, R.D.;Wachter, E.A.;Carron, K.T.;Jiang, Y.', 'authorsweb' => 'NA', 'title' => 'Applications of surface-enhanced Raman scattering (SERS) to chemical detection', 'journal' => 'Spectroscopy', 'journal_id' => '0489', 'fadid' => 'STRS1995V0010P00020', 'year' => '1995', 'volume' => '10', 'issue' => '3', 'startpage' => '20', 'endpage' => '25', 'type' => 'Journal Article', 'analytes' => ';0716;1186;1582;', 'matrices' => ';0343;0372;', 'techniques' => ';0410;', 'keywords' => ';0389;', 'abstract' => 'lectrochemical surface-enhanced Raman spectrometry (SERS) was used to detect chlorinated hydrocarbons in ground water, in tobacco smoke and aqueous cyanide ions. Hybrid substrate SERS was used for the detection of organic compounds in liquid and gas phases, using a flow-through cell. The experimental protocols were described previously. (Appl Spectrosc., 1994, 48, 1265; Shelton et al., Ibid., 1994, 48, 1007; Wachter et al.,Ibid., 1995, 49, 193; and Barber et al., Ibid., 1994, 48, 1423). The detection limits for hydrocarbons in electrolytes were a few ppm; they were an order of magnitude higher in groundwater. No calibration data are given. The response to cyanide was linear for 10^-100 ppm. The detection limit for nicotine in smoke was 15 ppb (no calibration data given). The advantages and limitations of the methods are discussed and future research directions are outlined.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'No', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '0', 'urlcheck' => '2006-05-20 19:26:31', 'urlcheckcode' => '', 'pauthor_id' => null, 'pauthor' => 'NA', 'address' => 'Oak Ridge Natl. Lab., Health Sci. Res. Div., Oak Ridge, TN 37831-6113 UK', 'email' => 'NA', 'notes' => null, 'url' => 'NA', 'urltype' => 'NA', 'gotpdf' => 'no', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Applications of surface-enhanced Raman scattering (SERS) to chemical detection', Spectroscopy, 1995 10(3) 20-25', 'firstchar' => 'A', 'twochars' => 'Ap', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array( [maximum depth reached] ), 'Keyword' => array( [maximum depth reached] ) ), (int) 12 => array( 'id' => '014511', 'authors' => 'Fujiwara, K.;Ito, S.', 'authorsweb' => 'Kitao Fujiwara and Seiji Ito', 'title' => 'Application of waveguiding in solutions for absorption and fluorescence spectrometry', 'journal' => 'Trends Anal. Chem.', 'journal_id' => '0653', 'fadid' => 'TRAC1991V0010P00184', 'year' => '1991', 'volume' => '10', 'issue' => '6', 'startpage' => '184', 'endpage' => '190', 'type' => 'Journal Article', 'analytes' => '', 'matrices' => '', 'techniques' => ';0252;0410;', 'keywords' => ';0043;0167;0521;', 'abstract' => 'Several waveguiding techniques in solution are presented in the context of spectrometry. Although light propagation in dense media via total reflection is a commonly used technique with optical fibers, it is also possible in solutions. This is very useful for improving both sensitivity and spatial resolution, especially in absorption and fluorescence spectrometry, by elongating the optical path length and controlling the angle of incidence of light in the measurement area of a sample. ', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'No', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '26', 'urlcheck' => '2014-10-12 02:21:14', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => null, 'pauthor' => 'NA', 'address' => 'NA', 'email' => 'NA', 'notes' => null, 'url' => '10.1016/0165-9936(91)85019-N', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Application of waveguiding in solutions for absorption and fluorescence spectrometry', Trends Anal. Chem., 1991 10(6) 184-190', 'firstchar' => 'A', 'twochars' => 'Ap', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array([maximum depth reached]), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 13 => array( 'id' => '014536', 'authors' => 'Vo Dinh, T.', 'authorsweb' => 'Tuan Vo-Dinh', 'title' => 'Surface enhanced raman spectroscopy using metallic nanostructures', 'journal' => 'Trends Anal. Chem.', 'journal_id' => '0653', 'fadid' => 'TRAC1998V0017P00557', 'year' => '1998', 'volume' => '17', 'issue' => '8-9', 'startpage' => '557', 'endpage' => '582', 'type' => 'Journal Article', 'analytes' => '', 'matrices' => ';0404;0093;', 'techniques' => ';0410;', 'keywords' => ';0043;0215;0389;', 'abstract' => 'This article provides an overview of the development and application of the surface-enhanced Raman scattering (SERS) techniques using metal-coated nanostructures on solid substrates, An introduction to theoretical principles of the SERS effect and the different SERS-active media is presented. The focus is on nanostructured solid substrates and their practical applications in chemical, environmental and biomedical areas. Specific examples of analytical techniques, instruments and sensors developed in the author's laboratory will be discussed to illustrate the usefulness and potential of the SERS techniques.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'No', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '38', 'urlcheck' => '2014-10-12 10:04:45', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => null, 'pauthor' => 'Vo Dinh, T.', 'address' => 'Advanced Monitoring Development Group, Life Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6101, USA', 'email' => 'NA', 'notes' => null, 'url' => '10.1016/S0165-9936(98)00069-7', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Surface enhanced raman spectroscopy using metallic nanostructures', Trends Anal. Chem., 1998 17(8-9) 557-582', 'firstchar' => 'S', 'twochars' => 'Su', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array([maximum depth reached]), 'Matrix' => array( [maximum depth reached] ), 'Keyword' => array( [maximum depth reached] ) ), (int) 14 => array( 'id' => '014560', 'authors' => 'Ruperez, A.;Montes, R.;Laserna, J.J.', 'authorsweb' => 'A. Rupérez, R. Montes and J. J. Laserna*', 'title' => 'Identification of stimulant drugs by surface-enhanced raman spectrometry on colloidal silver', 'journal' => 'Vib. Spectrosc.', 'journal_id' => '0655', 'fadid' => 'VIBS1991V0002P00145', 'year' => '1991', 'volume' => '2', 'issue' => '2-3', 'startpage' => '145', 'endpage' => '154', 'type' => 'Journal Article', 'analytes' => ';0862;', 'matrices' => '', 'techniques' => ';0032;0055;0410;', 'keywords' => '', 'abstract' => 'The surface-enhanced Raman (SER) spectra of stimulant drugs, including mefenorex, pentylenetetrazole, -amphetamine and pemoline, were obtained on colloidal silver. Silver colloids are prepared in a single step, at room temperature, by chemical reduction of Ag+ with sodium tetrahydroborate. Spectra are recorded using drug concentrations at the g mL-1 level. Individual drugs can be identified by characteristic vibrational bands. The SER spectrum of human urine and that of human urine spiked with mixtures of stimulant drugs are reported.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'No', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '7', 'urlcheck' => '2014-10-12 02:21:21', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '01097', 'pauthor' => '!Laserna, J.J.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1016/0924-2031(91)85020-N', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Identification of stimulant drugs by surface-enhanced raman spectrometry on colloidal silver', Vib. Spectrosc., 1991 2(2-3) 145-154', 'firstchar' => 'I', 'twochars' => 'Id', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array([maximum depth reached]) ) ) ) $c = array( 'id' => '010331', 'authors' => 'Gouveia, V.J.P.;Gutz, I.G.R.;Rubim, J.C.', 'authorsweb' => 'Vitor J. P. Gouveia, Ivano G. Gutz and Joel C. Rubim*', 'title' => 'New spectroelectrochemical cell for flow injection analysis and its application to the determination of iron(II) down to the femtomole level by surface-enhanced resonance Raman scattering (SERRS)', 'journal' => 'J. Electroanal. Chem.', 'journal_id' => '0709', 'fadid' => 'JECH1994V0371P00037', 'year' => '1994', 'volume' => '371', 'issue' => '1-2', 'startpage' => '37', 'endpage' => '42', 'type' => 'Journal Article', 'analytes' => ';1294;', 'matrices' => ';0404;', 'techniques' => ';0226;0410;', 'keywords' => '', 'abstract' => 'A principal feature of the cell (diagrams presented) is the in situ renewal of the surface-enhanced Raman-active Ag substratum. Before injection of the analyte, Ag+ are introduced, and Ag is electro-deposited on a vitreous-carbon electrode; after the Raman spectrum of the adsorbed analyte has been recorded, the Ag is removed by anodic stripping. Fe(II) was determined in a 130 µL injected sample as its tris(bipyridyl) complex, which exhibits both a resonance Raman effect when excited with Ar+ laser 514.5 nm radiation and surface-enhanced Raman scattering when adsorbed on Ag. The calibration graph was sigmoidal, but usable for 10 nM-10 µM-Fe(II), and the detection limit was 1 nM, which represented detection of Fe(II) at the femtomole level.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '13', 'urlcheck' => '2014-10-12 09:04:46', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => null, 'pauthor' => 'Rubim, J.C.', 'address' => 'Institututo de Química da Universidade de São Paulo C.P.20780, 01498, São Paulo, SP Brazil', 'email' => 'NA', 'notes' => null, 'url' => '10.1016/0022-0728(93)03220-J', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''New spectroelectrochemical cell for flow injection analysis and its application to the determination of iron(II) down to the femtomole level by surface-enhanced resonance Raman scattering (SERRS)', J. Electroanal. Chem., 1994 371(1-2) 37-42', 'firstchar' => 'N', 'twochars' => 'Ne', 'CitationsTechnique' => array( 'id' => '009503', 'citation_id' => '010331', 'technique_id' => '0410' ), 'Analyte' => array( (int) 0 => array( 'id' => '01294', 'name' => 'Iron(2+)', 'iupac_name' => 'iron(2+)', 'casrn' => '7439-89-6', 'synonyms' => 'Fe +++; Fe +++ ion; Fe(III) ion; Fe(II) ion; Iron; iron +++; IRON, POWDER; Stainless steel; Steel', 'total' => '116', 'inchi' => 'InChI=1S/Fe/q+2', 'inchikey' => 'CWYNVVGOOAEACU-UHFFFAOYSA-N', 'formula' => 'Fe2+', 'oxstate' => '+2', 'url' => '', 'charge' => '2', 'class1' => 'Element', 'class2' => 'Metal', 'class3' => 'Transition metal', 'class4' => 'Cation', 'class5' => '', 'isgroup' => '', 'checked' => 'yes', 'citation_count' => '0', 'updated' => '2015-10-24 10:53:48', 'first' => 'I', 'nametotal' => 'Iron(2+)**116', 'AnalytesCitation' => array( [maximum depth reached] ) ) ), 'Matrix' => array( (int) 0 => array( 'id' => '0404', 'label' => 'Environmental', 'level1' => 'Environmental', 'level2' => '', 'level3' => '', 'level4' => '', 'level5' => '', 'synonyms' => '', 'total' => '186', 'url' => '', 'updated' => '2015-12-09 21:04:43', 'name' => 'Environmental', 'nametotal' => 'Environmental**186', 'first' => 'E', 'CitationsMatrix' => array( [maximum depth reached] ) ) ), 'Keyword' => array() ) $i = (int) 8 $path = '' $a = '' $url = 'http://dx.doi.org/10.1016/0022-0728(93)03220-J' $aus = 'Vitor J. P. Gouveia, Ivano G. Gutz and Joel C. Rubim*'include - APP/View/Elements/citation.ctp, line 40 View::_evaluate() - CORE/Cake/View/View.php, line 971 View::_render() - CORE/Cake/View/View.php, line 933 View::_renderElement() - CORE/Cake/View/View.php, line 1224 View::element() - CORE/Cake/View/View.php, line 418 include - APP/View/Techniques/view.ctp, line 52 View::_evaluate() - CORE/Cake/View/View.php, line 971 View::_render() - CORE/Cake/View/View.php, line 933 View::render() - CORE/Cake/View/View.php, line 473 Controller::render() - CORE/Cake/Controller/Controller.php, line 968 Dispatcher::_invoke() - CORE/Cake/Routing/Dispatcher.php, line 200 Dispatcher::dispatch() - CORE/Cake/Routing/Dispatcher.php, line 167 [main] - APP/webroot/index.php, line 109
"Continuous Surface-enhanced Raman-spectroscopy For The Detection Of Trace Organic Pollutants In Aqueous Systems"
J. Mol. Struct.
1997 Volume 410, Issue 1 Pages 539-542
Notice (8): Undefined variable: uid [APP/View/Elements/citation.ctp, line 40]N. Weissenbacher*, B. Lendl, J. Frank, H. D. Wanzenböck, B. Mizaikoff and R. KellnerCode Context?>
<?php
if($uid!='') {
$viewFile = '/home/stuchalk/public_html/fad/app/View/Elements/citation.ctp' $dataForView = array( 'data' => array( 'Technique' => array( 'id' => '0410', 'label' => 'Raman', 'level1' => 'Raman', 'level2' => 'surface enhanced', 'level3' => '', 'level4' => '', 'level5' => '', 'synonyms' => 'Surface enhanced raman spectroscopy,SERS', 'champ' => '', 'total' => '15', 'updated' => '0000-00-00 00:00:00', 'name' => 'Raman, surface enhanced', 'nametotal' => 'Raman, surface enhanced**15', 'first' => 'R' ), 'Citation' => array( (int) 0 => array( [maximum depth reached] ), (int) 1 => array( [maximum depth reached] ), (int) 2 => array( [maximum depth reached] ), (int) 3 => array( [maximum depth reached] ), (int) 4 => array( [maximum depth reached] ), (int) 5 => array( [maximum depth reached] ), (int) 6 => array( [maximum depth reached] ), (int) 7 => array( [maximum depth reached] ), (int) 8 => array( [maximum depth reached] ), (int) 9 => array( [maximum depth reached] ), (int) 10 => array( [maximum depth reached] ), (int) 11 => array( [maximum depth reached] ), (int) 12 => array( [maximum depth reached] ), (int) 13 => array( [maximum depth reached] ), (int) 14 => array( [maximum depth reached] ) ) ), 'c' => array( 'id' => '013707', 'authors' => 'Weissenbacher, N.;Lendl, B.;Frank, J.;Wanzenbock, H.D.;Mizaikoff, B.;Kellner, R.', 'authorsweb' => 'N. Weissenbacher*, B. Lendl, J. Frank, H. D. Wanzenböck, B. Mizaikoff and R. Kellner', 'title' => 'Continuous surface-enhanced raman-spectroscopy for the detection of trace organic pollutants in aqueous systems', 'journal' => 'J. Mol. Struct.', 'journal_id' => '0628', 'fadid' => 'JMRS1997V0410P00539', 'year' => '1997', 'volume' => '410', 'issue' => '1', 'startpage' => '539', 'endpage' => '542', 'type' => 'Journal Article', 'analytes' => ';2050;1583;1774;0504;1478;', 'matrices' => '', 'techniques' => ';0410;', 'keywords' => '', 'abstract' => 'In Raman spectroscopy, detection limits for organic pollutants in water can be lowered by several orders of magnitude when surface enhanced techniques are applied. In this work a continuous analytical device based on flow injection analysis using SERS detection is proposed. This system was tested with model analytes such as pyridine and nicotinic acid as well as several pesticides (carbendazim, metazachlorine). (C) 1997 Elsevier Science B.V. 22 References', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'No', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '3', 'urlcheck' => '2014-10-12 09:49:43', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => null, 'pauthor' => 'Weissenbacher, N.', 'address' => 'Institute for Analytical Chemistry, Vienna University of Technology, Getreidemarkt 9/151, A-1060, Vienna, Austria', 'email' => 'NA', 'notes' => null, 'url' => '10.1016/S0022-2860(96)09531-2', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Continuous surface-enhanced raman-spectroscopy for the detection of trace organic pollutants in aqueous systems', J. Mol. Struct., 1997 410(1) 539-542', 'firstchar' => 'C', 'twochars' => 'Co', 'CitationsTechnique' => array( 'id' => '014266', 'citation_id' => '013707', 'technique_id' => '0410' ), 'Analyte' => array( (int) 0 => array( [maximum depth reached] ), (int) 1 => array( [maximum depth reached] ), (int) 2 => array( [maximum depth reached] ), (int) 3 => array( [maximum depth reached] ), (int) 4 => array( [maximum depth reached] ) ), 'Matrix' => array(), 'Keyword' => array() ), 'i' => (int) 9 ) $data = array( 'Technique' => array( 'id' => '0410', 'label' => 'Raman', 'level1' => 'Raman', 'level2' => 'surface enhanced', 'level3' => '', 'level4' => '', 'level5' => '', 'synonyms' => 'Surface enhanced raman spectroscopy,SERS', 'champ' => '', 'total' => '15', 'updated' => '0000-00-00 00:00:00', 'name' => 'Raman, surface enhanced', 'nametotal' => 'Raman, surface enhanced**15', 'first' => 'R' ), 'Citation' => array( (int) 0 => array( 'id' => '006258', 'authors' => 'Cabalin, L.M.;Ruperez, A.;Laserna, J.J.', 'authorsweb' => 'L. M. Cabalín, A. Rupérez and J. J. Laserna*', 'title' => 'Flow injection analysis and liquid chromatography: surface enhanced Raman spectrometry detection by using a windowless flow cell', 'journal' => 'Anal. Chim. Acta', 'journal_id' => '0584', 'fadid' => 'ANCA1996V0318P00203', 'year' => '1996', 'volume' => '318', 'issue' => '2', 'startpage' => '203', 'endpage' => '210', 'type' => 'Journal Article', 'analytes' => ';0146;0199;2037;1732;2402;', 'matrices' => '', 'techniques' => ';0032;0410;', 'keywords' => ';0167;0302;', 'abstract' => 'A windowless flow cell was developed for detection by surface-enhanced Raman spectrometry (SERS) in FIA and LC. The flow cell consisted of two stainless-steel tubes (0.16 mm i.d.; 1.4 mm o.d.) mounted on an Al frame so that the ends were ~e;1.6 mm apart. The liquid draining from the upper to the lower tube was supported by surface tension and formed a column (1.4 mm diameter). The mobile phase from the FIA or LC was merged with a silver hydrosol stream then propelled in to the flow cell. The Raman spectra were recorded using a focussed Ar ion laser beam (488 nm; 85 mW) as the source. The performance of the flow cell was optimized using five drugs (amiloride, amiphenazole, 2-mercaptopyridine, pemoline and triamterene) as model analytes. The maximum SERS signal was obtained with flow rates of 0.075 ml/ml and 1.5 ml/ml for the mobile phase and silver hydrosol, respectively. The reproducibility (n = 5) of the FIA-SERS system for the determination of 625 ng amiloride was 1%.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '1', 'urlcheck' => '2014-10-11 16:18:55', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '01097', 'pauthor' => '!Laserna, J.J.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1016/0003-2670(95)00441-6', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Flow injection analysis and liquid chromatography: surface enhanced Raman spectrometry detection by using a windowless flow cell', Anal. Chim. Acta, 1996 318(2) 203-210', 'firstchar' => 'F', 'twochars' => 'Fl', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 1 => array( 'id' => '006451', 'authors' => 'Somsen, G.W.;Coulter, S.K.;Gooijer, C.;Velthorst, N.H.;Brinkman, U.A.T.', 'authorsweb' => 'G. W. Somsen*, S. K. Coulter, C. Gooijer, N. H. Velthorst and U. A. Th. Brinkman', 'title' => 'Coupling of column liquid-chromatography and surface-enhanced resonance raman-spectroscopy via a thin-layer chromatographic plate', 'journal' => 'Anal. Chim. Acta', 'journal_id' => '0584', 'fadid' => 'ANCA1997V0349P00189', 'year' => '1997', 'volume' => '349', 'issue' => '1-3', 'startpage' => '189', 'endpage' => '197', 'type' => 'Journal Article', 'analytes' => '', 'matrices' => '', 'techniques' => ';0410;0038;', 'keywords' => ';0339;0302;', 'abstract' => 'Surface-enhanced resonance Raman (SERR) spectroscopy was used to characterize compounds separated by column liquid chromatography (LC). Three percent of the effluent from a conventional-size LC column were immobilized on a moving thin-layer chromatography (TLC) plate using a spray-jet solvent-elimination interface. Next, colloidal silver was applied to the analyte spots and in situ SERR spectra were recorded with a multichannel micro-Raman spectrometer. Storage of the LC effluent avoids the need to use a continuous-flow of colloidal silver and, in principle allows compounds to be detected independently of LC conditions like eluent composition and flow rate. Using dyes as test compounds, the method was optimized and aspects were studied such as type of TLC plate, LC separation of the dyes, preservation of LC integrity during immobilization, and SERR analysis of the deposited compounds. With a silica TLC plate as deposition substrate, good-quality and characteristic SERR spectra were obtained for the dyes which were separated on a cyanoproyl-modified silica LC column with methanol-water containing the volatile additives ammonium acetate and triethylamine as eluent. The minimum identifiable concentration of the dyes was about 250 ng mL-1 (750 pg applied on the plate). For some strong Raman scatterers such as nile blue and pararosaniline, the major spectral peaks could be observed down to concentrations of 25 ng mL-1. 36 References', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '3', 'urlcheck' => '2014-10-11 16:23:46', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '01300', 'pauthor' => '!Somsen, G.W.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1016/S0003-2670(97)00011-1', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Coupling of column liquid-chromatography and surface-enhanced resonance raman-spectroscopy via a thin-layer chromatographic plate', Anal. Chim. Acta, 1997 349(1-3) 189-197', 'firstchar' => 'C', 'twochars' => 'Co', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array([maximum depth reached]), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 2 => array( 'id' => '006887', 'authors' => 'Laserna, J.J.;Berthod, A.;Winefordner, J.D.', 'authorsweb' => 'J. J. Laserna, A. Berthod and J. D. Winefordner ', 'title' => 'Quantitative analysis by surface-enhanced raman spectrometry on silver hydrosols in a flow injection system', 'journal' => 'Talanta', 'journal_id' => '0569', 'fadid' => 'TALT1987V0034P00745', 'year' => '1987', 'volume' => '34', 'issue' => '8', 'startpage' => '745', 'endpage' => '747', 'type' => 'Journal Article', 'analytes' => ';0056;0401;', 'matrices' => '', 'techniques' => ';0410;', 'keywords' => ';0457;', 'abstract' => 'The application of surface-enhanced Raman scattering (SERS) in quantitative analysis is demonstrated by the determination of 4-aminobenzoic acid(I) and acridin-9-amine(II) on silver suspensions by SERS in a flow injection system. Two peristaltic pumps were used to mix 2 mM NaBH4 and 1 mM AgNO3 and pump the resulting silver suspension through the flow injection analysis system. The flow injection analysis system is described (with diagram). The sample solution contained I in aqueous 40% ethanol or II in ethanol. The calibration graph was rectilinear for 4 to 100 µg mL-1 of I, and the coefficient of variation (n = 6) was 3.2%. The system required cleaning with 40% HNO3 after 10 to 15 injections.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '7', 'urlcheck' => '2014-10-11 14:54:34', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '01400', 'pauthor' => '!Winefordner, J.D.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1016/0039-9140(87)80234-5', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Quantitative analysis by surface-enhanced raman spectrometry on silver hydrosols in a flow injection system', Talanta, 1987 34(8) 745-747', 'firstchar' => 'Q', 'twochars' => 'Qu', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 3 => array( 'id' => '007977', 'authors' => 'Weissenbacher, N.;Lendl, B.;Frank, J.;Wanzenbock, H.D.;Kellner, R.', 'authorsweb' => 'N. Weißenbacher, B. Lendl, J. Frank, H. D. Wanzenböck and R. Kellner', 'title' => 'Surface enhanced raman spectroscopy as a molecular specific detection system in aqueous flow-through systems', 'journal' => 'Analyst', 'journal_id' => '0864', 'fadid' => 'ANAL1998V0123P01057', 'year' => '1998', 'volume' => '123', 'issue' => '5', 'startpage' => '1057', 'endpage' => '1060', 'type' => 'Journal Article', 'analytes' => ';1583;', 'matrices' => '', 'techniques' => ';0410;0409;', 'keywords' => ';0446;0167;0043;0258;', 'abstract' => 'Surface enhanced Raman scattering (SERS) is proposed as a mol. specific technique for direct measurements of organic molecules in aqueous solutions An FT-Raman spectrometer was interfaced with a flow injection manifold operated in the stopped-flow mode enabling reproducible collection of SERS spectra due to the automation of the anal. procedure. For SERS a solid state substrate placed in a newly developed flow-cell was used. Multiple measurements on one single SERS substrate were achieved by rinsing the substrate with reagents such as 3 M KCl or 0.1 M NaOH solutions prior to the next measurements to remove retained analytes from the surface of the SERS substrate. This procedure allowed for improved precision as compared with a conventional batch approach. Quant. aspects were studied by establishing a calibration curve for nicotinic acid which was used as a model analyte. A linear dependence of the recorded SERS intensities from the logarithm of the analyte concentration. was obtained throughout the whole studied concentration. range (0.001-0.1 M, correlation coefficient r2 = 0.97). The standard deviation of the method sx0 is 0.122 mM and detection limit 1.7 mM, respectively. The results demonstrate the potential of SERS spectroscopy to be used as a molecular specific detector in aqueous flow systems such as flow injection anal.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '5', 'urlcheck' => '2014-10-12 09:52:18', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '00241', 'pauthor' => '!Lendl, B.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1039/a705837c', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Surface enhanced raman spectroscopy as a molecular specific detection system in aqueous flow-through systems', Analyst, 1998 123(5) 1057-1060', 'firstchar' => 'S', 'twochars' => 'Su', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 4 => array( 'id' => '008516', 'authors' => 'Force, R.K.', 'authorsweb' => 'R. Ken Force', 'title' => 'Surface-enhanced raman spectroscopy at a silver electrode as a detector in flow injection analysis', 'journal' => 'Anal. Chem.', 'journal_id' => '0499', 'fadid' => 'ANCH1988V0060P01987', 'year' => '1988', 'volume' => '60', 'issue' => '18', 'startpage' => '1987', 'endpage' => '1989', 'type' => 'Journal Article', 'analytes' => '', 'matrices' => '', 'techniques' => ';0214;0410;', 'keywords' => '', 'abstract' => 'A Ag-ring reference (diameter 5 mm) and a Ag-disc working electrode (diameter 3 mm) were sealed 1 mm apart in a Pyrex tube (o.d. 7 mm) and polished smooth. The Ag ring was anodized at 0.4 V (vs. a SCE) in 0.1 M KCl to produce a Ag - AgCl reference electrode with a potential of ~0.190 to ~0.200 V (vs. a NHE) in the 0.1 M KCl used as mobile phase and supporting electrolyte. The apparatus was applied in flow injection analysis for 50.0 mM pyridine (1 mL injections) in KCl flowing at 2 mL min-1. The potential was held at -0.6 V. Raman spectra were recorded from 990 to 1050 cm-1 in 2-cm-1 steps. A detection limit of ~250 nM was achieved. A Ag-ring reference (diameter 5 mm) and a Ag-disc working electrode (diameter 3 mm) were sealed 1 mm apart in a Pyrex tube (o.d. 7 mm) and polished smooth.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '0', 'urlcheck' => '2014-10-11 18:35:15', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '00965', 'pauthor' => '!Force, R.K.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1021/ac00169a033', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Surface-enhanced raman spectroscopy at a silver electrode as a detector in flow injection analysis', Anal. Chem., 1988 60(18) 1987-1989', 'firstchar' => 'S', 'twochars' => 'Su', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array([maximum depth reached]), 'Matrix' => array([maximum depth reached]), 'Keyword' => array([maximum depth reached]) ), (int) 5 => array( 'id' => '008566', 'authors' => 'Pothier, N.J.;Force, R.K.', 'authorsweb' => 'Neil J. Pothier and R. Ken Force', 'title' => 'Surface-enhanced raman spectroscopy at a silver electrode as a detection system in flowing streams', 'journal' => 'Anal. Chem.', 'journal_id' => '0499', 'fadid' => 'ANCH1990V0062P00678', 'year' => '1990', 'volume' => '62', 'issue' => '7', 'startpage' => '678', 'endpage' => '680', 'type' => 'Journal Article', 'analytes' => ';0064;2356;0747;', 'matrices' => '', 'techniques' => ';0410;0210;0038;', 'keywords' => ';0276;0446;0109;', 'abstract' => 'A three-electrode surface-enhanced Raman spectroscopy detector, with a Ag working electrode, Pt foil auxiliary electrode and SCE reference and a cell volume of 30 µL, was evaluated for use with HPLC and flow injection analysis. In a flowing system, the analyte is rapidly removed from the electrode surface in 10 s, and spectra was obtained in 5 s with an optical multichannel analyzer.. Under stopped-flow conditions, detection limits were 175, 233 and 211 pmol for adenine, thymine and cytosine, respectively.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '3', 'urlcheck' => '2014-10-11 18:35:47', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '00965', 'pauthor' => '!Force, R.K.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1021/ac00206a005', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Surface-enhanced raman spectroscopy at a silver electrode as a detection system in flowing streams', Anal. Chem., 1990 62(7) 678-680', 'firstchar' => 'S', 'twochars' => 'Su', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 6 => array( 'id' => '008582', 'authors' => 'Ni, F.;Sheng, R.S.;Cotton, T.M.', 'authorsweb' => 'Fan Ni, Rongsheng Sheng, and Therese M. Cotton', 'title' => 'Flow injection analysis and real-time detection of RNA bases by surface-enhanced Raman spectroscopy', 'journal' => 'Anal. Chem.', 'journal_id' => '0499', 'fadid' => 'ANCH1990V0062P01958', 'year' => '1990', 'volume' => '62', 'issue' => '18', 'startpage' => '1958', 'endpage' => '1963', 'type' => 'Journal Article', 'analytes' => ';0365;', 'matrices' => '', 'techniques' => ';0410;0038;', 'keywords' => ';0216;0320;0302;', 'abstract' => 'Surface-enhanced Raman scattering (SERS) spectroscopy has been successfully interfaced with a flow injection analysis system to detect RNA bases in real time. Four of the major base components of RNA, uracil, cytosine, adenine, and guanine, were introduced into the flow injection system and were mixed with a Ag sol prior to SERS measurements. Several experimental parameters including pH, temperature, flow rate, and tubing materials were examined, and their impact on the SERS spectra is presented here. The feasibility of interfacing flow injection based SERS detection methods with liquid or high performance liquid chromatography for the detection of individual components in a complex mixture is also assessed.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '2', 'urlcheck' => '2014-10-11 18:36:03', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => null, 'pauthor' => 'Cotton, T.M.', 'address' => 'Department of Chemistry, Iowa State University, Ames, Iowa 50011 USA', 'email' => 'NA', 'notes' => null, 'url' => '10.1021/ac00217a012', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Flow injection analysis and real-time detection of RNA bases by surface-enhanced Raman spectroscopy', Anal. Chem., 1990 62(18) 1958-1963', 'firstchar' => 'F', 'twochars' => 'Fl', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 7 => array( 'id' => '009344', 'authors' => 'Laserna, J.J.;Berthod, A.;Winefordner, J.D.', 'authorsweb' => 'J. J. Laserna, A. Berthod and J. D. Winefordner*', 'title' => 'Evaluation and optimization of experimental conditions for surface-enhanced raman detection of analytes in flow injection analysis', 'journal' => 'Microchem. J.', 'journal_id' => '0639', 'fadid' => 'MCHJ1988V0038P00125', 'year' => '1988', 'volume' => '38', 'issue' => '1', 'startpage' => '125', 'endpage' => '126', 'type' => 'Journal Article', 'analytes' => ';0399;0055;', 'matrices' => '', 'techniques' => ';0410;', 'keywords' => ';0110;0302;', 'abstract' => 'The Raman instrumentation included a 100-mW Ar ion laser operated at 514.5 nm, a double monochromator and a cooled Hamamatsu R-928 photomultiplier tube with photon counting system as the detector. Vertically polarized light was used, with right-angle geometry for Raman sampling and a long-wave-pass glass filter to suppress Rayleigh-scattered light. Spectra were obtained by single scans. Flow streams of 1 mM AgNO3 and 2 mM NaBH4 were merged to form a silver hydrosol matrix, and 4-aminobenzoic acid(I) and acridin-9-amine were used successfully as test analytes. The detector flow-cell was a silica tube (3 mm x 0.5 mm;~0.6 µL). For maximum signal response with I, the total flow rate was 0.7 mL min-1 and the pH was adjusted with HNO3 to 3.2.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '14', 'urlcheck' => '2014-10-12 00:26:48', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '01400', 'pauthor' => '!Winefordner, J.D.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1016/0026-265X(88)90011-2', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Evaluation and optimization of experimental conditions for surface-enhanced raman detection of analytes in flow injection analysis', Microchem. J., 1988 38(1) 125-126', 'firstchar' => 'E', 'twochars' => 'Ev', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 8 => array( 'id' => '010331', 'authors' => 'Gouveia, V.J.P.;Gutz, I.G.R.;Rubim, J.C.', 'authorsweb' => 'Vitor J. P. Gouveia, Ivano G. Gutz and Joel C. Rubim*', 'title' => 'New spectroelectrochemical cell for flow injection analysis and its application to the determination of iron(II) down to the femtomole level by surface-enhanced resonance Raman scattering (SERRS)', 'journal' => 'J. Electroanal. Chem.', 'journal_id' => '0709', 'fadid' => 'JECH1994V0371P00037', 'year' => '1994', 'volume' => '371', 'issue' => '1-2', 'startpage' => '37', 'endpage' => '42', 'type' => 'Journal Article', 'analytes' => ';1294;', 'matrices' => ';0404;', 'techniques' => ';0226;0410;', 'keywords' => '', 'abstract' => 'A principal feature of the cell (diagrams presented) is the in situ renewal of the surface-enhanced Raman-active Ag substratum. Before injection of the analyte, Ag+ are introduced, and Ag is electro-deposited on a vitreous-carbon electrode; after the Raman spectrum of the adsorbed analyte has been recorded, the Ag is removed by anodic stripping. Fe(II) was determined in a 130 µL injected sample as its tris(bipyridyl) complex, which exhibits both a resonance Raman effect when excited with Ar+ laser 514.5 nm radiation and surface-enhanced Raman scattering when adsorbed on Ag. The calibration graph was sigmoidal, but usable for 10 nM-10 µM-Fe(II), and the detection limit was 1 nM, which represented detection of Fe(II) at the femtomole level.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '13', 'urlcheck' => '2014-10-12 09:04:46', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => null, 'pauthor' => 'Rubim, J.C.', 'address' => 'Institututo de Química da Universidade de São Paulo C.P.20780, 01498, São Paulo, SP Brazil', 'email' => 'NA', 'notes' => null, 'url' => '10.1016/0022-0728(93)03220-J', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''New spectroelectrochemical cell for flow injection analysis and its application to the determination of iron(II) down to the femtomole level by surface-enhanced resonance Raman scattering (SERRS)', J. Electroanal. Chem., 1994 371(1-2) 37-42', 'firstchar' => 'N', 'twochars' => 'Ne', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array( [maximum depth reached] ), 'Keyword' => array([maximum depth reached]) ), (int) 9 => array( 'id' => '013707', 'authors' => 'Weissenbacher, N.;Lendl, B.;Frank, J.;Wanzenbock, H.D.;Mizaikoff, B.;Kellner, R.', 'authorsweb' => 'N. Weissenbacher*, B. Lendl, J. Frank, H. D. Wanzenböck, B. Mizaikoff and R. Kellner', 'title' => 'Continuous surface-enhanced raman-spectroscopy for the detection of trace organic pollutants in aqueous systems', 'journal' => 'J. Mol. Struct.', 'journal_id' => '0628', 'fadid' => 'JMRS1997V0410P00539', 'year' => '1997', 'volume' => '410', 'issue' => '1', 'startpage' => '539', 'endpage' => '542', 'type' => 'Journal Article', 'analytes' => ';2050;1583;1774;0504;1478;', 'matrices' => '', 'techniques' => ';0410;', 'keywords' => '', 'abstract' => 'In Raman spectroscopy, detection limits for organic pollutants in water can be lowered by several orders of magnitude when surface enhanced techniques are applied. In this work a continuous analytical device based on flow injection analysis using SERS detection is proposed. This system was tested with model analytes such as pyridine and nicotinic acid as well as several pesticides (carbendazim, metazachlorine). (C) 1997 Elsevier Science B.V. 22 References', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'No', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '3', 'urlcheck' => '2014-10-12 09:49:43', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => null, 'pauthor' => 'Weissenbacher, N.', 'address' => 'Institute for Analytical Chemistry, Vienna University of Technology, Getreidemarkt 9/151, A-1060, Vienna, Austria', 'email' => 'NA', 'notes' => null, 'url' => '10.1016/S0022-2860(96)09531-2', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Continuous surface-enhanced raman-spectroscopy for the detection of trace organic pollutants in aqueous systems', J. Mol. Struct., 1997 410(1) 539-542', 'firstchar' => 'C', 'twochars' => 'Co', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array([maximum depth reached]) ), (int) 10 => array( 'id' => '014097', 'authors' => 'Sawata, S.;Kai, E.;Ikebukuro, K.;Iida, T.;Honda, T.;Karube, I.', 'authorsweb' => 'Sawata S, Kai E, Ikebukuro K, Iida T, Honda T, Karube I.', 'title' => 'Novel detection system of flow injection analysis. 1. The existence of significant relation between secondary structure of DNA and sensitivity in signal detection', 'journal' => 'Nucleic Acids Symp. Ser.', 'journal_id' => '1346', 'fadid' => 'NASS1997V0037P00247', 'year' => '1997', 'volume' => '37', 'issue' => '1', 'startpage' => '247', 'endpage' => '248', 'type' => 'Journal Article', 'analytes' => ';0847;', 'matrices' => '', 'techniques' => ';0410;', 'keywords' => ';0401;', 'abstract' => 'Polymerase Chain Reaction (PCR) products were detected quantitatively using a flow injection type sensor, based on Surface Plasmon Resonance (SPR). We used asymmetric PCR to amplify the two kinds of products; their DNA lengths are different. This novel design permitted us not only to detect PCR products with high-sensitivity, but also to develop a rapid DNA detection system for the sense of the genetic pathogen.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'No', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '0', 'urlcheck' => '2014-10-13 19:09:08', 'urlcheckcode' => 'HTTP/1.1 200 OK', 'pauthor_id' => '00227', 'pauthor' => '!Karube, I.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => 'www.ncbi.nlm.nih.gov/pubmed/9586092', 'urltype' => 'absurl', 'gotpdf' => 'no', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Novel detection system of flow injection analysis. 1. The existence of significant relation between secondary structure of DNA and sensitivity in signal detection', Nucleic Acids Symp. Ser., 1997 37(1) 247-248', 'firstchar' => 'N', 'twochars' => 'No', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 11 => array( 'id' => '014429', 'authors' => 'Storey, J.M.E.;Barber, T.E.;Shelton, R.D.;Wachter, E.A.;Carron, K.T.;Jiang, Y.', 'authorsweb' => 'NA', 'title' => 'Applications of surface-enhanced Raman scattering (SERS) to chemical detection', 'journal' => 'Spectroscopy', 'journal_id' => '0489', 'fadid' => 'STRS1995V0010P00020', 'year' => '1995', 'volume' => '10', 'issue' => '3', 'startpage' => '20', 'endpage' => '25', 'type' => 'Journal Article', 'analytes' => ';0716;1186;1582;', 'matrices' => ';0343;0372;', 'techniques' => ';0410;', 'keywords' => ';0389;', 'abstract' => 'lectrochemical surface-enhanced Raman spectrometry (SERS) was used to detect chlorinated hydrocarbons in ground water, in tobacco smoke and aqueous cyanide ions. Hybrid substrate SERS was used for the detection of organic compounds in liquid and gas phases, using a flow-through cell. The experimental protocols were described previously. (Appl Spectrosc., 1994, 48, 1265; Shelton et al., Ibid., 1994, 48, 1007; Wachter et al.,Ibid., 1995, 49, 193; and Barber et al., Ibid., 1994, 48, 1423). The detection limits for hydrocarbons in electrolytes were a few ppm; they were an order of magnitude higher in groundwater. No calibration data are given. The response to cyanide was linear for 10^-100 ppm. The detection limit for nicotine in smoke was 15 ppb (no calibration data given). The advantages and limitations of the methods are discussed and future research directions are outlined.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'No', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '0', 'urlcheck' => '2006-05-20 19:26:31', 'urlcheckcode' => '', 'pauthor_id' => null, 'pauthor' => 'NA', 'address' => 'Oak Ridge Natl. Lab., Health Sci. Res. Div., Oak Ridge, TN 37831-6113 UK', 'email' => 'NA', 'notes' => null, 'url' => 'NA', 'urltype' => 'NA', 'gotpdf' => 'no', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Applications of surface-enhanced Raman scattering (SERS) to chemical detection', Spectroscopy, 1995 10(3) 20-25', 'firstchar' => 'A', 'twochars' => 'Ap', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array( [maximum depth reached] ), 'Keyword' => array( [maximum depth reached] ) ), (int) 12 => array( 'id' => '014511', 'authors' => 'Fujiwara, K.;Ito, S.', 'authorsweb' => 'Kitao Fujiwara and Seiji Ito', 'title' => 'Application of waveguiding in solutions for absorption and fluorescence spectrometry', 'journal' => 'Trends Anal. Chem.', 'journal_id' => '0653', 'fadid' => 'TRAC1991V0010P00184', 'year' => '1991', 'volume' => '10', 'issue' => '6', 'startpage' => '184', 'endpage' => '190', 'type' => 'Journal Article', 'analytes' => '', 'matrices' => '', 'techniques' => ';0252;0410;', 'keywords' => ';0043;0167;0521;', 'abstract' => 'Several waveguiding techniques in solution are presented in the context of spectrometry. Although light propagation in dense media via total reflection is a commonly used technique with optical fibers, it is also possible in solutions. This is very useful for improving both sensitivity and spatial resolution, especially in absorption and fluorescence spectrometry, by elongating the optical path length and controlling the angle of incidence of light in the measurement area of a sample. ', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'No', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '26', 'urlcheck' => '2014-10-12 02:21:14', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => null, 'pauthor' => 'NA', 'address' => 'NA', 'email' => 'NA', 'notes' => null, 'url' => '10.1016/0165-9936(91)85019-N', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Application of waveguiding in solutions for absorption and fluorescence spectrometry', Trends Anal. Chem., 1991 10(6) 184-190', 'firstchar' => 'A', 'twochars' => 'Ap', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array([maximum depth reached]), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 13 => array( 'id' => '014536', 'authors' => 'Vo Dinh, T.', 'authorsweb' => 'Tuan Vo-Dinh', 'title' => 'Surface enhanced raman spectroscopy using metallic nanostructures', 'journal' => 'Trends Anal. Chem.', 'journal_id' => '0653', 'fadid' => 'TRAC1998V0017P00557', 'year' => '1998', 'volume' => '17', 'issue' => '8-9', 'startpage' => '557', 'endpage' => '582', 'type' => 'Journal Article', 'analytes' => '', 'matrices' => ';0404;0093;', 'techniques' => ';0410;', 'keywords' => ';0043;0215;0389;', 'abstract' => 'This article provides an overview of the development and application of the surface-enhanced Raman scattering (SERS) techniques using metal-coated nanostructures on solid substrates, An introduction to theoretical principles of the SERS effect and the different SERS-active media is presented. The focus is on nanostructured solid substrates and their practical applications in chemical, environmental and biomedical areas. Specific examples of analytical techniques, instruments and sensors developed in the author's laboratory will be discussed to illustrate the usefulness and potential of the SERS techniques.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'No', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '38', 'urlcheck' => '2014-10-12 10:04:45', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => null, 'pauthor' => 'Vo Dinh, T.', 'address' => 'Advanced Monitoring Development Group, Life Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6101, USA', 'email' => 'NA', 'notes' => null, 'url' => '10.1016/S0165-9936(98)00069-7', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Surface enhanced raman spectroscopy using metallic nanostructures', Trends Anal. Chem., 1998 17(8-9) 557-582', 'firstchar' => 'S', 'twochars' => 'Su', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array([maximum depth reached]), 'Matrix' => array( [maximum depth reached] ), 'Keyword' => array( [maximum depth reached] ) ), (int) 14 => array( 'id' => '014560', 'authors' => 'Ruperez, A.;Montes, R.;Laserna, J.J.', 'authorsweb' => 'A. Rupérez, R. Montes and J. J. Laserna*', 'title' => 'Identification of stimulant drugs by surface-enhanced raman spectrometry on colloidal silver', 'journal' => 'Vib. Spectrosc.', 'journal_id' => '0655', 'fadid' => 'VIBS1991V0002P00145', 'year' => '1991', 'volume' => '2', 'issue' => '2-3', 'startpage' => '145', 'endpage' => '154', 'type' => 'Journal Article', 'analytes' => ';0862;', 'matrices' => '', 'techniques' => ';0032;0055;0410;', 'keywords' => '', 'abstract' => 'The surface-enhanced Raman (SER) spectra of stimulant drugs, including mefenorex, pentylenetetrazole, -amphetamine and pemoline, were obtained on colloidal silver. Silver colloids are prepared in a single step, at room temperature, by chemical reduction of Ag+ with sodium tetrahydroborate. Spectra are recorded using drug concentrations at the g mL-1 level. Individual drugs can be identified by characteristic vibrational bands. The SER spectrum of human urine and that of human urine spiked with mixtures of stimulant drugs are reported.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'No', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '7', 'urlcheck' => '2014-10-12 02:21:21', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '01097', 'pauthor' => '!Laserna, J.J.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1016/0924-2031(91)85020-N', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Identification of stimulant drugs by surface-enhanced raman spectrometry on colloidal silver', Vib. Spectrosc., 1991 2(2-3) 145-154', 'firstchar' => 'I', 'twochars' => 'Id', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array([maximum depth reached]) ) ) ) $c = array( 'id' => '013707', 'authors' => 'Weissenbacher, N.;Lendl, B.;Frank, J.;Wanzenbock, H.D.;Mizaikoff, B.;Kellner, R.', 'authorsweb' => 'N. Weissenbacher*, B. Lendl, J. Frank, H. D. Wanzenböck, B. Mizaikoff and R. Kellner', 'title' => 'Continuous surface-enhanced raman-spectroscopy for the detection of trace organic pollutants in aqueous systems', 'journal' => 'J. Mol. Struct.', 'journal_id' => '0628', 'fadid' => 'JMRS1997V0410P00539', 'year' => '1997', 'volume' => '410', 'issue' => '1', 'startpage' => '539', 'endpage' => '542', 'type' => 'Journal Article', 'analytes' => ';2050;1583;1774;0504;1478;', 'matrices' => '', 'techniques' => ';0410;', 'keywords' => '', 'abstract' => 'In Raman spectroscopy, detection limits for organic pollutants in water can be lowered by several orders of magnitude when surface enhanced techniques are applied. In this work a continuous analytical device based on flow injection analysis using SERS detection is proposed. This system was tested with model analytes such as pyridine and nicotinic acid as well as several pesticides (carbendazim, metazachlorine). (C) 1997 Elsevier Science B.V. 22 References', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'No', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '3', 'urlcheck' => '2014-10-12 09:49:43', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => null, 'pauthor' => 'Weissenbacher, N.', 'address' => 'Institute for Analytical Chemistry, Vienna University of Technology, Getreidemarkt 9/151, A-1060, Vienna, Austria', 'email' => 'NA', 'notes' => null, 'url' => '10.1016/S0022-2860(96)09531-2', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Continuous surface-enhanced raman-spectroscopy for the detection of trace organic pollutants in aqueous systems', J. Mol. Struct., 1997 410(1) 539-542', 'firstchar' => 'C', 'twochars' => 'Co', 'CitationsTechnique' => array( 'id' => '014266', 'citation_id' => '013707', 'technique_id' => '0410' ), 'Analyte' => array( (int) 0 => array( 'id' => '02050', 'name' => 'Pyrodine', 'iupac_name' => 'N'-phenylacetohydrazide', 'casrn' => 'NA', 'synonyms' => '?-Acetylphenylhydrazine; Acetylphenylhydrazine; APH; Hydracetin; N-Acetyl-N\'-Phenylhydrazine; N\'-Phenylacethydrazide; Pyrodin; Pyrodine; 1-Acetyl-2-phenylhydrazine; N-Acetylphenylhydrazide; 2-Phenylacetohydrazide; Acetic acid, 2-phenylhydrazide; Acetic acid phenylhydrazone; 1-Phenyl-2-acetylhydrazine; Fenylhydrazid kyseliny octove; N\'-Phenylacetohydrazide', 'total' => '1', 'inchi' => 'InChI=1S/C8H10N2O/c1-7(11)9-10-8-5-3-2-4-6-8/h2-6,10H,1H3,(H,9,11)', 'inchikey' => 'UICBCXONCUFSOI-UHFFFAOYSA-N', 'formula' => 'C8H10N2O', 'oxstate' => 'Zero', 'url' => '', 'charge' => '0', 'class1' => 'Organic compound', 'class2' => 'NA', 'class3' => 'NA', 'class4' => 'Molecule', 'class5' => '', 'isgroup' => '', 'checked' => 'yes', 'citation_count' => '0', 'updated' => '2015-10-23 21:36:08', 'first' => 'P', 'nametotal' => 'Pyrodine**1', 'AnalytesCitation' => array( [maximum depth reached] ) ), (int) 1 => array( 'id' => '01583', 'name' => 'Nicotinic acid', 'iupac_name' => 'pyridine-3-carboxylic acid', 'casrn' => '59-67-6', 'synonyms' => 'nicotinic acid, niacin, Pyridine-3-carboxylic acid, 3-pyridinecarboxylic acid, 59-67-6, 3-Carboxypyridine, wampocap, Apelagrin, Pellagrin, Akotin, Daskil, Pelonin, Acidum nicotinicum, Nicacid, Peviton, Efacin, Linic, Nicyl, nicamin, nicobid, nicocap, nicolar, Direktan, Enduracin, Nicangin, Nicodelmine, Niconacid, Nicotinipca, Pellagramin, Bionic, Diacin, Niaspan, Nyclin, Tinic, Davitamon PP, Vitaplex N, Nico-Span, Tega-Span, SK-Niacin, Nicocidin, Nicocrisina, Niconazid, Nicosan 3, Nicoside, Nicotamin, Nicotene, Nicovasan, Nicovasen, Nipellen, 3-Carboxylpyridine, Naotin, Nicodan, Nicodon, Niconat, Nicosyl, Nicotil, Niac, Nicotine acid, vitamin B3, Niacor, nicotinate, Slo-niacin, NICO, Acide nicotinique, 3-Picolinic acid, Nicotinsaure, Nico-400, PP Factor, Pyridine-β-carboxylic acid, P.P. factor, Pellagra preventive factor, anti-Pellagra vitamin, Induracin, Nicagin, Caswell No. 598, 3-Pyridylcarboxylic acid, m-Pyridinecarboxylic acid, Kyselina nikotinova, S115, Nicotinsaure [German], niacine, Acido nicotinico, Kyselina nikotinova [Czech], Pyridinecarboxylic acid, 3-, EPA Pesticide Chemical Code 056701, Niacin [USAN], CCRIS 1902, Acide nicotinique [INN-French], Acido nicotinico [INN-Spanish], Acidum nicotinicum [INN-Latin], AI3-18994, HSDB 3134, Pyridine-carboxylique-3 [French], Pyridine-carboxylique-3, CHEMBL573, β-pyridinecarboxylic acid, SR 4390, BRN 0109591, NAH, Pyridine-β-carboxylic acid, UNII-2679MF687A, CHEBI:15940, PVNIIMVLHYAWGP-UHFFFAOYSA-N, EINECS 200-441-0, NIASPAN TITRATION STARTER PACK, NSC 169454, P.P. factor-pellagra preventive factor, CAS-59-67-6, NCGC00016268-02, DSSTox_CID_932, [5, 6-3H]-niacin, DSSTox_RID_75875, DSSTox_GSID_20932, AC-907/25014105, NIO, Vitamin B3, Niacinamide, Nicotinic acid, Niacin, pellagra, Nicotinicacid, Nikotinsaeure, preventative factor, antipellagra vitamin, Niaspan (TN), 3-Pyridylcarboxylate, 3PyrCOOH, [3H]nicotinic acid, Niacin (USP), Niacor (TN), PubChem2594, Pyridylcarboxylic Acid, S1744_Selleck, [3H]-Nicotinic acid, Spectrum_001063, 5-pyridinecarboxylic acid, Prestwick0_000881, Prestwick1_000881, Prestwick2_000881, Prestwick3_000881, Pyridine-3-carbonic acid, Spectrum2_000006, Spectrum3_000515, Spectrum4_000965, Spectrum5_001287, 3-Pyridyl carboxylic acid, ACMC-1AS6M, WLN: T6NJ CVQ, 3-pyridine carboxylic acid, bmse000104, AC1L1AD5, SCHEMBL1433, Nicotinic acid [INN:BAN], Oprea1_514398, BSPBio_000662, BSPBio_002069, C6H5NO2, KBioGR_001309, KBioSS_001543, KSC236Q9T, MLS000069603, 47864_SUPELCO, BIDD:GT0644, DivK1c_000695, N0761_SIGMA, N0765_SIGMA, Nicotinic acid (JP16/INN), SPECTRUM1500430, β-Pyridinecarboxylic acid, SPBio_000011, SPBio_002881, 636-79-3 (hydrochloride), AC1Q73P3, BPBio1_000730, GTPL1588, GTPL1594, N4126_SIAL, N5410_SIAL, 3789-96-6 (tartrate), 823-77-8 (calcium salt), 72309_FLUKA, 72309_SIGMA, 72311_FLUKA, 72312_FLUKA, BDBM23515, HMDB01488, HMS502C17, KBio1_000695, KBio2_001543, KBio2_004111, KBio2_006679, KBio3_001569, 54-86-4 (hydrochloride salt), 99148-57-9 (tosylate), ABT-919, 1976-28-9 (aluminum salt), NINDS_000695, 7069-06-9 (magnesium salt), HMS1570B04, HMS1920P17, HMS2091H22, HMS2097B04, HMS2236A05, HMS3259K21, HMS3371E07, Pharmakon1600-01500430, 36321-41-2 (ammonium salt), 53890-72-5 (lithium salt), HY-B0143, STR00112, 16518-17-5 (potassium salt), Tox21_110337, Tox21_201420, Tox21_302904, ANW-75276, CCG-38340, FC1287, Niacin-Supplied by Selleck Chemicals, NSC169454, NSC757241, SBB004279, STK301803, AKOS000118980, Tox21_110337_1, 2679MF687A, AM81316, CS-1946, DB00627, EBD2198325, LS-2334, MCULE-3788394698, NC00524, NSC-169454, NSC-757241, PS-4255, RP00705, SDCCGMLS-0066610.P001, IDI1_000695, NCGC00016268-01, NCGC00016268-03, NCGC00016268-04, NCGC00016268-05, NCGC00016268-08, NCGC00016268-09, NCGC00094734-01, NCGC00094734-02, NCGC00256537-01, NCGC00258971-01, 10361-13-4 (iron(2+) salt), 28029-53-0 (cobalt(2+) salt), 28029-54-1 (manganese(2+) salt), AJ-08093, AK-46486, AN-23622, BP-21419, CPD000059024, KB-33243, NCI60_001041, SAM002554917, SC-05611, SMR000059024, ST097540, AB1002056, DB-007765, KB-259513, ST2413625, TR-032523, AB00052050, FT-0082580, FT-0616371, FT-0631238, N0082, C00253, D00049, M-5918, 11054-EP2269610A2, 11054-EP2269990A1, 11054-EP2270002A1, 11054-EP2270014A1, 11054-EP2272825A2, 11054-EP2272834A1, 11054-EP2272848A1, 11054-EP2274983A1, 11054-EP2275401A1, 11054-EP2277848A1, 11054-EP2280001A1, 11054-EP2289510A1, 11054-EP2292228A1, 11054-EP2292610A1, 11054-EP2295406A1, 11054-EP2295409A1, 11054-EP2295424A1, 11054-EP2298742A1, 11054-EP2298772A1, 11054-EP2298776A1, 11054-EP2298779A1, 11054-EP2301923A1, 11054-EP2301929A1, 11054-EP2301935A1, 11054-EP2301937A1, 11054-EP2305651A1, 11054-EP2305674A1, 11054-EP2308838A1, 11054-EP2308839A1, 11054-EP2308848A1, 11054-EP2308854A1, 11054-EP2308858A1, 11054-EP2308874A1, 11054-EP2311808A1, 11054-EP2311816A1, 11054-EP2311817A1, 11054-EP2311829A1, 11054-EP2311830A1, 11054-EP2314588A1, 11054-EP2316457A1, 11054-EP2316458A1, 11054-EP2316825A1, 11054-EP2316826A1, 11054-EP2316827A1, 11054-EP2316828A1, AB00052050-13, 5-22-02-00057 (Beilstein Handbook Reference), L001199, 3B4-1465, I02-0699, T5298026, I14-92791, 3DDB011E-F3A6-45B6-A2D2-77B2A6E8936E, InChI=1/C6H5NO2/c8-6(9)5-2-1-3-7-4-5/h1-4H,(H,8,9, 123574-58-3, 3-Picolinic acid; Niacin; Pellagra preventive factor; Pyridine-3-carboxylic acid; Vitamin B3', 'total' => '5', 'inchi' => 'InChI=1S/C6H5NO2/c8-6(9)5-2-1-3-7-4-5/h1-4H,(H,8,9)', 'inchikey' => 'PVNIIMVLHYAWGP-UHFFFAOYSA-N', 'formula' => 'C6H5NO2', 'oxstate' => 'Zero', 'url' => '', 'charge' => '0', 'class1' => '', 'class2' => '', 'class3' => '', 'class4' => '', 'class5' => '', 'isgroup' => 'no', 'checked' => 'no', 'citation_count' => '0', 'updated' => '2015-12-11 16:36:07', 'first' => 'N', 'nametotal' => 'Nicotinic acid**5', 'AnalytesCitation' => array( [maximum depth reached] ) ), (int) 2 => array( 'id' => '01774', 'name' => 'Pesticides', 'iupac_name' => '', 'casrn' => 'NA', 'synonyms' => 'NA', 'total' => '43', 'inchi' => '', 'inchikey' => '', 'formula' => '', 'oxstate' => null, 'url' => '', 'charge' => null, 'class1' => 'Organic compound', 'class2' => 'NA', 'class3' => 'NA', 'class4' => 'Molecule', 'class5' => 'Pesticides', 'isgroup' => 'yes', 'checked' => 'yes', 'citation_count' => '0', 'updated' => '2015-12-11 09:54:00', 'first' => 'P', 'nametotal' => 'Pesticides**43', 'AnalytesCitation' => array( [maximum depth reached] ) ), (int) 3 => array( 'id' => '00504', 'name' => 'Carbendazim', 'iupac_name' => 'methyl N-(1H-benzimidazol-2-yl)carbamate', 'casrn' => '10605-21-7', 'synonyms' => 'Carbendazim, Mecarzole, Carbendazole, Bavistin, Carbendazime, Bavistan, Carbendazol, Thicoper, Derosal, 10605-21-7, Methyl 2-benzimidazolecarbamate, Funaben, Medamine, BMK (fungicide), Carbendazym, Equitdazin, Garbenda, Kemdazin, Methyl benzimidazol-2-ylcarbamate, Supercarb, Agrizim, Battal, Bengard, Bitosen, Custos, Delsene, Karben, Kolfugo, Stempor, Myco, Bavistin 3460, Falicarben, Fungisol, Pillarstin, Triticol, Stein, Spin, Bercema-Bitosen, 2-MBC, Kolfugo Extra, Methyl benzimidazolylcarbamate, Preventol BCM, Antibac MF, IPO Y, Carben VL, Funaben 3, BCM (fungicide), METHYL 1H-BENZIMIDAZOL-2-YLCARBAMATE, 2-(Methoxycarbamoyl)benzimidazole, Benzimidazolecarbamic, Funaben 50, 2-(Carbomethoxyamino)benzimidazole, BAS 67054F, Preparation G 665, Methyl 1H-benzimidazole-2-carbamate, 2-(Methoxycarbonylamino)-benzimidazole, Jkatein, A 118 (pesticide), 2-Benzimidazolecarbamic acid, methyl ester, BAS-3460, CTR 6669, G 665, BCM, 2-(Methoxycarbonylamino)benzimidazole, EK 578, HOE 17411, Carbendazim solution, 1H-Benzimidazol-2-ylcarbamic acid methyl ester, 1H-Benzimidazole-2-carbamic acid, methyl ester, Kolfugo 25 FW, CCRIS 1553, U 32104, methyl 1H-benzo[d]imidazol-2-ylcarbamate, Carbamic acid, 1H-benzimidazol-2-yl-, methyl ester, BAS 3460F, HSDB 6581, Methyl N-2-benzimidazolecarbamate, Benzimidazole-2-carbamic acid, methyl ester, IPO 1250, IPO-1250, Carbendazim [BSI:ISO], BA 67054F, BAS-67054, BMK (VAN), MBC (VAN), RCRA waste no. U372, 2-(Methoxy-carbonylamino)-benzimidazol, Carbendazime [ISO-French], Methyl benzimidazolecarbamate, 2-[(Methoxycarbonyl)amino]benzimidazole, Carbamic acid, N-1H-benzimidazol-2-yl-, methyl ester, CHEMBL70971, methyl N-(1H-benzimidazol-2-yl)carbamate, UNII-H75J14AA89, MLS002701961, 45368_RIEDEL, CHEBI:3392, BMK, Methyl 2-benzimidazolylcarbamate, Methomyl Technical, TWFZGCMQGLPBSX-UHFFFAOYSA-N, 1H-Benzimidazol-2-ylcarbamic acid, methyl ester, BAS 3460 F, BAS 3460, CTR-6669, EINECS 234-232-0, U-32.104, EPA Pesticide Chemical Code 115001, EPA Pesticide Chemical Code 128872, NSC 109874, 2-benzimidazolecarbamic acid methyl ester, ST020591, Benzimidazole carbamate de methyle [French], A 118, Methyl 1H-benzimidazol-2-ylcarbamate (9CI), DSSTox_CID_4729, 1h-benzimidazole-2-carbamic acid methyl ester, 2-(Methoxy-carbonylamino)-benzimidazol [German], DSSTox_RID_77513, DSSTox_GSID_24729, carbendazine, carbendazyme, mekarzole, N-benzimidazol-2-ylmethoxycarboxamide, 102040-01-7, 37953-07-4, CAS-10605-21-7, Mercarzole, Zhiweiling, Bavistine, Carbate, Fungoxan, Jkstein, Protek, Sarfun, Subeej, methyl 2-benzimidazil carbamate, Bavistin FL, methyl-2-benzimidazole carbamate, methylbenzimidazole-2-ylcarbamate, Karben flo Stefes, Spin (pesticide), benzimidazolecarbamate methyl ester, FB642, Karben Stefes Flo, Olgin (fungicide), Bavistin 25SD, Bavistin 50SD, methoxybenzimidazole-2-carbamic acid, Delsene 10, Derosal 60PM, Kolfugo 25FW, Tripart defensor FL, methyl-N-(2-benzimidazolyl)carbamate, Turfclear (Salt/Mix), ChemDivAM_000201, G-665, ChemDiv1_000052, SCHEMBL21051, BIDD:ER0282, 2-Methyl benzimidazolecarbamate, 378674_ALDRICH, 45826_RIEDEL, AC1L193X, AC1Q606F, Albendazole Impurity E (EP),, C9H9N3O2, CAR076, 2-carbomethoxyamino-benzimidazole, 45368_FLUKA, 45826_FLUKA, CTK8H1642, HMS587C08, methyl 2-benzimidazolyl-carbamate, Benzimidazole carbamate de methyle, MolPort-000-639-655, 52316-55-9 (monophosphate), H75J14AA89, 2-(Methoxycarboxamido)benzimidazole, Tox21_202295, Tox21_300478, 2-(carbomethoxy-amino)-benzimidazole, BDBM50116313, HOE-17411, LS-418, Methyl 1H-2-benzimidazolecarbaminate, methyl N-(2-benzimidazolyl)carbamate, Methyl N-benzimidazol-2-yl-carbamate, NSC109874, SBB057110, ZINC00043475, 37574-18-8 (mono-hydrochloride), AKOS002384358, CCG-101273, KS-5360, MCULE-6012353785, NSC-109874, 2-(Methoxy-carbonylamino)-benzimidazole, 2-Bezimidazolecarbamic acid methyl ester, NCGC00090706-01, NCGC00090706-02, NCGC00090706-03, NCGC00090706-04, NCGC00254328-01, NCGC00259844-01, AC-10590, AK164459, BP-21318, M143, NCI60_000240, SC-46176, SMR000304463, ZB001332, 23424-47-7 (unspecified hydrochloride), KB-154300, KB-297948, FT-0602933, C10897, methyl N-(1H-1,3-benzodiazol-2-yl)carbamate, Carbamic acid, 1H-benzimidazolyl-, methyl ester, (1H-benzimidazol-2-yl)-carbamic acid methyl ester, 1H-Benzimidazol-2-yl-carbamic acid, methyl ester, AF-962/00515023, (1H-Benzoimidazol-2-yl)-carbamic acid methyl ester, 3B2-1923, I14-2653, N-1H-Benzimidazol-2-yl-carbamic Acid Methyl Ester, KID PEST PROJECT (CARBENDAZIM) (SEE ALSO CARBENDAZIM), 105268-95-9, 110342-67-1, 1135441-26-7, 1155875-94-7, 1203557-88-3, 162976-69-4, 212384-28-6, 276680-08-1, 39413-19-9, 59758-95-1, 63090-40-4, 63278-70-6', 'total' => '2', 'inchi' => 'InChI=1S/C9H9N3O2/c1-14-9(13)12-8-10-6-4-2-3-5-7(6)11-8/h2-5H,1H3,(H2,10,11,12,13)', 'inchikey' => 'TWFZGCMQGLPBSX-UHFFFAOYSA-N', 'formula' => 'C9H9N3O2', 'oxstate' => 'Zero', 'url' => '', 'charge' => '0', 'class1' => '', 'class2' => '', 'class3' => '', 'class4' => '', 'class5' => '', 'isgroup' => 'no', 'checked' => 'no', 'citation_count' => '0', 'updated' => '2015-10-23 09:54:18', 'first' => 'C', 'nametotal' => 'Carbendazim**2', 'AnalytesCitation' => array( [maximum depth reached] ) ), (int) 4 => array( 'id' => '01478', 'name' => 'Metazachlore', 'iupac_name' => '2-chloro-N-(2,6-dimethylphenyl)-N-(pyrazol-1-ylmethyl)acetamide', 'casrn' => '67129-08-2', 'synonyms' => 'METAZACHLOR, Metazachlore, Butisan S, 67129-08-2, Metazochlor, BAS 479H, Pree, Metazachlor [BSI:ISO], Metazachlore [ISO-French], CHEBI:6798, STEPQTYSZVCJPV-UHFFFAOYSA-N, 2-Chloro-N-(2,6-dimethylphenyl)-N-(1H-pyrazol-1-ylmethyl)acetamide, Acetamide, 2-chloro-N-(2,6-dimethylphenyl)-N-(1H-pyrazol-1-ylmethyl)-, EINECS 266-583-0, 2-Chloro-N-(pyrazol-1-ylmethyl)acet-2',6'-xylidide, BRN 0621550, 2-Chloro-N-(2,6-dimethylphenyl)-N-(1H-pyrazol-1-ylmethyl)-acetamide, 2-chloro-N-(2,6-dimethylphenyl)-N-(pyrazol-1-ylmethyl)acetamide, N-((1H-Pyrazol-1-yl)methyl)-2-chloro-N-(2,6-dimethylphenyl)acetamide, Methazachlor, Butisan 400SC, AC1L2LPH, UNII-TPY2K437O4, SCHEMBL55016, TPY2K437O4, CHEMBL2272118, CTK8G0818, MolPort-003-987-120, BAS 47900H, KM1066, SBB070929, ZINC00900592, AKOS015915018, EG-0202, LS-8511, VA11272, AJ-24304, AK129211, AN-38402, R354, KB-257975, TL8004736, FT-0658709, C10948, 5-23-04-00126 (Beilstein Handbook Reference), A835640, I14-7263, 2-chloro-2',6'-dimethyl-N-(pyrazol-1-yl-methyl)-acetanilide, 2-chloro-N-(2,6-dimethylphenyl)-N-(1-pyrazolylmethyl)acetamide, 2-chloranyl-N-(2,6-dimethylphenyl)-N-(pyrazol-1-ylmethyl)ethanamide', 'total' => '1', 'inchi' => 'InChI=1S/C14H16ClN3O/c1-11-5-3-6-12(2)14(11)18(13(19)9-15)10-17-8-4-7-16-17/h3-8H,9-10H2,1-2H3', 'inchikey' => 'STEPQTYSZVCJPV-UHFFFAOYSA-N', 'formula' => 'C14H16ClN3O', 'oxstate' => 'Zero', 'url' => '', 'charge' => '0', 'class1' => '', 'class2' => '', 'class3' => '', 'class4' => '', 'class5' => '', 'isgroup' => 'no', 'checked' => 'no', 'citation_count' => '0', 'updated' => '2015-10-23 21:31:30', 'first' => 'M', 'nametotal' => 'Metazachlore**1', 'AnalytesCitation' => array( [maximum depth reached] ) ) ), 'Matrix' => array(), 'Keyword' => array() ) $i = (int) 9 $path = '' $a = '' $url = 'http://dx.doi.org/10.1016/S0022-2860(96)09531-2' $aus = 'N. Weissenbacher*, B. Lendl, J. Frank, H. D. Wanzenb&ouml;ck, B. Mizaikoff and R. Kellner'include - APP/View/Elements/citation.ctp, line 40 View::_evaluate() - CORE/Cake/View/View.php, line 971 View::_render() - CORE/Cake/View/View.php, line 933 View::_renderElement() - CORE/Cake/View/View.php, line 1224 View::element() - CORE/Cake/View/View.php, line 418 include - APP/View/Techniques/view.ctp, line 52 View::_evaluate() - CORE/Cake/View/View.php, line 971 View::_render() - CORE/Cake/View/View.php, line 933 View::render() - CORE/Cake/View/View.php, line 473 Controller::render() - CORE/Cake/Controller/Controller.php, line 968 Dispatcher::_invoke() - CORE/Cake/Routing/Dispatcher.php, line 200 Dispatcher::dispatch() - CORE/Cake/Routing/Dispatcher.php, line 167 [main] - APP/webroot/index.php, line 109
"Novel Detection System Of Flow Injection Analysis. 1. The Existence Of Significant Relation Between Secondary Structure Of DNA And Sensitivity In Signal Detection"
Nucleic Acids Symp. Ser.
1997 Volume 37, Issue 1 Pages 247-248
Notice (8): Undefined variable: uid [APP/View/Elements/citation.ctp, line 40]Sawata S, Kai E, Ikebukuro K, Iida T, Honda T, Karube I.Code Context?>
<?php
if($uid!='') {
$viewFile = '/home/stuchalk/public_html/fad/app/View/Elements/citation.ctp' $dataForView = array( 'data' => array( 'Technique' => array( 'id' => '0410', 'label' => 'Raman', 'level1' => 'Raman', 'level2' => 'surface enhanced', 'level3' => '', 'level4' => '', 'level5' => '', 'synonyms' => 'Surface enhanced raman spectroscopy,SERS', 'champ' => '', 'total' => '15', 'updated' => '0000-00-00 00:00:00', 'name' => 'Raman, surface enhanced', 'nametotal' => 'Raman, surface enhanced**15', 'first' => 'R' ), 'Citation' => array( (int) 0 => array( [maximum depth reached] ), (int) 1 => array( [maximum depth reached] ), (int) 2 => array( [maximum depth reached] ), (int) 3 => array( [maximum depth reached] ), (int) 4 => array( [maximum depth reached] ), (int) 5 => array( [maximum depth reached] ), (int) 6 => array( [maximum depth reached] ), (int) 7 => array( [maximum depth reached] ), (int) 8 => array( [maximum depth reached] ), (int) 9 => array( [maximum depth reached] ), (int) 10 => array( [maximum depth reached] ), (int) 11 => array( [maximum depth reached] ), (int) 12 => array( [maximum depth reached] ), (int) 13 => array( [maximum depth reached] ), (int) 14 => array( [maximum depth reached] ) ) ), 'c' => array( 'id' => '014097', 'authors' => 'Sawata, S.;Kai, E.;Ikebukuro, K.;Iida, T.;Honda, T.;Karube, I.', 'authorsweb' => 'Sawata S, Kai E, Ikebukuro K, Iida T, Honda T, Karube I.', 'title' => 'Novel detection system of flow injection analysis. 1. The existence of significant relation between secondary structure of DNA and sensitivity in signal detection', 'journal' => 'Nucleic Acids Symp. Ser.', 'journal_id' => '1346', 'fadid' => 'NASS1997V0037P00247', 'year' => '1997', 'volume' => '37', 'issue' => '1', 'startpage' => '247', 'endpage' => '248', 'type' => 'Journal Article', 'analytes' => ';0847;', 'matrices' => '', 'techniques' => ';0410;', 'keywords' => ';0401;', 'abstract' => 'Polymerase Chain Reaction (PCR) products were detected quantitatively using a flow injection type sensor, based on Surface Plasmon Resonance (SPR). We used asymmetric PCR to amplify the two kinds of products; their DNA lengths are different. This novel design permitted us not only to detect PCR products with high-sensitivity, but also to develop a rapid DNA detection system for the sense of the genetic pathogen.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'No', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '0', 'urlcheck' => '2014-10-13 19:09:08', 'urlcheckcode' => 'HTTP/1.1 200 OK', 'pauthor_id' => '00227', 'pauthor' => '!Karube, I.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => 'www.ncbi.nlm.nih.gov/pubmed/9586092', 'urltype' => 'absurl', 'gotpdf' => 'no', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Novel detection system of flow injection analysis. 1. The existence of significant relation between secondary structure of DNA and sensitivity in signal detection', Nucleic Acids Symp. Ser., 1997 37(1) 247-248', 'firstchar' => 'N', 'twochars' => 'No', 'CitationsTechnique' => array( 'id' => '014744', 'citation_id' => '014097', 'technique_id' => '0410' ), 'Analyte' => array( (int) 0 => array( [maximum depth reached] ) ), 'Matrix' => array(), 'Keyword' => array( (int) 0 => array( [maximum depth reached] ) ) ), 'i' => (int) 10 ) $data = array( 'Technique' => array( 'id' => '0410', 'label' => 'Raman', 'level1' => 'Raman', 'level2' => 'surface enhanced', 'level3' => '', 'level4' => '', 'level5' => '', 'synonyms' => 'Surface enhanced raman spectroscopy,SERS', 'champ' => '', 'total' => '15', 'updated' => '0000-00-00 00:00:00', 'name' => 'Raman, surface enhanced', 'nametotal' => 'Raman, surface enhanced**15', 'first' => 'R' ), 'Citation' => array( (int) 0 => array( 'id' => '006258', 'authors' => 'Cabalin, L.M.;Ruperez, A.;Laserna, J.J.', 'authorsweb' => 'L. M. Cabalín, A. Rupérez and J. J. Laserna*', 'title' => 'Flow injection analysis and liquid chromatography: surface enhanced Raman spectrometry detection by using a windowless flow cell', 'journal' => 'Anal. Chim. Acta', 'journal_id' => '0584', 'fadid' => 'ANCA1996V0318P00203', 'year' => '1996', 'volume' => '318', 'issue' => '2', 'startpage' => '203', 'endpage' => '210', 'type' => 'Journal Article', 'analytes' => ';0146;0199;2037;1732;2402;', 'matrices' => '', 'techniques' => ';0032;0410;', 'keywords' => ';0167;0302;', 'abstract' => 'A windowless flow cell was developed for detection by surface-enhanced Raman spectrometry (SERS) in FIA and LC. The flow cell consisted of two stainless-steel tubes (0.16 mm i.d.; 1.4 mm o.d.) mounted on an Al frame so that the ends were ~e;1.6 mm apart. The liquid draining from the upper to the lower tube was supported by surface tension and formed a column (1.4 mm diameter). The mobile phase from the FIA or LC was merged with a silver hydrosol stream then propelled in to the flow cell. The Raman spectra were recorded using a focussed Ar ion laser beam (488 nm; 85 mW) as the source. The performance of the flow cell was optimized using five drugs (amiloride, amiphenazole, 2-mercaptopyridine, pemoline and triamterene) as model analytes. The maximum SERS signal was obtained with flow rates of 0.075 ml/ml and 1.5 ml/ml for the mobile phase and silver hydrosol, respectively. The reproducibility (n = 5) of the FIA-SERS system for the determination of 625 ng amiloride was 1%.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '1', 'urlcheck' => '2014-10-11 16:18:55', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '01097', 'pauthor' => '!Laserna, J.J.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1016/0003-2670(95)00441-6', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Flow injection analysis and liquid chromatography: surface enhanced Raman spectrometry detection by using a windowless flow cell', Anal. Chim. Acta, 1996 318(2) 203-210', 'firstchar' => 'F', 'twochars' => 'Fl', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 1 => array( 'id' => '006451', 'authors' => 'Somsen, G.W.;Coulter, S.K.;Gooijer, C.;Velthorst, N.H.;Brinkman, U.A.T.', 'authorsweb' => 'G. W. Somsen*, S. K. Coulter, C. Gooijer, N. H. Velthorst and U. A. Th. Brinkman', 'title' => 'Coupling of column liquid-chromatography and surface-enhanced resonance raman-spectroscopy via a thin-layer chromatographic plate', 'journal' => 'Anal. Chim. Acta', 'journal_id' => '0584', 'fadid' => 'ANCA1997V0349P00189', 'year' => '1997', 'volume' => '349', 'issue' => '1-3', 'startpage' => '189', 'endpage' => '197', 'type' => 'Journal Article', 'analytes' => '', 'matrices' => '', 'techniques' => ';0410;0038;', 'keywords' => ';0339;0302;', 'abstract' => 'Surface-enhanced resonance Raman (SERR) spectroscopy was used to characterize compounds separated by column liquid chromatography (LC). Three percent of the effluent from a conventional-size LC column were immobilized on a moving thin-layer chromatography (TLC) plate using a spray-jet solvent-elimination interface. Next, colloidal silver was applied to the analyte spots and in situ SERR spectra were recorded with a multichannel micro-Raman spectrometer. Storage of the LC effluent avoids the need to use a continuous-flow of colloidal silver and, in principle allows compounds to be detected independently of LC conditions like eluent composition and flow rate. Using dyes as test compounds, the method was optimized and aspects were studied such as type of TLC plate, LC separation of the dyes, preservation of LC integrity during immobilization, and SERR analysis of the deposited compounds. With a silica TLC plate as deposition substrate, good-quality and characteristic SERR spectra were obtained for the dyes which were separated on a cyanoproyl-modified silica LC column with methanol-water containing the volatile additives ammonium acetate and triethylamine as eluent. The minimum identifiable concentration of the dyes was about 250 ng mL-1 (750 pg applied on the plate). For some strong Raman scatterers such as nile blue and pararosaniline, the major spectral peaks could be observed down to concentrations of 25 ng mL-1. 36 References', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '3', 'urlcheck' => '2014-10-11 16:23:46', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '01300', 'pauthor' => '!Somsen, G.W.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1016/S0003-2670(97)00011-1', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Coupling of column liquid-chromatography and surface-enhanced resonance raman-spectroscopy via a thin-layer chromatographic plate', Anal. Chim. Acta, 1997 349(1-3) 189-197', 'firstchar' => 'C', 'twochars' => 'Co', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array([maximum depth reached]), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 2 => array( 'id' => '006887', 'authors' => 'Laserna, J.J.;Berthod, A.;Winefordner, J.D.', 'authorsweb' => 'J. J. Laserna, A. Berthod and J. D. Winefordner ', 'title' => 'Quantitative analysis by surface-enhanced raman spectrometry on silver hydrosols in a flow injection system', 'journal' => 'Talanta', 'journal_id' => '0569', 'fadid' => 'TALT1987V0034P00745', 'year' => '1987', 'volume' => '34', 'issue' => '8', 'startpage' => '745', 'endpage' => '747', 'type' => 'Journal Article', 'analytes' => ';0056;0401;', 'matrices' => '', 'techniques' => ';0410;', 'keywords' => ';0457;', 'abstract' => 'The application of surface-enhanced Raman scattering (SERS) in quantitative analysis is demonstrated by the determination of 4-aminobenzoic acid(I) and acridin-9-amine(II) on silver suspensions by SERS in a flow injection system. Two peristaltic pumps were used to mix 2 mM NaBH4 and 1 mM AgNO3 and pump the resulting silver suspension through the flow injection analysis system. The flow injection analysis system is described (with diagram). The sample solution contained I in aqueous 40% ethanol or II in ethanol. The calibration graph was rectilinear for 4 to 100 µg mL-1 of I, and the coefficient of variation (n = 6) was 3.2%. The system required cleaning with 40% HNO3 after 10 to 15 injections.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '7', 'urlcheck' => '2014-10-11 14:54:34', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '01400', 'pauthor' => '!Winefordner, J.D.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1016/0039-9140(87)80234-5', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Quantitative analysis by surface-enhanced raman spectrometry on silver hydrosols in a flow injection system', Talanta, 1987 34(8) 745-747', 'firstchar' => 'Q', 'twochars' => 'Qu', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 3 => array( 'id' => '007977', 'authors' => 'Weissenbacher, N.;Lendl, B.;Frank, J.;Wanzenbock, H.D.;Kellner, R.', 'authorsweb' => 'N. Weißenbacher, B. Lendl, J. Frank, H. D. Wanzenböck and R. Kellner', 'title' => 'Surface enhanced raman spectroscopy as a molecular specific detection system in aqueous flow-through systems', 'journal' => 'Analyst', 'journal_id' => '0864', 'fadid' => 'ANAL1998V0123P01057', 'year' => '1998', 'volume' => '123', 'issue' => '5', 'startpage' => '1057', 'endpage' => '1060', 'type' => 'Journal Article', 'analytes' => ';1583;', 'matrices' => '', 'techniques' => ';0410;0409;', 'keywords' => ';0446;0167;0043;0258;', 'abstract' => 'Surface enhanced Raman scattering (SERS) is proposed as a mol. specific technique for direct measurements of organic molecules in aqueous solutions An FT-Raman spectrometer was interfaced with a flow injection manifold operated in the stopped-flow mode enabling reproducible collection of SERS spectra due to the automation of the anal. procedure. For SERS a solid state substrate placed in a newly developed flow-cell was used. Multiple measurements on one single SERS substrate were achieved by rinsing the substrate with reagents such as 3 M KCl or 0.1 M NaOH solutions prior to the next measurements to remove retained analytes from the surface of the SERS substrate. This procedure allowed for improved precision as compared with a conventional batch approach. Quant. aspects were studied by establishing a calibration curve for nicotinic acid which was used as a model analyte. A linear dependence of the recorded SERS intensities from the logarithm of the analyte concentration. was obtained throughout the whole studied concentration. range (0.001-0.1 M, correlation coefficient r2 = 0.97). The standard deviation of the method sx0 is 0.122 mM and detection limit 1.7 mM, respectively. The results demonstrate the potential of SERS spectroscopy to be used as a molecular specific detector in aqueous flow systems such as flow injection anal.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '5', 'urlcheck' => '2014-10-12 09:52:18', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '00241', 'pauthor' => '!Lendl, B.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1039/a705837c', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Surface enhanced raman spectroscopy as a molecular specific detection system in aqueous flow-through systems', Analyst, 1998 123(5) 1057-1060', 'firstchar' => 'S', 'twochars' => 'Su', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 4 => array( 'id' => '008516', 'authors' => 'Force, R.K.', 'authorsweb' => 'R. Ken Force', 'title' => 'Surface-enhanced raman spectroscopy at a silver electrode as a detector in flow injection analysis', 'journal' => 'Anal. Chem.', 'journal_id' => '0499', 'fadid' => 'ANCH1988V0060P01987', 'year' => '1988', 'volume' => '60', 'issue' => '18', 'startpage' => '1987', 'endpage' => '1989', 'type' => 'Journal Article', 'analytes' => '', 'matrices' => '', 'techniques' => ';0214;0410;', 'keywords' => '', 'abstract' => 'A Ag-ring reference (diameter 5 mm) and a Ag-disc working electrode (diameter 3 mm) were sealed 1 mm apart in a Pyrex tube (o.d. 7 mm) and polished smooth. The Ag ring was anodized at 0.4 V (vs. a SCE) in 0.1 M KCl to produce a Ag - AgCl reference electrode with a potential of ~0.190 to ~0.200 V (vs. a NHE) in the 0.1 M KCl used as mobile phase and supporting electrolyte. The apparatus was applied in flow injection analysis for 50.0 mM pyridine (1 mL injections) in KCl flowing at 2 mL min-1. The potential was held at -0.6 V. Raman spectra were recorded from 990 to 1050 cm-1 in 2-cm-1 steps. A detection limit of ~250 nM was achieved. A Ag-ring reference (diameter 5 mm) and a Ag-disc working electrode (diameter 3 mm) were sealed 1 mm apart in a Pyrex tube (o.d. 7 mm) and polished smooth.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '0', 'urlcheck' => '2014-10-11 18:35:15', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '00965', 'pauthor' => '!Force, R.K.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1021/ac00169a033', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Surface-enhanced raman spectroscopy at a silver electrode as a detector in flow injection analysis', Anal. Chem., 1988 60(18) 1987-1989', 'firstchar' => 'S', 'twochars' => 'Su', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array([maximum depth reached]), 'Matrix' => array([maximum depth reached]), 'Keyword' => array([maximum depth reached]) ), (int) 5 => array( 'id' => '008566', 'authors' => 'Pothier, N.J.;Force, R.K.', 'authorsweb' => 'Neil J. Pothier and R. Ken Force', 'title' => 'Surface-enhanced raman spectroscopy at a silver electrode as a detection system in flowing streams', 'journal' => 'Anal. Chem.', 'journal_id' => '0499', 'fadid' => 'ANCH1990V0062P00678', 'year' => '1990', 'volume' => '62', 'issue' => '7', 'startpage' => '678', 'endpage' => '680', 'type' => 'Journal Article', 'analytes' => ';0064;2356;0747;', 'matrices' => '', 'techniques' => ';0410;0210;0038;', 'keywords' => ';0276;0446;0109;', 'abstract' => 'A three-electrode surface-enhanced Raman spectroscopy detector, with a Ag working electrode, Pt foil auxiliary electrode and SCE reference and a cell volume of 30 µL, was evaluated for use with HPLC and flow injection analysis. In a flowing system, the analyte is rapidly removed from the electrode surface in 10 s, and spectra was obtained in 5 s with an optical multichannel analyzer.. Under stopped-flow conditions, detection limits were 175, 233 and 211 pmol for adenine, thymine and cytosine, respectively.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '3', 'urlcheck' => '2014-10-11 18:35:47', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '00965', 'pauthor' => '!Force, R.K.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1021/ac00206a005', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Surface-enhanced raman spectroscopy at a silver electrode as a detection system in flowing streams', Anal. Chem., 1990 62(7) 678-680', 'firstchar' => 'S', 'twochars' => 'Su', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 6 => array( 'id' => '008582', 'authors' => 'Ni, F.;Sheng, R.S.;Cotton, T.M.', 'authorsweb' => 'Fan Ni, Rongsheng Sheng, and Therese M. Cotton', 'title' => 'Flow injection analysis and real-time detection of RNA bases by surface-enhanced Raman spectroscopy', 'journal' => 'Anal. Chem.', 'journal_id' => '0499', 'fadid' => 'ANCH1990V0062P01958', 'year' => '1990', 'volume' => '62', 'issue' => '18', 'startpage' => '1958', 'endpage' => '1963', 'type' => 'Journal Article', 'analytes' => ';0365;', 'matrices' => '', 'techniques' => ';0410;0038;', 'keywords' => ';0216;0320;0302;', 'abstract' => 'Surface-enhanced Raman scattering (SERS) spectroscopy has been successfully interfaced with a flow injection analysis system to detect RNA bases in real time. Four of the major base components of RNA, uracil, cytosine, adenine, and guanine, were introduced into the flow injection system and were mixed with a Ag sol prior to SERS measurements. Several experimental parameters including pH, temperature, flow rate, and tubing materials were examined, and their impact on the SERS spectra is presented here. The feasibility of interfacing flow injection based SERS detection methods with liquid or high performance liquid chromatography for the detection of individual components in a complex mixture is also assessed.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '2', 'urlcheck' => '2014-10-11 18:36:03', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => null, 'pauthor' => 'Cotton, T.M.', 'address' => 'Department of Chemistry, Iowa State University, Ames, Iowa 50011 USA', 'email' => 'NA', 'notes' => null, 'url' => '10.1021/ac00217a012', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Flow injection analysis and real-time detection of RNA bases by surface-enhanced Raman spectroscopy', Anal. Chem., 1990 62(18) 1958-1963', 'firstchar' => 'F', 'twochars' => 'Fl', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 7 => array( 'id' => '009344', 'authors' => 'Laserna, J.J.;Berthod, A.;Winefordner, J.D.', 'authorsweb' => 'J. J. Laserna, A. Berthod and J. D. Winefordner*', 'title' => 'Evaluation and optimization of experimental conditions for surface-enhanced raman detection of analytes in flow injection analysis', 'journal' => 'Microchem. J.', 'journal_id' => '0639', 'fadid' => 'MCHJ1988V0038P00125', 'year' => '1988', 'volume' => '38', 'issue' => '1', 'startpage' => '125', 'endpage' => '126', 'type' => 'Journal Article', 'analytes' => ';0399;0055;', 'matrices' => '', 'techniques' => ';0410;', 'keywords' => ';0110;0302;', 'abstract' => 'The Raman instrumentation included a 100-mW Ar ion laser operated at 514.5 nm, a double monochromator and a cooled Hamamatsu R-928 photomultiplier tube with photon counting system as the detector. Vertically polarized light was used, with right-angle geometry for Raman sampling and a long-wave-pass glass filter to suppress Rayleigh-scattered light. Spectra were obtained by single scans. Flow streams of 1 mM AgNO3 and 2 mM NaBH4 were merged to form a silver hydrosol matrix, and 4-aminobenzoic acid(I) and acridin-9-amine were used successfully as test analytes. The detector flow-cell was a silica tube (3 mm x 0.5 mm;~0.6 µL). For maximum signal response with I, the total flow rate was 0.7 mL min-1 and the pH was adjusted with HNO3 to 3.2.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '14', 'urlcheck' => '2014-10-12 00:26:48', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '01400', 'pauthor' => '!Winefordner, J.D.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1016/0026-265X(88)90011-2', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Evaluation and optimization of experimental conditions for surface-enhanced raman detection of analytes in flow injection analysis', Microchem. J., 1988 38(1) 125-126', 'firstchar' => 'E', 'twochars' => 'Ev', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 8 => array( 'id' => '010331', 'authors' => 'Gouveia, V.J.P.;Gutz, I.G.R.;Rubim, J.C.', 'authorsweb' => 'Vitor J. P. Gouveia, Ivano G. Gutz and Joel C. Rubim*', 'title' => 'New spectroelectrochemical cell for flow injection analysis and its application to the determination of iron(II) down to the femtomole level by surface-enhanced resonance Raman scattering (SERRS)', 'journal' => 'J. Electroanal. Chem.', 'journal_id' => '0709', 'fadid' => 'JECH1994V0371P00037', 'year' => '1994', 'volume' => '371', 'issue' => '1-2', 'startpage' => '37', 'endpage' => '42', 'type' => 'Journal Article', 'analytes' => ';1294;', 'matrices' => ';0404;', 'techniques' => ';0226;0410;', 'keywords' => '', 'abstract' => 'A principal feature of the cell (diagrams presented) is the in situ renewal of the surface-enhanced Raman-active Ag substratum. Before injection of the analyte, Ag+ are introduced, and Ag is electro-deposited on a vitreous-carbon electrode; after the Raman spectrum of the adsorbed analyte has been recorded, the Ag is removed by anodic stripping. Fe(II) was determined in a 130 µL injected sample as its tris(bipyridyl) complex, which exhibits both a resonance Raman effect when excited with Ar+ laser 514.5 nm radiation and surface-enhanced Raman scattering when adsorbed on Ag. The calibration graph was sigmoidal, but usable for 10 nM-10 µM-Fe(II), and the detection limit was 1 nM, which represented detection of Fe(II) at the femtomole level.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '13', 'urlcheck' => '2014-10-12 09:04:46', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => null, 'pauthor' => 'Rubim, J.C.', 'address' => 'Institututo de Química da Universidade de São Paulo C.P.20780, 01498, São Paulo, SP Brazil', 'email' => 'NA', 'notes' => null, 'url' => '10.1016/0022-0728(93)03220-J', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''New spectroelectrochemical cell for flow injection analysis and its application to the determination of iron(II) down to the femtomole level by surface-enhanced resonance Raman scattering (SERRS)', J. Electroanal. Chem., 1994 371(1-2) 37-42', 'firstchar' => 'N', 'twochars' => 'Ne', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array( [maximum depth reached] ), 'Keyword' => array([maximum depth reached]) ), (int) 9 => array( 'id' => '013707', 'authors' => 'Weissenbacher, N.;Lendl, B.;Frank, J.;Wanzenbock, H.D.;Mizaikoff, B.;Kellner, R.', 'authorsweb' => 'N. Weissenbacher*, B. Lendl, J. Frank, H. D. Wanzenböck, B. Mizaikoff and R. Kellner', 'title' => 'Continuous surface-enhanced raman-spectroscopy for the detection of trace organic pollutants in aqueous systems', 'journal' => 'J. Mol. Struct.', 'journal_id' => '0628', 'fadid' => 'JMRS1997V0410P00539', 'year' => '1997', 'volume' => '410', 'issue' => '1', 'startpage' => '539', 'endpage' => '542', 'type' => 'Journal Article', 'analytes' => ';2050;1583;1774;0504;1478;', 'matrices' => '', 'techniques' => ';0410;', 'keywords' => '', 'abstract' => 'In Raman spectroscopy, detection limits for organic pollutants in water can be lowered by several orders of magnitude when surface enhanced techniques are applied. In this work a continuous analytical device based on flow injection analysis using SERS detection is proposed. This system was tested with model analytes such as pyridine and nicotinic acid as well as several pesticides (carbendazim, metazachlorine). (C) 1997 Elsevier Science B.V. 22 References', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'No', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '3', 'urlcheck' => '2014-10-12 09:49:43', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => null, 'pauthor' => 'Weissenbacher, N.', 'address' => 'Institute for Analytical Chemistry, Vienna University of Technology, Getreidemarkt 9/151, A-1060, Vienna, Austria', 'email' => 'NA', 'notes' => null, 'url' => '10.1016/S0022-2860(96)09531-2', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Continuous surface-enhanced raman-spectroscopy for the detection of trace organic pollutants in aqueous systems', J. Mol. Struct., 1997 410(1) 539-542', 'firstchar' => 'C', 'twochars' => 'Co', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array([maximum depth reached]) ), (int) 10 => array( 'id' => '014097', 'authors' => 'Sawata, S.;Kai, E.;Ikebukuro, K.;Iida, T.;Honda, T.;Karube, I.', 'authorsweb' => 'Sawata S, Kai E, Ikebukuro K, Iida T, Honda T, Karube I.', 'title' => 'Novel detection system of flow injection analysis. 1. The existence of significant relation between secondary structure of DNA and sensitivity in signal detection', 'journal' => 'Nucleic Acids Symp. Ser.', 'journal_id' => '1346', 'fadid' => 'NASS1997V0037P00247', 'year' => '1997', 'volume' => '37', 'issue' => '1', 'startpage' => '247', 'endpage' => '248', 'type' => 'Journal Article', 'analytes' => ';0847;', 'matrices' => '', 'techniques' => ';0410;', 'keywords' => ';0401;', 'abstract' => 'Polymerase Chain Reaction (PCR) products were detected quantitatively using a flow injection type sensor, based on Surface Plasmon Resonance (SPR). We used asymmetric PCR to amplify the two kinds of products; their DNA lengths are different. This novel design permitted us not only to detect PCR products with high-sensitivity, but also to develop a rapid DNA detection system for the sense of the genetic pathogen.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'No', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '0', 'urlcheck' => '2014-10-13 19:09:08', 'urlcheckcode' => 'HTTP/1.1 200 OK', 'pauthor_id' => '00227', 'pauthor' => '!Karube, I.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => 'www.ncbi.nlm.nih.gov/pubmed/9586092', 'urltype' => 'absurl', 'gotpdf' => 'no', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Novel detection system of flow injection analysis. 1. The existence of significant relation between secondary structure of DNA and sensitivity in signal detection', Nucleic Acids Symp. Ser., 1997 37(1) 247-248', 'firstchar' => 'N', 'twochars' => 'No', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 11 => array( 'id' => '014429', 'authors' => 'Storey, J.M.E.;Barber, T.E.;Shelton, R.D.;Wachter, E.A.;Carron, K.T.;Jiang, Y.', 'authorsweb' => 'NA', 'title' => 'Applications of surface-enhanced Raman scattering (SERS) to chemical detection', 'journal' => 'Spectroscopy', 'journal_id' => '0489', 'fadid' => 'STRS1995V0010P00020', 'year' => '1995', 'volume' => '10', 'issue' => '3', 'startpage' => '20', 'endpage' => '25', 'type' => 'Journal Article', 'analytes' => ';0716;1186;1582;', 'matrices' => ';0343;0372;', 'techniques' => ';0410;', 'keywords' => ';0389;', 'abstract' => 'lectrochemical surface-enhanced Raman spectrometry (SERS) was used to detect chlorinated hydrocarbons in ground water, in tobacco smoke and aqueous cyanide ions. Hybrid substrate SERS was used for the detection of organic compounds in liquid and gas phases, using a flow-through cell. The experimental protocols were described previously. (Appl Spectrosc., 1994, 48, 1265; Shelton et al., Ibid., 1994, 48, 1007; Wachter et al.,Ibid., 1995, 49, 193; and Barber et al., Ibid., 1994, 48, 1423). The detection limits for hydrocarbons in electrolytes were a few ppm; they were an order of magnitude higher in groundwater. No calibration data are given. The response to cyanide was linear for 10^-100 ppm. The detection limit for nicotine in smoke was 15 ppb (no calibration data given). The advantages and limitations of the methods are discussed and future research directions are outlined.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'No', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '0', 'urlcheck' => '2006-05-20 19:26:31', 'urlcheckcode' => '', 'pauthor_id' => null, 'pauthor' => 'NA', 'address' => 'Oak Ridge Natl. Lab., Health Sci. Res. Div., Oak Ridge, TN 37831-6113 UK', 'email' => 'NA', 'notes' => null, 'url' => 'NA', 'urltype' => 'NA', 'gotpdf' => 'no', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Applications of surface-enhanced Raman scattering (SERS) to chemical detection', Spectroscopy, 1995 10(3) 20-25', 'firstchar' => 'A', 'twochars' => 'Ap', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array( [maximum depth reached] ), 'Keyword' => array( [maximum depth reached] ) ), (int) 12 => array( 'id' => '014511', 'authors' => 'Fujiwara, K.;Ito, S.', 'authorsweb' => 'Kitao Fujiwara and Seiji Ito', 'title' => 'Application of waveguiding in solutions for absorption and fluorescence spectrometry', 'journal' => 'Trends Anal. Chem.', 'journal_id' => '0653', 'fadid' => 'TRAC1991V0010P00184', 'year' => '1991', 'volume' => '10', 'issue' => '6', 'startpage' => '184', 'endpage' => '190', 'type' => 'Journal Article', 'analytes' => '', 'matrices' => '', 'techniques' => ';0252;0410;', 'keywords' => ';0043;0167;0521;', 'abstract' => 'Several waveguiding techniques in solution are presented in the context of spectrometry. Although light propagation in dense media via total reflection is a commonly used technique with optical fibers, it is also possible in solutions. This is very useful for improving both sensitivity and spatial resolution, especially in absorption and fluorescence spectrometry, by elongating the optical path length and controlling the angle of incidence of light in the measurement area of a sample. ', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'No', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '26', 'urlcheck' => '2014-10-12 02:21:14', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => null, 'pauthor' => 'NA', 'address' => 'NA', 'email' => 'NA', 'notes' => null, 'url' => '10.1016/0165-9936(91)85019-N', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Application of waveguiding in solutions for absorption and fluorescence spectrometry', Trends Anal. Chem., 1991 10(6) 184-190', 'firstchar' => 'A', 'twochars' => 'Ap', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array([maximum depth reached]), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 13 => array( 'id' => '014536', 'authors' => 'Vo Dinh, T.', 'authorsweb' => 'Tuan Vo-Dinh', 'title' => 'Surface enhanced raman spectroscopy using metallic nanostructures', 'journal' => 'Trends Anal. Chem.', 'journal_id' => '0653', 'fadid' => 'TRAC1998V0017P00557', 'year' => '1998', 'volume' => '17', 'issue' => '8-9', 'startpage' => '557', 'endpage' => '582', 'type' => 'Journal Article', 'analytes' => '', 'matrices' => ';0404;0093;', 'techniques' => ';0410;', 'keywords' => ';0043;0215;0389;', 'abstract' => 'This article provides an overview of the development and application of the surface-enhanced Raman scattering (SERS) techniques using metal-coated nanostructures on solid substrates, An introduction to theoretical principles of the SERS effect and the different SERS-active media is presented. The focus is on nanostructured solid substrates and their practical applications in chemical, environmental and biomedical areas. Specific examples of analytical techniques, instruments and sensors developed in the author's laboratory will be discussed to illustrate the usefulness and potential of the SERS techniques.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'No', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '38', 'urlcheck' => '2014-10-12 10:04:45', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => null, 'pauthor' => 'Vo Dinh, T.', 'address' => 'Advanced Monitoring Development Group, Life Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6101, USA', 'email' => 'NA', 'notes' => null, 'url' => '10.1016/S0165-9936(98)00069-7', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Surface enhanced raman spectroscopy using metallic nanostructures', Trends Anal. Chem., 1998 17(8-9) 557-582', 'firstchar' => 'S', 'twochars' => 'Su', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array([maximum depth reached]), 'Matrix' => array( [maximum depth reached] ), 'Keyword' => array( [maximum depth reached] ) ), (int) 14 => array( 'id' => '014560', 'authors' => 'Ruperez, A.;Montes, R.;Laserna, J.J.', 'authorsweb' => 'A. Rupérez, R. Montes and J. J. Laserna*', 'title' => 'Identification of stimulant drugs by surface-enhanced raman spectrometry on colloidal silver', 'journal' => 'Vib. Spectrosc.', 'journal_id' => '0655', 'fadid' => 'VIBS1991V0002P00145', 'year' => '1991', 'volume' => '2', 'issue' => '2-3', 'startpage' => '145', 'endpage' => '154', 'type' => 'Journal Article', 'analytes' => ';0862;', 'matrices' => '', 'techniques' => ';0032;0055;0410;', 'keywords' => '', 'abstract' => 'The surface-enhanced Raman (SER) spectra of stimulant drugs, including mefenorex, pentylenetetrazole, -amphetamine and pemoline, were obtained on colloidal silver. Silver colloids are prepared in a single step, at room temperature, by chemical reduction of Ag+ with sodium tetrahydroborate. Spectra are recorded using drug concentrations at the g mL-1 level. Individual drugs can be identified by characteristic vibrational bands. The SER spectrum of human urine and that of human urine spiked with mixtures of stimulant drugs are reported.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'No', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '7', 'urlcheck' => '2014-10-12 02:21:21', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '01097', 'pauthor' => '!Laserna, J.J.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1016/0924-2031(91)85020-N', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Identification of stimulant drugs by surface-enhanced raman spectrometry on colloidal silver', Vib. Spectrosc., 1991 2(2-3) 145-154', 'firstchar' => 'I', 'twochars' => 'Id', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array([maximum depth reached]) ) ) ) $c = array( 'id' => '014097', 'authors' => 'Sawata, S.;Kai, E.;Ikebukuro, K.;Iida, T.;Honda, T.;Karube, I.', 'authorsweb' => 'Sawata S, Kai E, Ikebukuro K, Iida T, Honda T, Karube I.', 'title' => 'Novel detection system of flow injection analysis. 1. The existence of significant relation between secondary structure of DNA and sensitivity in signal detection', 'journal' => 'Nucleic Acids Symp. Ser.', 'journal_id' => '1346', 'fadid' => 'NASS1997V0037P00247', 'year' => '1997', 'volume' => '37', 'issue' => '1', 'startpage' => '247', 'endpage' => '248', 'type' => 'Journal Article', 'analytes' => ';0847;', 'matrices' => '', 'techniques' => ';0410;', 'keywords' => ';0401;', 'abstract' => 'Polymerase Chain Reaction (PCR) products were detected quantitatively using a flow injection type sensor, based on Surface Plasmon Resonance (SPR). We used asymmetric PCR to amplify the two kinds of products; their DNA lengths are different. This novel design permitted us not only to detect PCR products with high-sensitivity, but also to develop a rapid DNA detection system for the sense of the genetic pathogen.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'No', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '0', 'urlcheck' => '2014-10-13 19:09:08', 'urlcheckcode' => 'HTTP/1.1 200 OK', 'pauthor_id' => '00227', 'pauthor' => '!Karube, I.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => 'www.ncbi.nlm.nih.gov/pubmed/9586092', 'urltype' => 'absurl', 'gotpdf' => 'no', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Novel detection system of flow injection analysis. 1. The existence of significant relation between secondary structure of DNA and sensitivity in signal detection', Nucleic Acids Symp. Ser., 1997 37(1) 247-248', 'firstchar' => 'N', 'twochars' => 'No', 'CitationsTechnique' => array( 'id' => '014744', 'citation_id' => '014097', 'technique_id' => '0410' ), 'Analyte' => array( (int) 0 => array( 'id' => '00847', 'name' => 'DNA', 'iupac_name' => '1,4-dihydroxynaphthalene-2-carboxylic acid', 'casrn' => 'NA', 'synonyms' => 'Deoxyribonucleic acid', 'total' => '10', 'inchi' => 'InChI=1S/C11H8O4/c12-9-5-8(11(14)15)10(13)7-4-2-1-3-6(7)9/h1-5,12-13H,(H,14,15)', 'inchikey' => 'VOJUXHHACRXLTD-UHFFFAOYSA-N', 'formula' => 'C11H8O4', 'oxstate' => 'Zero', 'url' => '', 'charge' => '0', 'class1' => 'Biological', 'class2' => 'NA', 'class3' => 'NA', 'class4' => 'Molecule', 'class5' => 'Acids', 'isgroup' => 'no', 'checked' => 'yes', 'citation_count' => '0', 'updated' => '2015-10-23 09:57:06', 'first' => 'D', 'nametotal' => 'DNA**10', 'AnalytesCitation' => array( [maximum depth reached] ) ) ), 'Matrix' => array(), 'Keyword' => array( (int) 0 => array( 'id' => '0401', 'type' => 'Feature', 'keyword' => 'Sensitivity', 'newKeyword' => '', 'synonyms' => '', 'fao' => '', 'total' => '190', 'first' => 'S', 'keytotal' => 'Sensitivity**190', 'CitationsKeyword' => array( [maximum depth reached] ) ) ) ) $i = (int) 10 $path = '' $a = '' $url = 'http://www.ncbi.nlm.nih.gov/pubmed/9586092' $aus = 'Sawata S, Kai E, Ikebukuro K, Iida T, Honda T, Karube I.'include - APP/View/Elements/citation.ctp, line 40 View::_evaluate() - CORE/Cake/View/View.php, line 971 View::_render() - CORE/Cake/View/View.php, line 933 View::_renderElement() - CORE/Cake/View/View.php, line 1224 View::element() - CORE/Cake/View/View.php, line 418 include - APP/View/Techniques/view.ctp, line 52 View::_evaluate() - CORE/Cake/View/View.php, line 971 View::_render() - CORE/Cake/View/View.php, line 933 View::render() - CORE/Cake/View/View.php, line 473 Controller::render() - CORE/Cake/Controller/Controller.php, line 968 Dispatcher::_invoke() - CORE/Cake/Routing/Dispatcher.php, line 200 Dispatcher::dispatch() - CORE/Cake/Routing/Dispatcher.php, line 167 [main] - APP/webroot/index.php, line 109
"Applications Of Surface-enhanced Raman Scattering (SERS) To Chemical Detection"
Spectroscopy
1995 Volume 10, Issue 3 Pages 20-25
Notice (8): Undefined variable: uid [APP/View/Elements/citation.ctp, line 40]Storey, J.M.E.;Barber, T.E.;Shelton, R.D.;Wachter, E.A.;Carron, K.T.;Jiang, Y.Code Context?>
<?php
if($uid!='') {
$viewFile = '/home/stuchalk/public_html/fad/app/View/Elements/citation.ctp' $dataForView = array( 'data' => array( 'Technique' => array( 'id' => '0410', 'label' => 'Raman', 'level1' => 'Raman', 'level2' => 'surface enhanced', 'level3' => '', 'level4' => '', 'level5' => '', 'synonyms' => 'Surface enhanced raman spectroscopy,SERS', 'champ' => '', 'total' => '15', 'updated' => '0000-00-00 00:00:00', 'name' => 'Raman, surface enhanced', 'nametotal' => 'Raman, surface enhanced**15', 'first' => 'R' ), 'Citation' => array( (int) 0 => array( [maximum depth reached] ), (int) 1 => array( [maximum depth reached] ), (int) 2 => array( [maximum depth reached] ), (int) 3 => array( [maximum depth reached] ), (int) 4 => array( [maximum depth reached] ), (int) 5 => array( [maximum depth reached] ), (int) 6 => array( [maximum depth reached] ), (int) 7 => array( [maximum depth reached] ), (int) 8 => array( [maximum depth reached] ), (int) 9 => array( [maximum depth reached] ), (int) 10 => array( [maximum depth reached] ), (int) 11 => array( [maximum depth reached] ), (int) 12 => array( [maximum depth reached] ), (int) 13 => array( [maximum depth reached] ), (int) 14 => array( [maximum depth reached] ) ) ), 'c' => array( 'id' => '014429', 'authors' => 'Storey, J.M.E.;Barber, T.E.;Shelton, R.D.;Wachter, E.A.;Carron, K.T.;Jiang, Y.', 'authorsweb' => 'NA', 'title' => 'Applications of surface-enhanced Raman scattering (SERS) to chemical detection', 'journal' => 'Spectroscopy', 'journal_id' => '0489', 'fadid' => 'STRS1995V0010P00020', 'year' => '1995', 'volume' => '10', 'issue' => '3', 'startpage' => '20', 'endpage' => '25', 'type' => 'Journal Article', 'analytes' => ';0716;1186;1582;', 'matrices' => ';0343;0372;', 'techniques' => ';0410;', 'keywords' => ';0389;', 'abstract' => 'lectrochemical surface-enhanced Raman spectrometry (SERS) was used to detect chlorinated hydrocarbons in ground water, in tobacco smoke and aqueous cyanide ions. Hybrid substrate SERS was used for the detection of organic compounds in liquid and gas phases, using a flow-through cell. The experimental protocols were described previously. (Appl Spectrosc., 1994, 48, 1265; Shelton et al., Ibid., 1994, 48, 1007; Wachter et al.,Ibid., 1995, 49, 193; and Barber et al., Ibid., 1994, 48, 1423). The detection limits for hydrocarbons in electrolytes were a few ppm; they were an order of magnitude higher in groundwater. No calibration data are given. The response to cyanide was linear for 10^-100 ppm. The detection limit for nicotine in smoke was 15 ppb (no calibration data given). The advantages and limitations of the methods are discussed and future research directions are outlined.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'No', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '0', 'urlcheck' => '2006-05-20 19:26:31', 'urlcheckcode' => '', 'pauthor_id' => null, 'pauthor' => 'NA', 'address' => 'Oak Ridge Natl. Lab., Health Sci. Res. Div., Oak Ridge, TN 37831-6113 UK', 'email' => 'NA', 'notes' => null, 'url' => 'NA', 'urltype' => 'NA', 'gotpdf' => 'no', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Applications of surface-enhanced Raman scattering (SERS) to chemical detection', Spectroscopy, 1995 10(3) 20-25', 'firstchar' => 'A', 'twochars' => 'Ap', 'CitationsTechnique' => array( 'id' => '015181', 'citation_id' => '014429', 'technique_id' => '0410' ), 'Analyte' => array( (int) 0 => array( [maximum depth reached] ), (int) 1 => array( [maximum depth reached] ), (int) 2 => array( [maximum depth reached] ) ), 'Matrix' => array( (int) 0 => array( [maximum depth reached] ), (int) 1 => array( [maximum depth reached] ) ), 'Keyword' => array( (int) 0 => array( [maximum depth reached] ) ) ), 'i' => (int) 11 ) $data = array( 'Technique' => array( 'id' => '0410', 'label' => 'Raman', 'level1' => 'Raman', 'level2' => 'surface enhanced', 'level3' => '', 'level4' => '', 'level5' => '', 'synonyms' => 'Surface enhanced raman spectroscopy,SERS', 'champ' => '', 'total' => '15', 'updated' => '0000-00-00 00:00:00', 'name' => 'Raman, surface enhanced', 'nametotal' => 'Raman, surface enhanced**15', 'first' => 'R' ), 'Citation' => array( (int) 0 => array( 'id' => '006258', 'authors' => 'Cabalin, L.M.;Ruperez, A.;Laserna, J.J.', 'authorsweb' => 'L. M. Cabalín, A. Rupérez and J. J. Laserna*', 'title' => 'Flow injection analysis and liquid chromatography: surface enhanced Raman spectrometry detection by using a windowless flow cell', 'journal' => 'Anal. Chim. Acta', 'journal_id' => '0584', 'fadid' => 'ANCA1996V0318P00203', 'year' => '1996', 'volume' => '318', 'issue' => '2', 'startpage' => '203', 'endpage' => '210', 'type' => 'Journal Article', 'analytes' => ';0146;0199;2037;1732;2402;', 'matrices' => '', 'techniques' => ';0032;0410;', 'keywords' => ';0167;0302;', 'abstract' => 'A windowless flow cell was developed for detection by surface-enhanced Raman spectrometry (SERS) in FIA and LC. The flow cell consisted of two stainless-steel tubes (0.16 mm i.d.; 1.4 mm o.d.) mounted on an Al frame so that the ends were ~e;1.6 mm apart. The liquid draining from the upper to the lower tube was supported by surface tension and formed a column (1.4 mm diameter). The mobile phase from the FIA or LC was merged with a silver hydrosol stream then propelled in to the flow cell. The Raman spectra were recorded using a focussed Ar ion laser beam (488 nm; 85 mW) as the source. The performance of the flow cell was optimized using five drugs (amiloride, amiphenazole, 2-mercaptopyridine, pemoline and triamterene) as model analytes. The maximum SERS signal was obtained with flow rates of 0.075 ml/ml and 1.5 ml/ml for the mobile phase and silver hydrosol, respectively. The reproducibility (n = 5) of the FIA-SERS system for the determination of 625 ng amiloride was 1%.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '1', 'urlcheck' => '2014-10-11 16:18:55', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '01097', 'pauthor' => '!Laserna, J.J.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1016/0003-2670(95)00441-6', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Flow injection analysis and liquid chromatography: surface enhanced Raman spectrometry detection by using a windowless flow cell', Anal. Chim. Acta, 1996 318(2) 203-210', 'firstchar' => 'F', 'twochars' => 'Fl', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 1 => array( 'id' => '006451', 'authors' => 'Somsen, G.W.;Coulter, S.K.;Gooijer, C.;Velthorst, N.H.;Brinkman, U.A.T.', 'authorsweb' => 'G. W. Somsen*, S. K. Coulter, C. Gooijer, N. H. Velthorst and U. A. Th. Brinkman', 'title' => 'Coupling of column liquid-chromatography and surface-enhanced resonance raman-spectroscopy via a thin-layer chromatographic plate', 'journal' => 'Anal. Chim. Acta', 'journal_id' => '0584', 'fadid' => 'ANCA1997V0349P00189', 'year' => '1997', 'volume' => '349', 'issue' => '1-3', 'startpage' => '189', 'endpage' => '197', 'type' => 'Journal Article', 'analytes' => '', 'matrices' => '', 'techniques' => ';0410;0038;', 'keywords' => ';0339;0302;', 'abstract' => 'Surface-enhanced resonance Raman (SERR) spectroscopy was used to characterize compounds separated by column liquid chromatography (LC). Three percent of the effluent from a conventional-size LC column were immobilized on a moving thin-layer chromatography (TLC) plate using a spray-jet solvent-elimination interface. Next, colloidal silver was applied to the analyte spots and in situ SERR spectra were recorded with a multichannel micro-Raman spectrometer. Storage of the LC effluent avoids the need to use a continuous-flow of colloidal silver and, in principle allows compounds to be detected independently of LC conditions like eluent composition and flow rate. Using dyes as test compounds, the method was optimized and aspects were studied such as type of TLC plate, LC separation of the dyes, preservation of LC integrity during immobilization, and SERR analysis of the deposited compounds. With a silica TLC plate as deposition substrate, good-quality and characteristic SERR spectra were obtained for the dyes which were separated on a cyanoproyl-modified silica LC column with methanol-water containing the volatile additives ammonium acetate and triethylamine as eluent. The minimum identifiable concentration of the dyes was about 250 ng mL-1 (750 pg applied on the plate). For some strong Raman scatterers such as nile blue and pararosaniline, the major spectral peaks could be observed down to concentrations of 25 ng mL-1. 36 References', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '3', 'urlcheck' => '2014-10-11 16:23:46', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '01300', 'pauthor' => '!Somsen, G.W.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1016/S0003-2670(97)00011-1', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Coupling of column liquid-chromatography and surface-enhanced resonance raman-spectroscopy via a thin-layer chromatographic plate', Anal. Chim. Acta, 1997 349(1-3) 189-197', 'firstchar' => 'C', 'twochars' => 'Co', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array([maximum depth reached]), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 2 => array( 'id' => '006887', 'authors' => 'Laserna, J.J.;Berthod, A.;Winefordner, J.D.', 'authorsweb' => 'J. J. Laserna, A. Berthod and J. D. Winefordner ', 'title' => 'Quantitative analysis by surface-enhanced raman spectrometry on silver hydrosols in a flow injection system', 'journal' => 'Talanta', 'journal_id' => '0569', 'fadid' => 'TALT1987V0034P00745', 'year' => '1987', 'volume' => '34', 'issue' => '8', 'startpage' => '745', 'endpage' => '747', 'type' => 'Journal Article', 'analytes' => ';0056;0401;', 'matrices' => '', 'techniques' => ';0410;', 'keywords' => ';0457;', 'abstract' => 'The application of surface-enhanced Raman scattering (SERS) in quantitative analysis is demonstrated by the determination of 4-aminobenzoic acid(I) and acridin-9-amine(II) on silver suspensions by SERS in a flow injection system. Two peristaltic pumps were used to mix 2 mM NaBH4 and 1 mM AgNO3 and pump the resulting silver suspension through the flow injection analysis system. The flow injection analysis system is described (with diagram). The sample solution contained I in aqueous 40% ethanol or II in ethanol. The calibration graph was rectilinear for 4 to 100 µg mL-1 of I, and the coefficient of variation (n = 6) was 3.2%. The system required cleaning with 40% HNO3 after 10 to 15 injections.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '7', 'urlcheck' => '2014-10-11 14:54:34', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '01400', 'pauthor' => '!Winefordner, J.D.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1016/0039-9140(87)80234-5', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Quantitative analysis by surface-enhanced raman spectrometry on silver hydrosols in a flow injection system', Talanta, 1987 34(8) 745-747', 'firstchar' => 'Q', 'twochars' => 'Qu', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 3 => array( 'id' => '007977', 'authors' => 'Weissenbacher, N.;Lendl, B.;Frank, J.;Wanzenbock, H.D.;Kellner, R.', 'authorsweb' => 'N. Weißenbacher, B. Lendl, J. Frank, H. D. Wanzenböck and R. Kellner', 'title' => 'Surface enhanced raman spectroscopy as a molecular specific detection system in aqueous flow-through systems', 'journal' => 'Analyst', 'journal_id' => '0864', 'fadid' => 'ANAL1998V0123P01057', 'year' => '1998', 'volume' => '123', 'issue' => '5', 'startpage' => '1057', 'endpage' => '1060', 'type' => 'Journal Article', 'analytes' => ';1583;', 'matrices' => '', 'techniques' => ';0410;0409;', 'keywords' => ';0446;0167;0043;0258;', 'abstract' => 'Surface enhanced Raman scattering (SERS) is proposed as a mol. specific technique for direct measurements of organic molecules in aqueous solutions An FT-Raman spectrometer was interfaced with a flow injection manifold operated in the stopped-flow mode enabling reproducible collection of SERS spectra due to the automation of the anal. procedure. For SERS a solid state substrate placed in a newly developed flow-cell was used. Multiple measurements on one single SERS substrate were achieved by rinsing the substrate with reagents such as 3 M KCl or 0.1 M NaOH solutions prior to the next measurements to remove retained analytes from the surface of the SERS substrate. This procedure allowed for improved precision as compared with a conventional batch approach. Quant. aspects were studied by establishing a calibration curve for nicotinic acid which was used as a model analyte. A linear dependence of the recorded SERS intensities from the logarithm of the analyte concentration. was obtained throughout the whole studied concentration. range (0.001-0.1 M, correlation coefficient r2 = 0.97). The standard deviation of the method sx0 is 0.122 mM and detection limit 1.7 mM, respectively. The results demonstrate the potential of SERS spectroscopy to be used as a molecular specific detector in aqueous flow systems such as flow injection anal.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '5', 'urlcheck' => '2014-10-12 09:52:18', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '00241', 'pauthor' => '!Lendl, B.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1039/a705837c', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Surface enhanced raman spectroscopy as a molecular specific detection system in aqueous flow-through systems', Analyst, 1998 123(5) 1057-1060', 'firstchar' => 'S', 'twochars' => 'Su', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 4 => array( 'id' => '008516', 'authors' => 'Force, R.K.', 'authorsweb' => 'R. Ken Force', 'title' => 'Surface-enhanced raman spectroscopy at a silver electrode as a detector in flow injection analysis', 'journal' => 'Anal. Chem.', 'journal_id' => '0499', 'fadid' => 'ANCH1988V0060P01987', 'year' => '1988', 'volume' => '60', 'issue' => '18', 'startpage' => '1987', 'endpage' => '1989', 'type' => 'Journal Article', 'analytes' => '', 'matrices' => '', 'techniques' => ';0214;0410;', 'keywords' => '', 'abstract' => 'A Ag-ring reference (diameter 5 mm) and a Ag-disc working electrode (diameter 3 mm) were sealed 1 mm apart in a Pyrex tube (o.d. 7 mm) and polished smooth. The Ag ring was anodized at 0.4 V (vs. a SCE) in 0.1 M KCl to produce a Ag - AgCl reference electrode with a potential of ~0.190 to ~0.200 V (vs. a NHE) in the 0.1 M KCl used as mobile phase and supporting electrolyte. The apparatus was applied in flow injection analysis for 50.0 mM pyridine (1 mL injections) in KCl flowing at 2 mL min-1. The potential was held at -0.6 V. Raman spectra were recorded from 990 to 1050 cm-1 in 2-cm-1 steps. A detection limit of ~250 nM was achieved. A Ag-ring reference (diameter 5 mm) and a Ag-disc working electrode (diameter 3 mm) were sealed 1 mm apart in a Pyrex tube (o.d. 7 mm) and polished smooth.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '0', 'urlcheck' => '2014-10-11 18:35:15', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '00965', 'pauthor' => '!Force, R.K.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1021/ac00169a033', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Surface-enhanced raman spectroscopy at a silver electrode as a detector in flow injection analysis', Anal. Chem., 1988 60(18) 1987-1989', 'firstchar' => 'S', 'twochars' => 'Su', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array([maximum depth reached]), 'Matrix' => array([maximum depth reached]), 'Keyword' => array([maximum depth reached]) ), (int) 5 => array( 'id' => '008566', 'authors' => 'Pothier, N.J.;Force, R.K.', 'authorsweb' => 'Neil J. Pothier and R. Ken Force', 'title' => 'Surface-enhanced raman spectroscopy at a silver electrode as a detection system in flowing streams', 'journal' => 'Anal. Chem.', 'journal_id' => '0499', 'fadid' => 'ANCH1990V0062P00678', 'year' => '1990', 'volume' => '62', 'issue' => '7', 'startpage' => '678', 'endpage' => '680', 'type' => 'Journal Article', 'analytes' => ';0064;2356;0747;', 'matrices' => '', 'techniques' => ';0410;0210;0038;', 'keywords' => ';0276;0446;0109;', 'abstract' => 'A three-electrode surface-enhanced Raman spectroscopy detector, with a Ag working electrode, Pt foil auxiliary electrode and SCE reference and a cell volume of 30 µL, was evaluated for use with HPLC and flow injection analysis. In a flowing system, the analyte is rapidly removed from the electrode surface in 10 s, and spectra was obtained in 5 s with an optical multichannel analyzer.. Under stopped-flow conditions, detection limits were 175, 233 and 211 pmol for adenine, thymine and cytosine, respectively.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '3', 'urlcheck' => '2014-10-11 18:35:47', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '00965', 'pauthor' => '!Force, R.K.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1021/ac00206a005', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Surface-enhanced raman spectroscopy at a silver electrode as a detection system in flowing streams', Anal. Chem., 1990 62(7) 678-680', 'firstchar' => 'S', 'twochars' => 'Su', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 6 => array( 'id' => '008582', 'authors' => 'Ni, F.;Sheng, R.S.;Cotton, T.M.', 'authorsweb' => 'Fan Ni, Rongsheng Sheng, and Therese M. Cotton', 'title' => 'Flow injection analysis and real-time detection of RNA bases by surface-enhanced Raman spectroscopy', 'journal' => 'Anal. Chem.', 'journal_id' => '0499', 'fadid' => 'ANCH1990V0062P01958', 'year' => '1990', 'volume' => '62', 'issue' => '18', 'startpage' => '1958', 'endpage' => '1963', 'type' => 'Journal Article', 'analytes' => ';0365;', 'matrices' => '', 'techniques' => ';0410;0038;', 'keywords' => ';0216;0320;0302;', 'abstract' => 'Surface-enhanced Raman scattering (SERS) spectroscopy has been successfully interfaced with a flow injection analysis system to detect RNA bases in real time. Four of the major base components of RNA, uracil, cytosine, adenine, and guanine, were introduced into the flow injection system and were mixed with a Ag sol prior to SERS measurements. Several experimental parameters including pH, temperature, flow rate, and tubing materials were examined, and their impact on the SERS spectra is presented here. The feasibility of interfacing flow injection based SERS detection methods with liquid or high performance liquid chromatography for the detection of individual components in a complex mixture is also assessed.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '2', 'urlcheck' => '2014-10-11 18:36:03', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => null, 'pauthor' => 'Cotton, T.M.', 'address' => 'Department of Chemistry, Iowa State University, Ames, Iowa 50011 USA', 'email' => 'NA', 'notes' => null, 'url' => '10.1021/ac00217a012', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Flow injection analysis and real-time detection of RNA bases by surface-enhanced Raman spectroscopy', Anal. Chem., 1990 62(18) 1958-1963', 'firstchar' => 'F', 'twochars' => 'Fl', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 7 => array( 'id' => '009344', 'authors' => 'Laserna, J.J.;Berthod, A.;Winefordner, J.D.', 'authorsweb' => 'J. J. Laserna, A. Berthod and J. D. Winefordner*', 'title' => 'Evaluation and optimization of experimental conditions for surface-enhanced raman detection of analytes in flow injection analysis', 'journal' => 'Microchem. J.', 'journal_id' => '0639', 'fadid' => 'MCHJ1988V0038P00125', 'year' => '1988', 'volume' => '38', 'issue' => '1', 'startpage' => '125', 'endpage' => '126', 'type' => 'Journal Article', 'analytes' => ';0399;0055;', 'matrices' => '', 'techniques' => ';0410;', 'keywords' => ';0110;0302;', 'abstract' => 'The Raman instrumentation included a 100-mW Ar ion laser operated at 514.5 nm, a double monochromator and a cooled Hamamatsu R-928 photomultiplier tube with photon counting system as the detector. Vertically polarized light was used, with right-angle geometry for Raman sampling and a long-wave-pass glass filter to suppress Rayleigh-scattered light. Spectra were obtained by single scans. Flow streams of 1 mM AgNO3 and 2 mM NaBH4 were merged to form a silver hydrosol matrix, and 4-aminobenzoic acid(I) and acridin-9-amine were used successfully as test analytes. The detector flow-cell was a silica tube (3 mm x 0.5 mm;~0.6 µL). For maximum signal response with I, the total flow rate was 0.7 mL min-1 and the pH was adjusted with HNO3 to 3.2.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '14', 'urlcheck' => '2014-10-12 00:26:48', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '01400', 'pauthor' => '!Winefordner, J.D.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1016/0026-265X(88)90011-2', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Evaluation and optimization of experimental conditions for surface-enhanced raman detection of analytes in flow injection analysis', Microchem. J., 1988 38(1) 125-126', 'firstchar' => 'E', 'twochars' => 'Ev', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 8 => array( 'id' => '010331', 'authors' => 'Gouveia, V.J.P.;Gutz, I.G.R.;Rubim, J.C.', 'authorsweb' => 'Vitor J. P. Gouveia, Ivano G. Gutz and Joel C. Rubim*', 'title' => 'New spectroelectrochemical cell for flow injection analysis and its application to the determination of iron(II) down to the femtomole level by surface-enhanced resonance Raman scattering (SERRS)', 'journal' => 'J. Electroanal. Chem.', 'journal_id' => '0709', 'fadid' => 'JECH1994V0371P00037', 'year' => '1994', 'volume' => '371', 'issue' => '1-2', 'startpage' => '37', 'endpage' => '42', 'type' => 'Journal Article', 'analytes' => ';1294;', 'matrices' => ';0404;', 'techniques' => ';0226;0410;', 'keywords' => '', 'abstract' => 'A principal feature of the cell (diagrams presented) is the in situ renewal of the surface-enhanced Raman-active Ag substratum. Before injection of the analyte, Ag+ are introduced, and Ag is electro-deposited on a vitreous-carbon electrode; after the Raman spectrum of the adsorbed analyte has been recorded, the Ag is removed by anodic stripping. Fe(II) was determined in a 130 µL injected sample as its tris(bipyridyl) complex, which exhibits both a resonance Raman effect when excited with Ar+ laser 514.5 nm radiation and surface-enhanced Raman scattering when adsorbed on Ag. The calibration graph was sigmoidal, but usable for 10 nM-10 µM-Fe(II), and the detection limit was 1 nM, which represented detection of Fe(II) at the femtomole level.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '13', 'urlcheck' => '2014-10-12 09:04:46', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => null, 'pauthor' => 'Rubim, J.C.', 'address' => 'Institututo de Química da Universidade de São Paulo C.P.20780, 01498, São Paulo, SP Brazil', 'email' => 'NA', 'notes' => null, 'url' => '10.1016/0022-0728(93)03220-J', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''New spectroelectrochemical cell for flow injection analysis and its application to the determination of iron(II) down to the femtomole level by surface-enhanced resonance Raman scattering (SERRS)', J. Electroanal. Chem., 1994 371(1-2) 37-42', 'firstchar' => 'N', 'twochars' => 'Ne', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array( [maximum depth reached] ), 'Keyword' => array([maximum depth reached]) ), (int) 9 => array( 'id' => '013707', 'authors' => 'Weissenbacher, N.;Lendl, B.;Frank, J.;Wanzenbock, H.D.;Mizaikoff, B.;Kellner, R.', 'authorsweb' => 'N. Weissenbacher*, B. Lendl, J. Frank, H. D. Wanzenböck, B. Mizaikoff and R. Kellner', 'title' => 'Continuous surface-enhanced raman-spectroscopy for the detection of trace organic pollutants in aqueous systems', 'journal' => 'J. Mol. Struct.', 'journal_id' => '0628', 'fadid' => 'JMRS1997V0410P00539', 'year' => '1997', 'volume' => '410', 'issue' => '1', 'startpage' => '539', 'endpage' => '542', 'type' => 'Journal Article', 'analytes' => ';2050;1583;1774;0504;1478;', 'matrices' => '', 'techniques' => ';0410;', 'keywords' => '', 'abstract' => 'In Raman spectroscopy, detection limits for organic pollutants in water can be lowered by several orders of magnitude when surface enhanced techniques are applied. In this work a continuous analytical device based on flow injection analysis using SERS detection is proposed. This system was tested with model analytes such as pyridine and nicotinic acid as well as several pesticides (carbendazim, metazachlorine). (C) 1997 Elsevier Science B.V. 22 References', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'No', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '3', 'urlcheck' => '2014-10-12 09:49:43', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => null, 'pauthor' => 'Weissenbacher, N.', 'address' => 'Institute for Analytical Chemistry, Vienna University of Technology, Getreidemarkt 9/151, A-1060, Vienna, Austria', 'email' => 'NA', 'notes' => null, 'url' => '10.1016/S0022-2860(96)09531-2', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Continuous surface-enhanced raman-spectroscopy for the detection of trace organic pollutants in aqueous systems', J. Mol. Struct., 1997 410(1) 539-542', 'firstchar' => 'C', 'twochars' => 'Co', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array([maximum depth reached]) ), (int) 10 => array( 'id' => '014097', 'authors' => 'Sawata, S.;Kai, E.;Ikebukuro, K.;Iida, T.;Honda, T.;Karube, I.', 'authorsweb' => 'Sawata S, Kai E, Ikebukuro K, Iida T, Honda T, Karube I.', 'title' => 'Novel detection system of flow injection analysis. 1. The existence of significant relation between secondary structure of DNA and sensitivity in signal detection', 'journal' => 'Nucleic Acids Symp. Ser.', 'journal_id' => '1346', 'fadid' => 'NASS1997V0037P00247', 'year' => '1997', 'volume' => '37', 'issue' => '1', 'startpage' => '247', 'endpage' => '248', 'type' => 'Journal Article', 'analytes' => ';0847;', 'matrices' => '', 'techniques' => ';0410;', 'keywords' => ';0401;', 'abstract' => 'Polymerase Chain Reaction (PCR) products were detected quantitatively using a flow injection type sensor, based on Surface Plasmon Resonance (SPR). We used asymmetric PCR to amplify the two kinds of products; their DNA lengths are different. This novel design permitted us not only to detect PCR products with high-sensitivity, but also to develop a rapid DNA detection system for the sense of the genetic pathogen.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'No', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '0', 'urlcheck' => '2014-10-13 19:09:08', 'urlcheckcode' => 'HTTP/1.1 200 OK', 'pauthor_id' => '00227', 'pauthor' => '!Karube, I.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => 'www.ncbi.nlm.nih.gov/pubmed/9586092', 'urltype' => 'absurl', 'gotpdf' => 'no', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Novel detection system of flow injection analysis. 1. The existence of significant relation between secondary structure of DNA and sensitivity in signal detection', Nucleic Acids Symp. Ser., 1997 37(1) 247-248', 'firstchar' => 'N', 'twochars' => 'No', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 11 => array( 'id' => '014429', 'authors' => 'Storey, J.M.E.;Barber, T.E.;Shelton, R.D.;Wachter, E.A.;Carron, K.T.;Jiang, Y.', 'authorsweb' => 'NA', 'title' => 'Applications of surface-enhanced Raman scattering (SERS) to chemical detection', 'journal' => 'Spectroscopy', 'journal_id' => '0489', 'fadid' => 'STRS1995V0010P00020', 'year' => '1995', 'volume' => '10', 'issue' => '3', 'startpage' => '20', 'endpage' => '25', 'type' => 'Journal Article', 'analytes' => ';0716;1186;1582;', 'matrices' => ';0343;0372;', 'techniques' => ';0410;', 'keywords' => ';0389;', 'abstract' => 'lectrochemical surface-enhanced Raman spectrometry (SERS) was used to detect chlorinated hydrocarbons in ground water, in tobacco smoke and aqueous cyanide ions. Hybrid substrate SERS was used for the detection of organic compounds in liquid and gas phases, using a flow-through cell. The experimental protocols were described previously. (Appl Spectrosc., 1994, 48, 1265; Shelton et al., Ibid., 1994, 48, 1007; Wachter et al.,Ibid., 1995, 49, 193; and Barber et al., Ibid., 1994, 48, 1423). The detection limits for hydrocarbons in electrolytes were a few ppm; they were an order of magnitude higher in groundwater. No calibration data are given. The response to cyanide was linear for 10^-100 ppm. The detection limit for nicotine in smoke was 15 ppb (no calibration data given). The advantages and limitations of the methods are discussed and future research directions are outlined.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'No', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '0', 'urlcheck' => '2006-05-20 19:26:31', 'urlcheckcode' => '', 'pauthor_id' => null, 'pauthor' => 'NA', 'address' => 'Oak Ridge Natl. Lab., Health Sci. Res. Div., Oak Ridge, TN 37831-6113 UK', 'email' => 'NA', 'notes' => null, 'url' => 'NA', 'urltype' => 'NA', 'gotpdf' => 'no', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Applications of surface-enhanced Raman scattering (SERS) to chemical detection', Spectroscopy, 1995 10(3) 20-25', 'firstchar' => 'A', 'twochars' => 'Ap', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array( [maximum depth reached] ), 'Keyword' => array( [maximum depth reached] ) ), (int) 12 => array( 'id' => '014511', 'authors' => 'Fujiwara, K.;Ito, S.', 'authorsweb' => 'Kitao Fujiwara and Seiji Ito', 'title' => 'Application of waveguiding in solutions for absorption and fluorescence spectrometry', 'journal' => 'Trends Anal. Chem.', 'journal_id' => '0653', 'fadid' => 'TRAC1991V0010P00184', 'year' => '1991', 'volume' => '10', 'issue' => '6', 'startpage' => '184', 'endpage' => '190', 'type' => 'Journal Article', 'analytes' => '', 'matrices' => '', 'techniques' => ';0252;0410;', 'keywords' => ';0043;0167;0521;', 'abstract' => 'Several waveguiding techniques in solution are presented in the context of spectrometry. Although light propagation in dense media via total reflection is a commonly used technique with optical fibers, it is also possible in solutions. This is very useful for improving both sensitivity and spatial resolution, especially in absorption and fluorescence spectrometry, by elongating the optical path length and controlling the angle of incidence of light in the measurement area of a sample. ', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'No', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '26', 'urlcheck' => '2014-10-12 02:21:14', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => null, 'pauthor' => 'NA', 'address' => 'NA', 'email' => 'NA', 'notes' => null, 'url' => '10.1016/0165-9936(91)85019-N', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Application of waveguiding in solutions for absorption and fluorescence spectrometry', Trends Anal. Chem., 1991 10(6) 184-190', 'firstchar' => 'A', 'twochars' => 'Ap', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array([maximum depth reached]), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 13 => array( 'id' => '014536', 'authors' => 'Vo Dinh, T.', 'authorsweb' => 'Tuan Vo-Dinh', 'title' => 'Surface enhanced raman spectroscopy using metallic nanostructures', 'journal' => 'Trends Anal. Chem.', 'journal_id' => '0653', 'fadid' => 'TRAC1998V0017P00557', 'year' => '1998', 'volume' => '17', 'issue' => '8-9', 'startpage' => '557', 'endpage' => '582', 'type' => 'Journal Article', 'analytes' => '', 'matrices' => ';0404;0093;', 'techniques' => ';0410;', 'keywords' => ';0043;0215;0389;', 'abstract' => 'This article provides an overview of the development and application of the surface-enhanced Raman scattering (SERS) techniques using metal-coated nanostructures on solid substrates, An introduction to theoretical principles of the SERS effect and the different SERS-active media is presented. The focus is on nanostructured solid substrates and their practical applications in chemical, environmental and biomedical areas. Specific examples of analytical techniques, instruments and sensors developed in the author's laboratory will be discussed to illustrate the usefulness and potential of the SERS techniques.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'No', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '38', 'urlcheck' => '2014-10-12 10:04:45', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => null, 'pauthor' => 'Vo Dinh, T.', 'address' => 'Advanced Monitoring Development Group, Life Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6101, USA', 'email' => 'NA', 'notes' => null, 'url' => '10.1016/S0165-9936(98)00069-7', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Surface enhanced raman spectroscopy using metallic nanostructures', Trends Anal. Chem., 1998 17(8-9) 557-582', 'firstchar' => 'S', 'twochars' => 'Su', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array([maximum depth reached]), 'Matrix' => array( [maximum depth reached] ), 'Keyword' => array( [maximum depth reached] ) ), (int) 14 => array( 'id' => '014560', 'authors' => 'Ruperez, A.;Montes, R.;Laserna, J.J.', 'authorsweb' => 'A. Rupérez, R. Montes and J. J. Laserna*', 'title' => 'Identification of stimulant drugs by surface-enhanced raman spectrometry on colloidal silver', 'journal' => 'Vib. Spectrosc.', 'journal_id' => '0655', 'fadid' => 'VIBS1991V0002P00145', 'year' => '1991', 'volume' => '2', 'issue' => '2-3', 'startpage' => '145', 'endpage' => '154', 'type' => 'Journal Article', 'analytes' => ';0862;', 'matrices' => '', 'techniques' => ';0032;0055;0410;', 'keywords' => '', 'abstract' => 'The surface-enhanced Raman (SER) spectra of stimulant drugs, including mefenorex, pentylenetetrazole, -amphetamine and pemoline, were obtained on colloidal silver. Silver colloids are prepared in a single step, at room temperature, by chemical reduction of Ag+ with sodium tetrahydroborate. Spectra are recorded using drug concentrations at the g mL-1 level. Individual drugs can be identified by characteristic vibrational bands. The SER spectrum of human urine and that of human urine spiked with mixtures of stimulant drugs are reported.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'No', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '7', 'urlcheck' => '2014-10-12 02:21:21', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '01097', 'pauthor' => '!Laserna, J.J.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1016/0924-2031(91)85020-N', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Identification of stimulant drugs by surface-enhanced raman spectrometry on colloidal silver', Vib. Spectrosc., 1991 2(2-3) 145-154', 'firstchar' => 'I', 'twochars' => 'Id', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array([maximum depth reached]) ) ) ) $c = array( 'id' => '014429', 'authors' => 'Storey, J.M.E.;Barber, T.E.;Shelton, R.D.;Wachter, E.A.;Carron, K.T.;Jiang, Y.', 'authorsweb' => 'NA', 'title' => 'Applications of surface-enhanced Raman scattering (SERS) to chemical detection', 'journal' => 'Spectroscopy', 'journal_id' => '0489', 'fadid' => 'STRS1995V0010P00020', 'year' => '1995', 'volume' => '10', 'issue' => '3', 'startpage' => '20', 'endpage' => '25', 'type' => 'Journal Article', 'analytes' => ';0716;1186;1582;', 'matrices' => ';0343;0372;', 'techniques' => ';0410;', 'keywords' => ';0389;', 'abstract' => 'lectrochemical surface-enhanced Raman spectrometry (SERS) was used to detect chlorinated hydrocarbons in ground water, in tobacco smoke and aqueous cyanide ions. Hybrid substrate SERS was used for the detection of organic compounds in liquid and gas phases, using a flow-through cell. The experimental protocols were described previously. (Appl Spectrosc., 1994, 48, 1265; Shelton et al., Ibid., 1994, 48, 1007; Wachter et al.,Ibid., 1995, 49, 193; and Barber et al., Ibid., 1994, 48, 1423). The detection limits for hydrocarbons in electrolytes were a few ppm; they were an order of magnitude higher in groundwater. No calibration data are given. The response to cyanide was linear for 10^-100 ppm. The detection limit for nicotine in smoke was 15 ppb (no calibration data given). The advantages and limitations of the methods are discussed and future research directions are outlined.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'No', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '0', 'urlcheck' => '2006-05-20 19:26:31', 'urlcheckcode' => '', 'pauthor_id' => null, 'pauthor' => 'NA', 'address' => 'Oak Ridge Natl. Lab., Health Sci. Res. Div., Oak Ridge, TN 37831-6113 UK', 'email' => 'NA', 'notes' => null, 'url' => 'NA', 'urltype' => 'NA', 'gotpdf' => 'no', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Applications of surface-enhanced Raman scattering (SERS) to chemical detection', Spectroscopy, 1995 10(3) 20-25', 'firstchar' => 'A', 'twochars' => 'Ap', 'CitationsTechnique' => array( 'id' => '015181', 'citation_id' => '014429', 'technique_id' => '0410' ), 'Analyte' => array( (int) 0 => array( 'id' => '00716', 'name' => 'Cyanide', 'iupac_name' => 'cyanide', 'casrn' => '57-12-5', 'synonyms' => 'Cyanide; Cyanide anion; Cyanide (CN-); Cyanide ; Cyanides, inorganic, n.o.s.; Cyanides; Isocyanide', 'total' => '70', 'inchi' => 'InChI=1S/CN/c1-2/q-1', 'inchikey' => 'XFXPMWWXUTWYJX-UHFFFAOYSA-N', 'formula' => 'CN-', 'oxstate' => '-1', 'url' => '', 'charge' => '-1', 'class1' => 'Inorganic compound', 'class2' => 'NA', 'class3' => 'NA', 'class4' => 'Anion', 'class5' => 'NA', 'isgroup' => '', 'checked' => 'yes', 'citation_count' => '0', 'updated' => '2015-10-23 09:55:56', 'first' => 'C', 'nametotal' => 'Cyanide**70', 'AnalytesCitation' => array( [maximum depth reached] ) ), (int) 1 => array( 'id' => '01186', 'name' => 'Hydrocarbons, halo', 'iupac_name' => '', 'casrn' => '', 'synonyms' => '', 'total' => '1', 'inchi' => '', 'inchikey' => '', 'formula' => '', 'oxstate' => null, 'url' => '', 'charge' => null, 'class1' => '', 'class2' => '', 'class3' => '', 'class4' => '', 'class5' => '', 'isgroup' => 'no', 'checked' => 'no', 'citation_count' => '0', 'updated' => '2015-12-11 09:53:17', 'first' => 'H', 'nametotal' => 'Hydrocarbons, halo**1', 'AnalytesCitation' => array( [maximum depth reached] ) ), (int) 2 => array( 'id' => '01582', 'name' => 'Nicotine', 'iupac_name' => '3-[(2S)-1-methylpyrrolidin-2-yl]pyridine', 'casrn' => '54-11-5', 'synonyms' => 'nicotine, (S)-Nicotine, Nicoderm, (S)-(-)-Nicotine, (-)-Nicotine, L-Nicotine, Fumetobac, Nicotrol, Nicoderm Cq, (S)-3-(1-methylpyrrolidin-2-yl)pyridine, 3-[(2S)-1-methylpyrrolidin-2-yl]pyridine, Flux MAAG, Ortho N-4 dust, Ortho N-5 dust, XL All Insecticide, Niagara P.A. dust, Habitrol, Destruxol orchid spray, Micotine, Prostep, NICOTINE AND SALTS, Nicotrol Inhaler, Nicotrol NS, Nikotin [German], 54-11-5, Nikotyna [Polish], Ortho N-4 and N-5 dusts, 3-(1-Methyl-2-pyrrolidinyl)pyridine, Nicocide, Nicotin, Tendust, L-3-(1-Methyl-2-pyrrolidyl)pyridine, Nicotina [Italian], Black leaf, Nico-dust, (-)-3-(1-Methyl-2-pyrrolidyl)pyridine, 3-(N-Methylpyrollidino)pyridine, 3-(N-Methylpyrrolidino)pyridine, Emo-nik, Nico-Fume, Nicotine alkaloid, Caswell No. 597, Mach-Nic, (S)-3-(1-Methyl-2-pyrrolidinyl)pyridine, Nic-Sal, Nicotine [BSI:ISO], NSC 5065, Tetrahydronicotyrine, DL-, β-Pyridyl-α-N-methylpyrrolidine, Pyridine, 3-(1-methyl-2-pyrrolidinyl)-, (S)-, RCRA waste no. P075, RCRA waste number P075, UNII-6M3C89ZY6R, Nicotina, Nikotyna, CCRIS 1637, Nicotine (compounds related to), CHEBI:17688, HSDB 1107, 1-Methyl-2-(3-pyridyl)pyrrolidine, SNICXCGAKADSCV-JTQLQIEISA-N, EINECS 200-193-3, 1-Methyl-2-(3-pyridiyl)pyrrolidine, ENT 3,424, UN1654, (-)-3-(N-Methylpyrrolidino)pyridine, 3-(1-Methyl-2-pyrollidinyl)pyridine, 3-(2-(N-methylpyrrolidinyl))pyridine, EPA Pesticide Chemical Code 056702, β-Pyridyl-α-N-methyl pyrrolidine, Pyrrolidine, 1-methyl-2-(3-pyridal)-, AI3-03424, DSSTox_CID_930, NICOTINE-L (BASE), Pyridine, 3-(tetrahydro-1-methylpyrrol-2-yl), destruxol, DSSTox_RID_75874, DSSTox_GSID_20930, fumeto bac, Nictoine patch, Nicoderm Patch, Nicotine Patch, Nicotine polacrilex, Habitrol (TN), Nicotine (USP), Nicotine [USAN], L(-)-nicotine, Transdermal Nicotine, Campbell's nico-soap, Nicotine-D salicylate, CAS-54-11-5, DL-tetrahydronicotyrine, CHEMBL3, (-)-Nicotine solution, 1uw6, 3-((2S)-1-methylpyrrolidin-2-yl)pyridine, AC1Q3ZOC, nicotine replacement patch, bmse000105, Pyridine, 3-((2S)-1-methyl-2-pyrrolidinyl)-, (-)-Nicotine, MLS001055457, MLS001335905, BIDD:GT0599, N3876_SIGMA, N5511_FLUKA, N5511_SIGMA, methyl-2-pyrrolidinyl)pyridine, 36733_RIEDEL, 46343_RIEDEL, AC1L3I79, 36733_FLUKA, 46343_FLUKA, Nicotine [UN1654] [Poison], (-)-Nicotine solution, MolPort-000-744-731, Nicorettereg, Nicotrolreg, BB_NC-0777, Nicabate, Niquitin, Tabazur, Exodus, δ-Nicotine, NSC97238, LS-202, PDSP1_000113, PDSP1_000465, PDSP2_000463, PDSP2_000555, 1-methyl-2-(3-pyridal)-pyrrolidene, SDCCGMLS-0066911.P001, NCGC00090693-01, NCGC00090693-02, NCGC00090693-03, NCGC00090693-04, NCGC00090693-05, NCGC00090693-06, NCGC00090693-07, CPD000059074, NCT, SAM002564224, SMR000059074, Nicorette, Nicotrol, (S)-3-(N-methylpyrrolidin-2-yl)pyridine, a-N-methylpyrrolidine, 3-N-methylpyrrolidine, R)-(+)-nicotine, (2S) 3-(1-Methyl-pyrrolidin-2-yl)-pyridine, a -N-methylpyrrolidine, C00745, D03365, Nicotine [USP:BAN], (-)-1-Methyl-2-(3-pyridyl)pyrrolidine, α-N-methylpyrrolidine, L(-)-Nicotine pestanal, Nicotine [UN1654], BRD-K05395900-322-02-1, 434F7990-3240-4A43-ACEC-E6CC1E495FA0, SCHEMBL20192, 6M3C89ZY6R, GTPL2585, (S)-(-)-NICOTINE, 3-[(2S)-1-METHYL-2-PYRROLIDINYL] PYRIDINE, BDBM82070, CTK8F2098, HMDB01934, HMS2230H17, HMS3259E16, Nicotine [UN1654] [Poison], 16760-37-5, Tox21_201814, Tox21_300174, SBB012359, 1-methyl-2-(3-pyridal)-Pyrrolidine, 3-(1-methyl-2-pyrrolidinyl)-Pyridine, CCG-204892, MCULE-8728421654, NC00577, NCGC00090693-08, NCGC00090693-09, NCGC00254095-01, NCGC00259363-01, Pyrrolidine, 1-methyl-2-(3-pyridyl)-, AJ-21117, AK114679, AN-24414, ST069320, CAS_29790-52-1, FT-0603228, (-)-β-Pyridyl-α-N-methylpyrrolidine, Pyridine, 3-(tetrahydro-1-methylpyrrol-2-yl), (S)-, I14-111388, Pyridine, 3-(1-methyl-2-pyrrolidinyl)-, (S)- (9CI), (-)-1-(1/4)x>>u-2-(3-ssAa currency>>u)ssA inverted question mark(c)Ie, 13890-81-8, 13890-82-9, 551-13-3', 'total' => '6', 'inchi' => 'InChI=1S/C10H14N2/c1-12-7-3-5-10(12)9-4-2-6-11-8-9/h2,4,6,8,10H,3,5,7H2,1H3', 'inchikey' => 'SNICXCGAKADSCV-JTQLQIEISA-N', 'formula' => 'C10H14N2', 'oxstate' => 'Zero', 'url' => '', 'charge' => '0', 'class1' => '', 'class2' => '', 'class3' => '', 'class4' => '', 'class5' => '', 'isgroup' => 'no', 'checked' => 'no', 'citation_count' => '0', 'updated' => '2015-12-11 16:50:57', 'first' => 'N', 'nametotal' => 'Nicotine**6', 'AnalytesCitation' => array( [maximum depth reached] ) ) ), 'Matrix' => array( (int) 0 => array( 'id' => '0343', 'label' => 'Smoke ', 'level1' => 'Commercial product', 'level2' => 'tobacco', 'level3' => 'smoke', 'level4' => '', 'level5' => '', 'synonyms' => '', 'total' => '1', 'url' => '', 'updated' => '2015-12-08 19:41:10', 'name' => 'Commercial product, tobacco, smoke', 'nametotal' => 'Commercial product, tobacco, smoke**1', 'first' => 'C', 'CitationsMatrix' => array( [maximum depth reached] ) ), (int) 1 => array( 'id' => '0372', 'label' => 'Environmental', 'level1' => 'Environmental', 'level2' => 'water', 'level3' => '', 'level4' => '', 'level5' => '', 'synonyms' => '', 'total' => '490', 'url' => '', 'updated' => '2015-12-09 21:04:43', 'name' => 'Environmental, water', 'nametotal' => 'Environmental, water**490', 'first' => 'E', 'CitationsMatrix' => array( [maximum depth reached] ) ) ), 'Keyword' => array( (int) 0 => array( 'id' => '0389', 'type' => 'Application', 'keyword' => 'Review', 'newKeyword' => '', 'synonyms' => '', 'fao' => '', 'total' => '897', 'first' => 'R', 'keytotal' => 'Review**897', 'CitationsKeyword' => array( [maximum depth reached] ) ) ) ) $i = (int) 11 $path = '' $a = '' $url = 'http://NA' $aus = 'Storey, J.M.E.;Barber, T.E.;Shelton, R.D.;Wachter, E.A.;Carron, K.T.;Jiang, Y.'include - APP/View/Elements/citation.ctp, line 40 View::_evaluate() - CORE/Cake/View/View.php, line 971 View::_render() - CORE/Cake/View/View.php, line 933 View::_renderElement() - CORE/Cake/View/View.php, line 1224 View::element() - CORE/Cake/View/View.php, line 418 include - APP/View/Techniques/view.ctp, line 52 View::_evaluate() - CORE/Cake/View/View.php, line 971 View::_render() - CORE/Cake/View/View.php, line 933 View::render() - CORE/Cake/View/View.php, line 473 Controller::render() - CORE/Cake/Controller/Controller.php, line 968 Dispatcher::_invoke() - CORE/Cake/Routing/Dispatcher.php, line 200 Dispatcher::dispatch() - CORE/Cake/Routing/Dispatcher.php, line 167 [main] - APP/webroot/index.php, line 109
"Application Of Waveguiding In Solutions For Absorption And Fluorescence Spectrometry"
Trends Anal. Chem.
1991 Volume 10, Issue 6 Pages 184-190
Notice (8): Undefined variable: uid [APP/View/Elements/citation.ctp, line 40]Kitao Fujiwara and Seiji ItoCode Context?>
<?php
if($uid!='') {
$viewFile = '/home/stuchalk/public_html/fad/app/View/Elements/citation.ctp' $dataForView = array( 'data' => array( 'Technique' => array( 'id' => '0410', 'label' => 'Raman', 'level1' => 'Raman', 'level2' => 'surface enhanced', 'level3' => '', 'level4' => '', 'level5' => '', 'synonyms' => 'Surface enhanced raman spectroscopy,SERS', 'champ' => '', 'total' => '15', 'updated' => '0000-00-00 00:00:00', 'name' => 'Raman, surface enhanced', 'nametotal' => 'Raman, surface enhanced**15', 'first' => 'R' ), 'Citation' => array( (int) 0 => array( [maximum depth reached] ), (int) 1 => array( [maximum depth reached] ), (int) 2 => array( [maximum depth reached] ), (int) 3 => array( [maximum depth reached] ), (int) 4 => array( [maximum depth reached] ), (int) 5 => array( [maximum depth reached] ), (int) 6 => array( [maximum depth reached] ), (int) 7 => array( [maximum depth reached] ), (int) 8 => array( [maximum depth reached] ), (int) 9 => array( [maximum depth reached] ), (int) 10 => array( [maximum depth reached] ), (int) 11 => array( [maximum depth reached] ), (int) 12 => array( [maximum depth reached] ), (int) 13 => array( [maximum depth reached] ), (int) 14 => array( [maximum depth reached] ) ) ), 'c' => array( 'id' => '014511', 'authors' => 'Fujiwara, K.;Ito, S.', 'authorsweb' => 'Kitao Fujiwara and Seiji Ito', 'title' => 'Application of waveguiding in solutions for absorption and fluorescence spectrometry', 'journal' => 'Trends Anal. Chem.', 'journal_id' => '0653', 'fadid' => 'TRAC1991V0010P00184', 'year' => '1991', 'volume' => '10', 'issue' => '6', 'startpage' => '184', 'endpage' => '190', 'type' => 'Journal Article', 'analytes' => '', 'matrices' => '', 'techniques' => ';0252;0410;', 'keywords' => ';0043;0167;0521;', 'abstract' => 'Several waveguiding techniques in solution are presented in the context of spectrometry. Although light propagation in dense media via total reflection is a commonly used technique with optical fibers, it is also possible in solutions. This is very useful for improving both sensitivity and spatial resolution, especially in absorption and fluorescence spectrometry, by elongating the optical path length and controlling the angle of incidence of light in the measurement area of a sample. ', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'No', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '26', 'urlcheck' => '2014-10-12 02:21:14', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => null, 'pauthor' => 'NA', 'address' => 'NA', 'email' => 'NA', 'notes' => null, 'url' => '10.1016/0165-9936(91)85019-N', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Application of waveguiding in solutions for absorption and fluorescence spectrometry', Trends Anal. Chem., 1991 10(6) 184-190', 'firstchar' => 'A', 'twochars' => 'Ap', 'CitationsTechnique' => array( 'id' => '015261', 'citation_id' => '014511', 'technique_id' => '0410' ), 'Analyte' => array(), 'Matrix' => array(), 'Keyword' => array( (int) 0 => array( [maximum depth reached] ), (int) 1 => array( [maximum depth reached] ), (int) 2 => array( [maximum depth reached] ) ) ), 'i' => (int) 12 ) $data = array( 'Technique' => array( 'id' => '0410', 'label' => 'Raman', 'level1' => 'Raman', 'level2' => 'surface enhanced', 'level3' => '', 'level4' => '', 'level5' => '', 'synonyms' => 'Surface enhanced raman spectroscopy,SERS', 'champ' => '', 'total' => '15', 'updated' => '0000-00-00 00:00:00', 'name' => 'Raman, surface enhanced', 'nametotal' => 'Raman, surface enhanced**15', 'first' => 'R' ), 'Citation' => array( (int) 0 => array( 'id' => '006258', 'authors' => 'Cabalin, L.M.;Ruperez, A.;Laserna, J.J.', 'authorsweb' => 'L. M. Cabalín, A. Rupérez and J. J. Laserna*', 'title' => 'Flow injection analysis and liquid chromatography: surface enhanced Raman spectrometry detection by using a windowless flow cell', 'journal' => 'Anal. Chim. Acta', 'journal_id' => '0584', 'fadid' => 'ANCA1996V0318P00203', 'year' => '1996', 'volume' => '318', 'issue' => '2', 'startpage' => '203', 'endpage' => '210', 'type' => 'Journal Article', 'analytes' => ';0146;0199;2037;1732;2402;', 'matrices' => '', 'techniques' => ';0032;0410;', 'keywords' => ';0167;0302;', 'abstract' => 'A windowless flow cell was developed for detection by surface-enhanced Raman spectrometry (SERS) in FIA and LC. The flow cell consisted of two stainless-steel tubes (0.16 mm i.d.; 1.4 mm o.d.) mounted on an Al frame so that the ends were ~e;1.6 mm apart. The liquid draining from the upper to the lower tube was supported by surface tension and formed a column (1.4 mm diameter). The mobile phase from the FIA or LC was merged with a silver hydrosol stream then propelled in to the flow cell. The Raman spectra were recorded using a focussed Ar ion laser beam (488 nm; 85 mW) as the source. The performance of the flow cell was optimized using five drugs (amiloride, amiphenazole, 2-mercaptopyridine, pemoline and triamterene) as model analytes. The maximum SERS signal was obtained with flow rates of 0.075 ml/ml and 1.5 ml/ml for the mobile phase and silver hydrosol, respectively. The reproducibility (n = 5) of the FIA-SERS system for the determination of 625 ng amiloride was 1%.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '1', 'urlcheck' => '2014-10-11 16:18:55', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '01097', 'pauthor' => '!Laserna, J.J.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1016/0003-2670(95)00441-6', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Flow injection analysis and liquid chromatography: surface enhanced Raman spectrometry detection by using a windowless flow cell', Anal. Chim. Acta, 1996 318(2) 203-210', 'firstchar' => 'F', 'twochars' => 'Fl', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 1 => array( 'id' => '006451', 'authors' => 'Somsen, G.W.;Coulter, S.K.;Gooijer, C.;Velthorst, N.H.;Brinkman, U.A.T.', 'authorsweb' => 'G. W. Somsen*, S. K. Coulter, C. Gooijer, N. H. Velthorst and U. A. Th. Brinkman', 'title' => 'Coupling of column liquid-chromatography and surface-enhanced resonance raman-spectroscopy via a thin-layer chromatographic plate', 'journal' => 'Anal. Chim. Acta', 'journal_id' => '0584', 'fadid' => 'ANCA1997V0349P00189', 'year' => '1997', 'volume' => '349', 'issue' => '1-3', 'startpage' => '189', 'endpage' => '197', 'type' => 'Journal Article', 'analytes' => '', 'matrices' => '', 'techniques' => ';0410;0038;', 'keywords' => ';0339;0302;', 'abstract' => 'Surface-enhanced resonance Raman (SERR) spectroscopy was used to characterize compounds separated by column liquid chromatography (LC). Three percent of the effluent from a conventional-size LC column were immobilized on a moving thin-layer chromatography (TLC) plate using a spray-jet solvent-elimination interface. Next, colloidal silver was applied to the analyte spots and in situ SERR spectra were recorded with a multichannel micro-Raman spectrometer. Storage of the LC effluent avoids the need to use a continuous-flow of colloidal silver and, in principle allows compounds to be detected independently of LC conditions like eluent composition and flow rate. Using dyes as test compounds, the method was optimized and aspects were studied such as type of TLC plate, LC separation of the dyes, preservation of LC integrity during immobilization, and SERR analysis of the deposited compounds. With a silica TLC plate as deposition substrate, good-quality and characteristic SERR spectra were obtained for the dyes which were separated on a cyanoproyl-modified silica LC column with methanol-water containing the volatile additives ammonium acetate and triethylamine as eluent. The minimum identifiable concentration of the dyes was about 250 ng mL-1 (750 pg applied on the plate). For some strong Raman scatterers such as nile blue and pararosaniline, the major spectral peaks could be observed down to concentrations of 25 ng mL-1. 36 References', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '3', 'urlcheck' => '2014-10-11 16:23:46', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '01300', 'pauthor' => '!Somsen, G.W.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1016/S0003-2670(97)00011-1', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Coupling of column liquid-chromatography and surface-enhanced resonance raman-spectroscopy via a thin-layer chromatographic plate', Anal. Chim. Acta, 1997 349(1-3) 189-197', 'firstchar' => 'C', 'twochars' => 'Co', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array([maximum depth reached]), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 2 => array( 'id' => '006887', 'authors' => 'Laserna, J.J.;Berthod, A.;Winefordner, J.D.', 'authorsweb' => 'J. J. Laserna, A. Berthod and J. D. Winefordner ', 'title' => 'Quantitative analysis by surface-enhanced raman spectrometry on silver hydrosols in a flow injection system', 'journal' => 'Talanta', 'journal_id' => '0569', 'fadid' => 'TALT1987V0034P00745', 'year' => '1987', 'volume' => '34', 'issue' => '8', 'startpage' => '745', 'endpage' => '747', 'type' => 'Journal Article', 'analytes' => ';0056;0401;', 'matrices' => '', 'techniques' => ';0410;', 'keywords' => ';0457;', 'abstract' => 'The application of surface-enhanced Raman scattering (SERS) in quantitative analysis is demonstrated by the determination of 4-aminobenzoic acid(I) and acridin-9-amine(II) on silver suspensions by SERS in a flow injection system. Two peristaltic pumps were used to mix 2 mM NaBH4 and 1 mM AgNO3 and pump the resulting silver suspension through the flow injection analysis system. The flow injection analysis system is described (with diagram). The sample solution contained I in aqueous 40% ethanol or II in ethanol. The calibration graph was rectilinear for 4 to 100 µg mL-1 of I, and the coefficient of variation (n = 6) was 3.2%. The system required cleaning with 40% HNO3 after 10 to 15 injections.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '7', 'urlcheck' => '2014-10-11 14:54:34', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '01400', 'pauthor' => '!Winefordner, J.D.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1016/0039-9140(87)80234-5', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Quantitative analysis by surface-enhanced raman spectrometry on silver hydrosols in a flow injection system', Talanta, 1987 34(8) 745-747', 'firstchar' => 'Q', 'twochars' => 'Qu', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 3 => array( 'id' => '007977', 'authors' => 'Weissenbacher, N.;Lendl, B.;Frank, J.;Wanzenbock, H.D.;Kellner, R.', 'authorsweb' => 'N. Weißenbacher, B. Lendl, J. Frank, H. D. Wanzenböck and R. Kellner', 'title' => 'Surface enhanced raman spectroscopy as a molecular specific detection system in aqueous flow-through systems', 'journal' => 'Analyst', 'journal_id' => '0864', 'fadid' => 'ANAL1998V0123P01057', 'year' => '1998', 'volume' => '123', 'issue' => '5', 'startpage' => '1057', 'endpage' => '1060', 'type' => 'Journal Article', 'analytes' => ';1583;', 'matrices' => '', 'techniques' => ';0410;0409;', 'keywords' => ';0446;0167;0043;0258;', 'abstract' => 'Surface enhanced Raman scattering (SERS) is proposed as a mol. specific technique for direct measurements of organic molecules in aqueous solutions An FT-Raman spectrometer was interfaced with a flow injection manifold operated in the stopped-flow mode enabling reproducible collection of SERS spectra due to the automation of the anal. procedure. For SERS a solid state substrate placed in a newly developed flow-cell was used. Multiple measurements on one single SERS substrate were achieved by rinsing the substrate with reagents such as 3 M KCl or 0.1 M NaOH solutions prior to the next measurements to remove retained analytes from the surface of the SERS substrate. This procedure allowed for improved precision as compared with a conventional batch approach. Quant. aspects were studied by establishing a calibration curve for nicotinic acid which was used as a model analyte. A linear dependence of the recorded SERS intensities from the logarithm of the analyte concentration. was obtained throughout the whole studied concentration. range (0.001-0.1 M, correlation coefficient r2 = 0.97). The standard deviation of the method sx0 is 0.122 mM and detection limit 1.7 mM, respectively. The results demonstrate the potential of SERS spectroscopy to be used as a molecular specific detector in aqueous flow systems such as flow injection anal.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '5', 'urlcheck' => '2014-10-12 09:52:18', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '00241', 'pauthor' => '!Lendl, B.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1039/a705837c', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Surface enhanced raman spectroscopy as a molecular specific detection system in aqueous flow-through systems', Analyst, 1998 123(5) 1057-1060', 'firstchar' => 'S', 'twochars' => 'Su', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 4 => array( 'id' => '008516', 'authors' => 'Force, R.K.', 'authorsweb' => 'R. Ken Force', 'title' => 'Surface-enhanced raman spectroscopy at a silver electrode as a detector in flow injection analysis', 'journal' => 'Anal. Chem.', 'journal_id' => '0499', 'fadid' => 'ANCH1988V0060P01987', 'year' => '1988', 'volume' => '60', 'issue' => '18', 'startpage' => '1987', 'endpage' => '1989', 'type' => 'Journal Article', 'analytes' => '', 'matrices' => '', 'techniques' => ';0214;0410;', 'keywords' => '', 'abstract' => 'A Ag-ring reference (diameter 5 mm) and a Ag-disc working electrode (diameter 3 mm) were sealed 1 mm apart in a Pyrex tube (o.d. 7 mm) and polished smooth. The Ag ring was anodized at 0.4 V (vs. a SCE) in 0.1 M KCl to produce a Ag - AgCl reference electrode with a potential of ~0.190 to ~0.200 V (vs. a NHE) in the 0.1 M KCl used as mobile phase and supporting electrolyte. The apparatus was applied in flow injection analysis for 50.0 mM pyridine (1 mL injections) in KCl flowing at 2 mL min-1. The potential was held at -0.6 V. Raman spectra were recorded from 990 to 1050 cm-1 in 2-cm-1 steps. A detection limit of ~250 nM was achieved. A Ag-ring reference (diameter 5 mm) and a Ag-disc working electrode (diameter 3 mm) were sealed 1 mm apart in a Pyrex tube (o.d. 7 mm) and polished smooth.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '0', 'urlcheck' => '2014-10-11 18:35:15', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '00965', 'pauthor' => '!Force, R.K.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1021/ac00169a033', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Surface-enhanced raman spectroscopy at a silver electrode as a detector in flow injection analysis', Anal. Chem., 1988 60(18) 1987-1989', 'firstchar' => 'S', 'twochars' => 'Su', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array([maximum depth reached]), 'Matrix' => array([maximum depth reached]), 'Keyword' => array([maximum depth reached]) ), (int) 5 => array( 'id' => '008566', 'authors' => 'Pothier, N.J.;Force, R.K.', 'authorsweb' => 'Neil J. Pothier and R. Ken Force', 'title' => 'Surface-enhanced raman spectroscopy at a silver electrode as a detection system in flowing streams', 'journal' => 'Anal. Chem.', 'journal_id' => '0499', 'fadid' => 'ANCH1990V0062P00678', 'year' => '1990', 'volume' => '62', 'issue' => '7', 'startpage' => '678', 'endpage' => '680', 'type' => 'Journal Article', 'analytes' => ';0064;2356;0747;', 'matrices' => '', 'techniques' => ';0410;0210;0038;', 'keywords' => ';0276;0446;0109;', 'abstract' => 'A three-electrode surface-enhanced Raman spectroscopy detector, with a Ag working electrode, Pt foil auxiliary electrode and SCE reference and a cell volume of 30 µL, was evaluated for use with HPLC and flow injection analysis. In a flowing system, the analyte is rapidly removed from the electrode surface in 10 s, and spectra was obtained in 5 s with an optical multichannel analyzer.. Under stopped-flow conditions, detection limits were 175, 233 and 211 pmol for adenine, thymine and cytosine, respectively.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '3', 'urlcheck' => '2014-10-11 18:35:47', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '00965', 'pauthor' => '!Force, R.K.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1021/ac00206a005', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Surface-enhanced raman spectroscopy at a silver electrode as a detection system in flowing streams', Anal. Chem., 1990 62(7) 678-680', 'firstchar' => 'S', 'twochars' => 'Su', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 6 => array( 'id' => '008582', 'authors' => 'Ni, F.;Sheng, R.S.;Cotton, T.M.', 'authorsweb' => 'Fan Ni, Rongsheng Sheng, and Therese M. Cotton', 'title' => 'Flow injection analysis and real-time detection of RNA bases by surface-enhanced Raman spectroscopy', 'journal' => 'Anal. Chem.', 'journal_id' => '0499', 'fadid' => 'ANCH1990V0062P01958', 'year' => '1990', 'volume' => '62', 'issue' => '18', 'startpage' => '1958', 'endpage' => '1963', 'type' => 'Journal Article', 'analytes' => ';0365;', 'matrices' => '', 'techniques' => ';0410;0038;', 'keywords' => ';0216;0320;0302;', 'abstract' => 'Surface-enhanced Raman scattering (SERS) spectroscopy has been successfully interfaced with a flow injection analysis system to detect RNA bases in real time. Four of the major base components of RNA, uracil, cytosine, adenine, and guanine, were introduced into the flow injection system and were mixed with a Ag sol prior to SERS measurements. Several experimental parameters including pH, temperature, flow rate, and tubing materials were examined, and their impact on the SERS spectra is presented here. The feasibility of interfacing flow injection based SERS detection methods with liquid or high performance liquid chromatography for the detection of individual components in a complex mixture is also assessed.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '2', 'urlcheck' => '2014-10-11 18:36:03', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => null, 'pauthor' => 'Cotton, T.M.', 'address' => 'Department of Chemistry, Iowa State University, Ames, Iowa 50011 USA', 'email' => 'NA', 'notes' => null, 'url' => '10.1021/ac00217a012', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Flow injection analysis and real-time detection of RNA bases by surface-enhanced Raman spectroscopy', Anal. Chem., 1990 62(18) 1958-1963', 'firstchar' => 'F', 'twochars' => 'Fl', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 7 => array( 'id' => '009344', 'authors' => 'Laserna, J.J.;Berthod, A.;Winefordner, J.D.', 'authorsweb' => 'J. J. Laserna, A. Berthod and J. D. Winefordner*', 'title' => 'Evaluation and optimization of experimental conditions for surface-enhanced raman detection of analytes in flow injection analysis', 'journal' => 'Microchem. J.', 'journal_id' => '0639', 'fadid' => 'MCHJ1988V0038P00125', 'year' => '1988', 'volume' => '38', 'issue' => '1', 'startpage' => '125', 'endpage' => '126', 'type' => 'Journal Article', 'analytes' => ';0399;0055;', 'matrices' => '', 'techniques' => ';0410;', 'keywords' => ';0110;0302;', 'abstract' => 'The Raman instrumentation included a 100-mW Ar ion laser operated at 514.5 nm, a double monochromator and a cooled Hamamatsu R-928 photomultiplier tube with photon counting system as the detector. Vertically polarized light was used, with right-angle geometry for Raman sampling and a long-wave-pass glass filter to suppress Rayleigh-scattered light. Spectra were obtained by single scans. Flow streams of 1 mM AgNO3 and 2 mM NaBH4 were merged to form a silver hydrosol matrix, and 4-aminobenzoic acid(I) and acridin-9-amine were used successfully as test analytes. The detector flow-cell was a silica tube (3 mm x 0.5 mm;~0.6 µL). For maximum signal response with I, the total flow rate was 0.7 mL min-1 and the pH was adjusted with HNO3 to 3.2.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '14', 'urlcheck' => '2014-10-12 00:26:48', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '01400', 'pauthor' => '!Winefordner, J.D.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1016/0026-265X(88)90011-2', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Evaluation and optimization of experimental conditions for surface-enhanced raman detection of analytes in flow injection analysis', Microchem. J., 1988 38(1) 125-126', 'firstchar' => 'E', 'twochars' => 'Ev', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 8 => array( 'id' => '010331', 'authors' => 'Gouveia, V.J.P.;Gutz, I.G.R.;Rubim, J.C.', 'authorsweb' => 'Vitor J. P. Gouveia, Ivano G. Gutz and Joel C. Rubim*', 'title' => 'New spectroelectrochemical cell for flow injection analysis and its application to the determination of iron(II) down to the femtomole level by surface-enhanced resonance Raman scattering (SERRS)', 'journal' => 'J. Electroanal. Chem.', 'journal_id' => '0709', 'fadid' => 'JECH1994V0371P00037', 'year' => '1994', 'volume' => '371', 'issue' => '1-2', 'startpage' => '37', 'endpage' => '42', 'type' => 'Journal Article', 'analytes' => ';1294;', 'matrices' => ';0404;', 'techniques' => ';0226;0410;', 'keywords' => '', 'abstract' => 'A principal feature of the cell (diagrams presented) is the in situ renewal of the surface-enhanced Raman-active Ag substratum. Before injection of the analyte, Ag+ are introduced, and Ag is electro-deposited on a vitreous-carbon electrode; after the Raman spectrum of the adsorbed analyte has been recorded, the Ag is removed by anodic stripping. Fe(II) was determined in a 130 µL injected sample as its tris(bipyridyl) complex, which exhibits both a resonance Raman effect when excited with Ar+ laser 514.5 nm radiation and surface-enhanced Raman scattering when adsorbed on Ag. The calibration graph was sigmoidal, but usable for 10 nM-10 µM-Fe(II), and the detection limit was 1 nM, which represented detection of Fe(II) at the femtomole level.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '13', 'urlcheck' => '2014-10-12 09:04:46', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => null, 'pauthor' => 'Rubim, J.C.', 'address' => 'Institututo de Química da Universidade de São Paulo C.P.20780, 01498, São Paulo, SP Brazil', 'email' => 'NA', 'notes' => null, 'url' => '10.1016/0022-0728(93)03220-J', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''New spectroelectrochemical cell for flow injection analysis and its application to the determination of iron(II) down to the femtomole level by surface-enhanced resonance Raman scattering (SERRS)', J. Electroanal. Chem., 1994 371(1-2) 37-42', 'firstchar' => 'N', 'twochars' => 'Ne', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array( [maximum depth reached] ), 'Keyword' => array([maximum depth reached]) ), (int) 9 => array( 'id' => '013707', 'authors' => 'Weissenbacher, N.;Lendl, B.;Frank, J.;Wanzenbock, H.D.;Mizaikoff, B.;Kellner, R.', 'authorsweb' => 'N. Weissenbacher*, B. Lendl, J. Frank, H. D. Wanzenböck, B. Mizaikoff and R. Kellner', 'title' => 'Continuous surface-enhanced raman-spectroscopy for the detection of trace organic pollutants in aqueous systems', 'journal' => 'J. Mol. Struct.', 'journal_id' => '0628', 'fadid' => 'JMRS1997V0410P00539', 'year' => '1997', 'volume' => '410', 'issue' => '1', 'startpage' => '539', 'endpage' => '542', 'type' => 'Journal Article', 'analytes' => ';2050;1583;1774;0504;1478;', 'matrices' => '', 'techniques' => ';0410;', 'keywords' => '', 'abstract' => 'In Raman spectroscopy, detection limits for organic pollutants in water can be lowered by several orders of magnitude when surface enhanced techniques are applied. In this work a continuous analytical device based on flow injection analysis using SERS detection is proposed. This system was tested with model analytes such as pyridine and nicotinic acid as well as several pesticides (carbendazim, metazachlorine). (C) 1997 Elsevier Science B.V. 22 References', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'No', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '3', 'urlcheck' => '2014-10-12 09:49:43', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => null, 'pauthor' => 'Weissenbacher, N.', 'address' => 'Institute for Analytical Chemistry, Vienna University of Technology, Getreidemarkt 9/151, A-1060, Vienna, Austria', 'email' => 'NA', 'notes' => null, 'url' => '10.1016/S0022-2860(96)09531-2', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Continuous surface-enhanced raman-spectroscopy for the detection of trace organic pollutants in aqueous systems', J. Mol. Struct., 1997 410(1) 539-542', 'firstchar' => 'C', 'twochars' => 'Co', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array([maximum depth reached]) ), (int) 10 => array( 'id' => '014097', 'authors' => 'Sawata, S.;Kai, E.;Ikebukuro, K.;Iida, T.;Honda, T.;Karube, I.', 'authorsweb' => 'Sawata S, Kai E, Ikebukuro K, Iida T, Honda T, Karube I.', 'title' => 'Novel detection system of flow injection analysis. 1. The existence of significant relation between secondary structure of DNA and sensitivity in signal detection', 'journal' => 'Nucleic Acids Symp. Ser.', 'journal_id' => '1346', 'fadid' => 'NASS1997V0037P00247', 'year' => '1997', 'volume' => '37', 'issue' => '1', 'startpage' => '247', 'endpage' => '248', 'type' => 'Journal Article', 'analytes' => ';0847;', 'matrices' => '', 'techniques' => ';0410;', 'keywords' => ';0401;', 'abstract' => 'Polymerase Chain Reaction (PCR) products were detected quantitatively using a flow injection type sensor, based on Surface Plasmon Resonance (SPR). We used asymmetric PCR to amplify the two kinds of products; their DNA lengths are different. This novel design permitted us not only to detect PCR products with high-sensitivity, but also to develop a rapid DNA detection system for the sense of the genetic pathogen.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'No', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '0', 'urlcheck' => '2014-10-13 19:09:08', 'urlcheckcode' => 'HTTP/1.1 200 OK', 'pauthor_id' => '00227', 'pauthor' => '!Karube, I.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => 'www.ncbi.nlm.nih.gov/pubmed/9586092', 'urltype' => 'absurl', 'gotpdf' => 'no', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Novel detection system of flow injection analysis. 1. The existence of significant relation between secondary structure of DNA and sensitivity in signal detection', Nucleic Acids Symp. Ser., 1997 37(1) 247-248', 'firstchar' => 'N', 'twochars' => 'No', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 11 => array( 'id' => '014429', 'authors' => 'Storey, J.M.E.;Barber, T.E.;Shelton, R.D.;Wachter, E.A.;Carron, K.T.;Jiang, Y.', 'authorsweb' => 'NA', 'title' => 'Applications of surface-enhanced Raman scattering (SERS) to chemical detection', 'journal' => 'Spectroscopy', 'journal_id' => '0489', 'fadid' => 'STRS1995V0010P00020', 'year' => '1995', 'volume' => '10', 'issue' => '3', 'startpage' => '20', 'endpage' => '25', 'type' => 'Journal Article', 'analytes' => ';0716;1186;1582;', 'matrices' => ';0343;0372;', 'techniques' => ';0410;', 'keywords' => ';0389;', 'abstract' => 'lectrochemical surface-enhanced Raman spectrometry (SERS) was used to detect chlorinated hydrocarbons in ground water, in tobacco smoke and aqueous cyanide ions. Hybrid substrate SERS was used for the detection of organic compounds in liquid and gas phases, using a flow-through cell. The experimental protocols were described previously. (Appl Spectrosc., 1994, 48, 1265; Shelton et al., Ibid., 1994, 48, 1007; Wachter et al.,Ibid., 1995, 49, 193; and Barber et al., Ibid., 1994, 48, 1423). The detection limits for hydrocarbons in electrolytes were a few ppm; they were an order of magnitude higher in groundwater. No calibration data are given. The response to cyanide was linear for 10^-100 ppm. The detection limit for nicotine in smoke was 15 ppb (no calibration data given). The advantages and limitations of the methods are discussed and future research directions are outlined.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'No', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '0', 'urlcheck' => '2006-05-20 19:26:31', 'urlcheckcode' => '', 'pauthor_id' => null, 'pauthor' => 'NA', 'address' => 'Oak Ridge Natl. Lab., Health Sci. Res. Div., Oak Ridge, TN 37831-6113 UK', 'email' => 'NA', 'notes' => null, 'url' => 'NA', 'urltype' => 'NA', 'gotpdf' => 'no', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Applications of surface-enhanced Raman scattering (SERS) to chemical detection', Spectroscopy, 1995 10(3) 20-25', 'firstchar' => 'A', 'twochars' => 'Ap', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array( [maximum depth reached] ), 'Keyword' => array( [maximum depth reached] ) ), (int) 12 => array( 'id' => '014511', 'authors' => 'Fujiwara, K.;Ito, S.', 'authorsweb' => 'Kitao Fujiwara and Seiji Ito', 'title' => 'Application of waveguiding in solutions for absorption and fluorescence spectrometry', 'journal' => 'Trends Anal. Chem.', 'journal_id' => '0653', 'fadid' => 'TRAC1991V0010P00184', 'year' => '1991', 'volume' => '10', 'issue' => '6', 'startpage' => '184', 'endpage' => '190', 'type' => 'Journal Article', 'analytes' => '', 'matrices' => '', 'techniques' => ';0252;0410;', 'keywords' => ';0043;0167;0521;', 'abstract' => 'Several waveguiding techniques in solution are presented in the context of spectrometry. Although light propagation in dense media via total reflection is a commonly used technique with optical fibers, it is also possible in solutions. This is very useful for improving both sensitivity and spatial resolution, especially in absorption and fluorescence spectrometry, by elongating the optical path length and controlling the angle of incidence of light in the measurement area of a sample. ', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'No', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '26', 'urlcheck' => '2014-10-12 02:21:14', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => null, 'pauthor' => 'NA', 'address' => 'NA', 'email' => 'NA', 'notes' => null, 'url' => '10.1016/0165-9936(91)85019-N', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Application of waveguiding in solutions for absorption and fluorescence spectrometry', Trends Anal. Chem., 1991 10(6) 184-190', 'firstchar' => 'A', 'twochars' => 'Ap', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array([maximum depth reached]), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 13 => array( 'id' => '014536', 'authors' => 'Vo Dinh, T.', 'authorsweb' => 'Tuan Vo-Dinh', 'title' => 'Surface enhanced raman spectroscopy using metallic nanostructures', 'journal' => 'Trends Anal. Chem.', 'journal_id' => '0653', 'fadid' => 'TRAC1998V0017P00557', 'year' => '1998', 'volume' => '17', 'issue' => '8-9', 'startpage' => '557', 'endpage' => '582', 'type' => 'Journal Article', 'analytes' => '', 'matrices' => ';0404;0093;', 'techniques' => ';0410;', 'keywords' => ';0043;0215;0389;', 'abstract' => 'This article provides an overview of the development and application of the surface-enhanced Raman scattering (SERS) techniques using metal-coated nanostructures on solid substrates, An introduction to theoretical principles of the SERS effect and the different SERS-active media is presented. The focus is on nanostructured solid substrates and their practical applications in chemical, environmental and biomedical areas. Specific examples of analytical techniques, instruments and sensors developed in the author's laboratory will be discussed to illustrate the usefulness and potential of the SERS techniques.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'No', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '38', 'urlcheck' => '2014-10-12 10:04:45', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => null, 'pauthor' => 'Vo Dinh, T.', 'address' => 'Advanced Monitoring Development Group, Life Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6101, USA', 'email' => 'NA', 'notes' => null, 'url' => '10.1016/S0165-9936(98)00069-7', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Surface enhanced raman spectroscopy using metallic nanostructures', Trends Anal. Chem., 1998 17(8-9) 557-582', 'firstchar' => 'S', 'twochars' => 'Su', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array([maximum depth reached]), 'Matrix' => array( [maximum depth reached] ), 'Keyword' => array( [maximum depth reached] ) ), (int) 14 => array( 'id' => '014560', 'authors' => 'Ruperez, A.;Montes, R.;Laserna, J.J.', 'authorsweb' => 'A. Rupérez, R. Montes and J. J. Laserna*', 'title' => 'Identification of stimulant drugs by surface-enhanced raman spectrometry on colloidal silver', 'journal' => 'Vib. Spectrosc.', 'journal_id' => '0655', 'fadid' => 'VIBS1991V0002P00145', 'year' => '1991', 'volume' => '2', 'issue' => '2-3', 'startpage' => '145', 'endpage' => '154', 'type' => 'Journal Article', 'analytes' => ';0862;', 'matrices' => '', 'techniques' => ';0032;0055;0410;', 'keywords' => '', 'abstract' => 'The surface-enhanced Raman (SER) spectra of stimulant drugs, including mefenorex, pentylenetetrazole, -amphetamine and pemoline, were obtained on colloidal silver. Silver colloids are prepared in a single step, at room temperature, by chemical reduction of Ag+ with sodium tetrahydroborate. Spectra are recorded using drug concentrations at the g mL-1 level. Individual drugs can be identified by characteristic vibrational bands. The SER spectrum of human urine and that of human urine spiked with mixtures of stimulant drugs are reported.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'No', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '7', 'urlcheck' => '2014-10-12 02:21:21', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '01097', 'pauthor' => '!Laserna, J.J.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1016/0924-2031(91)85020-N', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Identification of stimulant drugs by surface-enhanced raman spectrometry on colloidal silver', Vib. Spectrosc., 1991 2(2-3) 145-154', 'firstchar' => 'I', 'twochars' => 'Id', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array([maximum depth reached]) ) ) ) $c = array( 'id' => '014511', 'authors' => 'Fujiwara, K.;Ito, S.', 'authorsweb' => 'Kitao Fujiwara and Seiji Ito', 'title' => 'Application of waveguiding in solutions for absorption and fluorescence spectrometry', 'journal' => 'Trends Anal. Chem.', 'journal_id' => '0653', 'fadid' => 'TRAC1991V0010P00184', 'year' => '1991', 'volume' => '10', 'issue' => '6', 'startpage' => '184', 'endpage' => '190', 'type' => 'Journal Article', 'analytes' => '', 'matrices' => '', 'techniques' => ';0252;0410;', 'keywords' => ';0043;0167;0521;', 'abstract' => 'Several waveguiding techniques in solution are presented in the context of spectrometry. Although light propagation in dense media via total reflection is a commonly used technique with optical fibers, it is also possible in solutions. This is very useful for improving both sensitivity and spatial resolution, especially in absorption and fluorescence spectrometry, by elongating the optical path length and controlling the angle of incidence of light in the measurement area of a sample. ', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'No', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '26', 'urlcheck' => '2014-10-12 02:21:14', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => null, 'pauthor' => 'NA', 'address' => 'NA', 'email' => 'NA', 'notes' => null, 'url' => '10.1016/0165-9936(91)85019-N', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Application of waveguiding in solutions for absorption and fluorescence spectrometry', Trends Anal. Chem., 1991 10(6) 184-190', 'firstchar' => 'A', 'twochars' => 'Ap', 'CitationsTechnique' => array( 'id' => '015261', 'citation_id' => '014511', 'technique_id' => '0410' ), 'Analyte' => array(), 'Matrix' => array(), 'Keyword' => array( (int) 0 => array( 'id' => '0043', 'type' => 'Manifold component', 'keyword' => 'Apparatus', 'newKeyword' => '', 'synonyms' => '', 'fao' => '', 'total' => '466', 'first' => 'A', 'keytotal' => 'Apparatus**466', 'CitationsKeyword' => array( [maximum depth reached] ) ), (int) 1 => array( 'id' => '0167', 'type' => 'Manifold component', 'keyword' => 'Flowcell', 'newKeyword' => '', 'synonyms' => '', 'fao' => '', 'total' => '156', 'first' => 'F', 'keytotal' => 'Flowcell**156', 'CitationsKeyword' => array( [maximum depth reached] ) ), (int) 2 => array( 'id' => '0521', 'type' => 'Component', 'keyword' => 'Waveguide cell', 'newKeyword' => '', 'synonyms' => '', 'fao' => '', 'total' => '2', 'first' => 'W', 'keytotal' => 'Waveguide cell**2', 'CitationsKeyword' => array( [maximum depth reached] ) ) ) ) $i = (int) 12 $path = '' $a = '' $url = 'http://dx.doi.org/10.1016/0165-9936(91)85019-N' $aus = 'Kitao Fujiwara and Seiji Ito'include - APP/View/Elements/citation.ctp, line 40 View::_evaluate() - CORE/Cake/View/View.php, line 971 View::_render() - CORE/Cake/View/View.php, line 933 View::_renderElement() - CORE/Cake/View/View.php, line 1224 View::element() - CORE/Cake/View/View.php, line 418 include - APP/View/Techniques/view.ctp, line 52 View::_evaluate() - CORE/Cake/View/View.php, line 971 View::_render() - CORE/Cake/View/View.php, line 933 View::render() - CORE/Cake/View/View.php, line 473 Controller::render() - CORE/Cake/Controller/Controller.php, line 968 Dispatcher::_invoke() - CORE/Cake/Routing/Dispatcher.php, line 200 Dispatcher::dispatch() - CORE/Cake/Routing/Dispatcher.php, line 167 [main] - APP/webroot/index.php, line 109
"Surface Enhanced Raman Spectroscopy Using Metallic Nanostructures"
Trends Anal. Chem.
1998 Volume 17, Issue 8-9 Pages 557-582
Notice (8): Undefined variable: uid [APP/View/Elements/citation.ctp, line 40]Tuan Vo-DinhCode Context?>
<?php
if($uid!='') {
$viewFile = '/home/stuchalk/public_html/fad/app/View/Elements/citation.ctp' $dataForView = array( 'data' => array( 'Technique' => array( 'id' => '0410', 'label' => 'Raman', 'level1' => 'Raman', 'level2' => 'surface enhanced', 'level3' => '', 'level4' => '', 'level5' => '', 'synonyms' => 'Surface enhanced raman spectroscopy,SERS', 'champ' => '', 'total' => '15', 'updated' => '0000-00-00 00:00:00', 'name' => 'Raman, surface enhanced', 'nametotal' => 'Raman, surface enhanced**15', 'first' => 'R' ), 'Citation' => array( (int) 0 => array( [maximum depth reached] ), (int) 1 => array( [maximum depth reached] ), (int) 2 => array( [maximum depth reached] ), (int) 3 => array( [maximum depth reached] ), (int) 4 => array( [maximum depth reached] ), (int) 5 => array( [maximum depth reached] ), (int) 6 => array( [maximum depth reached] ), (int) 7 => array( [maximum depth reached] ), (int) 8 => array( [maximum depth reached] ), (int) 9 => array( [maximum depth reached] ), (int) 10 => array( [maximum depth reached] ), (int) 11 => array( [maximum depth reached] ), (int) 12 => array( [maximum depth reached] ), (int) 13 => array( [maximum depth reached] ), (int) 14 => array( [maximum depth reached] ) ) ), 'c' => array( 'id' => '014536', 'authors' => 'Vo Dinh, T.', 'authorsweb' => 'Tuan Vo-Dinh', 'title' => 'Surface enhanced raman spectroscopy using metallic nanostructures', 'journal' => 'Trends Anal. Chem.', 'journal_id' => '0653', 'fadid' => 'TRAC1998V0017P00557', 'year' => '1998', 'volume' => '17', 'issue' => '8-9', 'startpage' => '557', 'endpage' => '582', 'type' => 'Journal Article', 'analytes' => '', 'matrices' => ';0404;0093;', 'techniques' => ';0410;', 'keywords' => ';0043;0215;0389;', 'abstract' => 'This article provides an overview of the development and application of the surface-enhanced Raman scattering (SERS) techniques using metal-coated nanostructures on solid substrates, An introduction to theoretical principles of the SERS effect and the different SERS-active media is presented. The focus is on nanostructured solid substrates and their practical applications in chemical, environmental and biomedical areas. Specific examples of analytical techniques, instruments and sensors developed in the author's laboratory will be discussed to illustrate the usefulness and potential of the SERS techniques.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'No', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '38', 'urlcheck' => '2014-10-12 10:04:45', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => null, 'pauthor' => 'Vo Dinh, T.', 'address' => 'Advanced Monitoring Development Group, Life Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6101, USA', 'email' => 'NA', 'notes' => null, 'url' => '10.1016/S0165-9936(98)00069-7', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Surface enhanced raman spectroscopy using metallic nanostructures', Trends Anal. Chem., 1998 17(8-9) 557-582', 'firstchar' => 'S', 'twochars' => 'Su', 'CitationsTechnique' => array( 'id' => '015290', 'citation_id' => '014536', 'technique_id' => '0410' ), 'Analyte' => array(), 'Matrix' => array( (int) 0 => array( [maximum depth reached] ), (int) 1 => array( [maximum depth reached] ) ), 'Keyword' => array( (int) 0 => array( [maximum depth reached] ), (int) 1 => array( [maximum depth reached] ), (int) 2 => array( [maximum depth reached] ) ) ), 'i' => (int) 13 ) $data = array( 'Technique' => array( 'id' => '0410', 'label' => 'Raman', 'level1' => 'Raman', 'level2' => 'surface enhanced', 'level3' => '', 'level4' => '', 'level5' => '', 'synonyms' => 'Surface enhanced raman spectroscopy,SERS', 'champ' => '', 'total' => '15', 'updated' => '0000-00-00 00:00:00', 'name' => 'Raman, surface enhanced', 'nametotal' => 'Raman, surface enhanced**15', 'first' => 'R' ), 'Citation' => array( (int) 0 => array( 'id' => '006258', 'authors' => 'Cabalin, L.M.;Ruperez, A.;Laserna, J.J.', 'authorsweb' => 'L. M. Cabalín, A. Rupérez and J. J. Laserna*', 'title' => 'Flow injection analysis and liquid chromatography: surface enhanced Raman spectrometry detection by using a windowless flow cell', 'journal' => 'Anal. Chim. Acta', 'journal_id' => '0584', 'fadid' => 'ANCA1996V0318P00203', 'year' => '1996', 'volume' => '318', 'issue' => '2', 'startpage' => '203', 'endpage' => '210', 'type' => 'Journal Article', 'analytes' => ';0146;0199;2037;1732;2402;', 'matrices' => '', 'techniques' => ';0032;0410;', 'keywords' => ';0167;0302;', 'abstract' => 'A windowless flow cell was developed for detection by surface-enhanced Raman spectrometry (SERS) in FIA and LC. The flow cell consisted of two stainless-steel tubes (0.16 mm i.d.; 1.4 mm o.d.) mounted on an Al frame so that the ends were ~e;1.6 mm apart. The liquid draining from the upper to the lower tube was supported by surface tension and formed a column (1.4 mm diameter). The mobile phase from the FIA or LC was merged with a silver hydrosol stream then propelled in to the flow cell. The Raman spectra were recorded using a focussed Ar ion laser beam (488 nm; 85 mW) as the source. The performance of the flow cell was optimized using five drugs (amiloride, amiphenazole, 2-mercaptopyridine, pemoline and triamterene) as model analytes. The maximum SERS signal was obtained with flow rates of 0.075 ml/ml and 1.5 ml/ml for the mobile phase and silver hydrosol, respectively. The reproducibility (n = 5) of the FIA-SERS system for the determination of 625 ng amiloride was 1%.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '1', 'urlcheck' => '2014-10-11 16:18:55', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '01097', 'pauthor' => '!Laserna, J.J.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1016/0003-2670(95)00441-6', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Flow injection analysis and liquid chromatography: surface enhanced Raman spectrometry detection by using a windowless flow cell', Anal. Chim. Acta, 1996 318(2) 203-210', 'firstchar' => 'F', 'twochars' => 'Fl', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 1 => array( 'id' => '006451', 'authors' => 'Somsen, G.W.;Coulter, S.K.;Gooijer, C.;Velthorst, N.H.;Brinkman, U.A.T.', 'authorsweb' => 'G. W. Somsen*, S. K. Coulter, C. Gooijer, N. H. Velthorst and U. A. Th. Brinkman', 'title' => 'Coupling of column liquid-chromatography and surface-enhanced resonance raman-spectroscopy via a thin-layer chromatographic plate', 'journal' => 'Anal. Chim. Acta', 'journal_id' => '0584', 'fadid' => 'ANCA1997V0349P00189', 'year' => '1997', 'volume' => '349', 'issue' => '1-3', 'startpage' => '189', 'endpage' => '197', 'type' => 'Journal Article', 'analytes' => '', 'matrices' => '', 'techniques' => ';0410;0038;', 'keywords' => ';0339;0302;', 'abstract' => 'Surface-enhanced resonance Raman (SERR) spectroscopy was used to characterize compounds separated by column liquid chromatography (LC). Three percent of the effluent from a conventional-size LC column were immobilized on a moving thin-layer chromatography (TLC) plate using a spray-jet solvent-elimination interface. Next, colloidal silver was applied to the analyte spots and in situ SERR spectra were recorded with a multichannel micro-Raman spectrometer. Storage of the LC effluent avoids the need to use a continuous-flow of colloidal silver and, in principle allows compounds to be detected independently of LC conditions like eluent composition and flow rate. Using dyes as test compounds, the method was optimized and aspects were studied such as type of TLC plate, LC separation of the dyes, preservation of LC integrity during immobilization, and SERR analysis of the deposited compounds. With a silica TLC plate as deposition substrate, good-quality and characteristic SERR spectra were obtained for the dyes which were separated on a cyanoproyl-modified silica LC column with methanol-water containing the volatile additives ammonium acetate and triethylamine as eluent. The minimum identifiable concentration of the dyes was about 250 ng mL-1 (750 pg applied on the plate). For some strong Raman scatterers such as nile blue and pararosaniline, the major spectral peaks could be observed down to concentrations of 25 ng mL-1. 36 References', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '3', 'urlcheck' => '2014-10-11 16:23:46', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '01300', 'pauthor' => '!Somsen, G.W.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1016/S0003-2670(97)00011-1', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Coupling of column liquid-chromatography and surface-enhanced resonance raman-spectroscopy via a thin-layer chromatographic plate', Anal. Chim. Acta, 1997 349(1-3) 189-197', 'firstchar' => 'C', 'twochars' => 'Co', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array([maximum depth reached]), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 2 => array( 'id' => '006887', 'authors' => 'Laserna, J.J.;Berthod, A.;Winefordner, J.D.', 'authorsweb' => 'J. J. Laserna, A. Berthod and J. D. Winefordner ', 'title' => 'Quantitative analysis by surface-enhanced raman spectrometry on silver hydrosols in a flow injection system', 'journal' => 'Talanta', 'journal_id' => '0569', 'fadid' => 'TALT1987V0034P00745', 'year' => '1987', 'volume' => '34', 'issue' => '8', 'startpage' => '745', 'endpage' => '747', 'type' => 'Journal Article', 'analytes' => ';0056;0401;', 'matrices' => '', 'techniques' => ';0410;', 'keywords' => ';0457;', 'abstract' => 'The application of surface-enhanced Raman scattering (SERS) in quantitative analysis is demonstrated by the determination of 4-aminobenzoic acid(I) and acridin-9-amine(II) on silver suspensions by SERS in a flow injection system. Two peristaltic pumps were used to mix 2 mM NaBH4 and 1 mM AgNO3 and pump the resulting silver suspension through the flow injection analysis system. The flow injection analysis system is described (with diagram). The sample solution contained I in aqueous 40% ethanol or II in ethanol. The calibration graph was rectilinear for 4 to 100 µg mL-1 of I, and the coefficient of variation (n = 6) was 3.2%. The system required cleaning with 40% HNO3 after 10 to 15 injections.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '7', 'urlcheck' => '2014-10-11 14:54:34', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '01400', 'pauthor' => '!Winefordner, J.D.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1016/0039-9140(87)80234-5', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Quantitative analysis by surface-enhanced raman spectrometry on silver hydrosols in a flow injection system', Talanta, 1987 34(8) 745-747', 'firstchar' => 'Q', 'twochars' => 'Qu', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 3 => array( 'id' => '007977', 'authors' => 'Weissenbacher, N.;Lendl, B.;Frank, J.;Wanzenbock, H.D.;Kellner, R.', 'authorsweb' => 'N. Weißenbacher, B. Lendl, J. Frank, H. D. Wanzenböck and R. Kellner', 'title' => 'Surface enhanced raman spectroscopy as a molecular specific detection system in aqueous flow-through systems', 'journal' => 'Analyst', 'journal_id' => '0864', 'fadid' => 'ANAL1998V0123P01057', 'year' => '1998', 'volume' => '123', 'issue' => '5', 'startpage' => '1057', 'endpage' => '1060', 'type' => 'Journal Article', 'analytes' => ';1583;', 'matrices' => '', 'techniques' => ';0410;0409;', 'keywords' => ';0446;0167;0043;0258;', 'abstract' => 'Surface enhanced Raman scattering (SERS) is proposed as a mol. specific technique for direct measurements of organic molecules in aqueous solutions An FT-Raman spectrometer was interfaced with a flow injection manifold operated in the stopped-flow mode enabling reproducible collection of SERS spectra due to the automation of the anal. procedure. For SERS a solid state substrate placed in a newly developed flow-cell was used. Multiple measurements on one single SERS substrate were achieved by rinsing the substrate with reagents such as 3 M KCl or 0.1 M NaOH solutions prior to the next measurements to remove retained analytes from the surface of the SERS substrate. This procedure allowed for improved precision as compared with a conventional batch approach. Quant. aspects were studied by establishing a calibration curve for nicotinic acid which was used as a model analyte. A linear dependence of the recorded SERS intensities from the logarithm of the analyte concentration. was obtained throughout the whole studied concentration. range (0.001-0.1 M, correlation coefficient r2 = 0.97). The standard deviation of the method sx0 is 0.122 mM and detection limit 1.7 mM, respectively. The results demonstrate the potential of SERS spectroscopy to be used as a molecular specific detector in aqueous flow systems such as flow injection anal.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '5', 'urlcheck' => '2014-10-12 09:52:18', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '00241', 'pauthor' => '!Lendl, B.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1039/a705837c', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Surface enhanced raman spectroscopy as a molecular specific detection system in aqueous flow-through systems', Analyst, 1998 123(5) 1057-1060', 'firstchar' => 'S', 'twochars' => 'Su', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 4 => array( 'id' => '008516', 'authors' => 'Force, R.K.', 'authorsweb' => 'R. Ken Force', 'title' => 'Surface-enhanced raman spectroscopy at a silver electrode as a detector in flow injection analysis', 'journal' => 'Anal. Chem.', 'journal_id' => '0499', 'fadid' => 'ANCH1988V0060P01987', 'year' => '1988', 'volume' => '60', 'issue' => '18', 'startpage' => '1987', 'endpage' => '1989', 'type' => 'Journal Article', 'analytes' => '', 'matrices' => '', 'techniques' => ';0214;0410;', 'keywords' => '', 'abstract' => 'A Ag-ring reference (diameter 5 mm) and a Ag-disc working electrode (diameter 3 mm) were sealed 1 mm apart in a Pyrex tube (o.d. 7 mm) and polished smooth. The Ag ring was anodized at 0.4 V (vs. a SCE) in 0.1 M KCl to produce a Ag - AgCl reference electrode with a potential of ~0.190 to ~0.200 V (vs. a NHE) in the 0.1 M KCl used as mobile phase and supporting electrolyte. The apparatus was applied in flow injection analysis for 50.0 mM pyridine (1 mL injections) in KCl flowing at 2 mL min-1. The potential was held at -0.6 V. Raman spectra were recorded from 990 to 1050 cm-1 in 2-cm-1 steps. A detection limit of ~250 nM was achieved. A Ag-ring reference (diameter 5 mm) and a Ag-disc working electrode (diameter 3 mm) were sealed 1 mm apart in a Pyrex tube (o.d. 7 mm) and polished smooth.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '0', 'urlcheck' => '2014-10-11 18:35:15', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '00965', 'pauthor' => '!Force, R.K.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1021/ac00169a033', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Surface-enhanced raman spectroscopy at a silver electrode as a detector in flow injection analysis', Anal. Chem., 1988 60(18) 1987-1989', 'firstchar' => 'S', 'twochars' => 'Su', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array([maximum depth reached]), 'Matrix' => array([maximum depth reached]), 'Keyword' => array([maximum depth reached]) ), (int) 5 => array( 'id' => '008566', 'authors' => 'Pothier, N.J.;Force, R.K.', 'authorsweb' => 'Neil J. Pothier and R. Ken Force', 'title' => 'Surface-enhanced raman spectroscopy at a silver electrode as a detection system in flowing streams', 'journal' => 'Anal. Chem.', 'journal_id' => '0499', 'fadid' => 'ANCH1990V0062P00678', 'year' => '1990', 'volume' => '62', 'issue' => '7', 'startpage' => '678', 'endpage' => '680', 'type' => 'Journal Article', 'analytes' => ';0064;2356;0747;', 'matrices' => '', 'techniques' => ';0410;0210;0038;', 'keywords' => ';0276;0446;0109;', 'abstract' => 'A three-electrode surface-enhanced Raman spectroscopy detector, with a Ag working electrode, Pt foil auxiliary electrode and SCE reference and a cell volume of 30 µL, was evaluated for use with HPLC and flow injection analysis. In a flowing system, the analyte is rapidly removed from the electrode surface in 10 s, and spectra was obtained in 5 s with an optical multichannel analyzer.. Under stopped-flow conditions, detection limits were 175, 233 and 211 pmol for adenine, thymine and cytosine, respectively.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '3', 'urlcheck' => '2014-10-11 18:35:47', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '00965', 'pauthor' => '!Force, R.K.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1021/ac00206a005', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Surface-enhanced raman spectroscopy at a silver electrode as a detection system in flowing streams', Anal. Chem., 1990 62(7) 678-680', 'firstchar' => 'S', 'twochars' => 'Su', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 6 => array( 'id' => '008582', 'authors' => 'Ni, F.;Sheng, R.S.;Cotton, T.M.', 'authorsweb' => 'Fan Ni, Rongsheng Sheng, and Therese M. Cotton', 'title' => 'Flow injection analysis and real-time detection of RNA bases by surface-enhanced Raman spectroscopy', 'journal' => 'Anal. Chem.', 'journal_id' => '0499', 'fadid' => 'ANCH1990V0062P01958', 'year' => '1990', 'volume' => '62', 'issue' => '18', 'startpage' => '1958', 'endpage' => '1963', 'type' => 'Journal Article', 'analytes' => ';0365;', 'matrices' => '', 'techniques' => ';0410;0038;', 'keywords' => ';0216;0320;0302;', 'abstract' => 'Surface-enhanced Raman scattering (SERS) spectroscopy has been successfully interfaced with a flow injection analysis system to detect RNA bases in real time. Four of the major base components of RNA, uracil, cytosine, adenine, and guanine, were introduced into the flow injection system and were mixed with a Ag sol prior to SERS measurements. Several experimental parameters including pH, temperature, flow rate, and tubing materials were examined, and their impact on the SERS spectra is presented here. The feasibility of interfacing flow injection based SERS detection methods with liquid or high performance liquid chromatography for the detection of individual components in a complex mixture is also assessed.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '2', 'urlcheck' => '2014-10-11 18:36:03', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => null, 'pauthor' => 'Cotton, T.M.', 'address' => 'Department of Chemistry, Iowa State University, Ames, Iowa 50011 USA', 'email' => 'NA', 'notes' => null, 'url' => '10.1021/ac00217a012', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Flow injection analysis and real-time detection of RNA bases by surface-enhanced Raman spectroscopy', Anal. Chem., 1990 62(18) 1958-1963', 'firstchar' => 'F', 'twochars' => 'Fl', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 7 => array( 'id' => '009344', 'authors' => 'Laserna, J.J.;Berthod, A.;Winefordner, J.D.', 'authorsweb' => 'J. J. Laserna, A. Berthod and J. D. Winefordner*', 'title' => 'Evaluation and optimization of experimental conditions for surface-enhanced raman detection of analytes in flow injection analysis', 'journal' => 'Microchem. J.', 'journal_id' => '0639', 'fadid' => 'MCHJ1988V0038P00125', 'year' => '1988', 'volume' => '38', 'issue' => '1', 'startpage' => '125', 'endpage' => '126', 'type' => 'Journal Article', 'analytes' => ';0399;0055;', 'matrices' => '', 'techniques' => ';0410;', 'keywords' => ';0110;0302;', 'abstract' => 'The Raman instrumentation included a 100-mW Ar ion laser operated at 514.5 nm, a double monochromator and a cooled Hamamatsu R-928 photomultiplier tube with photon counting system as the detector. Vertically polarized light was used, with right-angle geometry for Raman sampling and a long-wave-pass glass filter to suppress Rayleigh-scattered light. Spectra were obtained by single scans. Flow streams of 1 mM AgNO3 and 2 mM NaBH4 were merged to form a silver hydrosol matrix, and 4-aminobenzoic acid(I) and acridin-9-amine were used successfully as test analytes. The detector flow-cell was a silica tube (3 mm x 0.5 mm;~0.6 µL). For maximum signal response with I, the total flow rate was 0.7 mL min-1 and the pH was adjusted with HNO3 to 3.2.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '14', 'urlcheck' => '2014-10-12 00:26:48', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '01400', 'pauthor' => '!Winefordner, J.D.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1016/0026-265X(88)90011-2', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Evaluation and optimization of experimental conditions for surface-enhanced raman detection of analytes in flow injection analysis', Microchem. J., 1988 38(1) 125-126', 'firstchar' => 'E', 'twochars' => 'Ev', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 8 => array( 'id' => '010331', 'authors' => 'Gouveia, V.J.P.;Gutz, I.G.R.;Rubim, J.C.', 'authorsweb' => 'Vitor J. P. Gouveia, Ivano G. Gutz and Joel C. Rubim*', 'title' => 'New spectroelectrochemical cell for flow injection analysis and its application to the determination of iron(II) down to the femtomole level by surface-enhanced resonance Raman scattering (SERRS)', 'journal' => 'J. Electroanal. Chem.', 'journal_id' => '0709', 'fadid' => 'JECH1994V0371P00037', 'year' => '1994', 'volume' => '371', 'issue' => '1-2', 'startpage' => '37', 'endpage' => '42', 'type' => 'Journal Article', 'analytes' => ';1294;', 'matrices' => ';0404;', 'techniques' => ';0226;0410;', 'keywords' => '', 'abstract' => 'A principal feature of the cell (diagrams presented) is the in situ renewal of the surface-enhanced Raman-active Ag substratum. Before injection of the analyte, Ag+ are introduced, and Ag is electro-deposited on a vitreous-carbon electrode; after the Raman spectrum of the adsorbed analyte has been recorded, the Ag is removed by anodic stripping. Fe(II) was determined in a 130 µL injected sample as its tris(bipyridyl) complex, which exhibits both a resonance Raman effect when excited with Ar+ laser 514.5 nm radiation and surface-enhanced Raman scattering when adsorbed on Ag. The calibration graph was sigmoidal, but usable for 10 nM-10 µM-Fe(II), and the detection limit was 1 nM, which represented detection of Fe(II) at the femtomole level.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '13', 'urlcheck' => '2014-10-12 09:04:46', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => null, 'pauthor' => 'Rubim, J.C.', 'address' => 'Institututo de Química da Universidade de São Paulo C.P.20780, 01498, São Paulo, SP Brazil', 'email' => 'NA', 'notes' => null, 'url' => '10.1016/0022-0728(93)03220-J', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''New spectroelectrochemical cell for flow injection analysis and its application to the determination of iron(II) down to the femtomole level by surface-enhanced resonance Raman scattering (SERRS)', J. Electroanal. Chem., 1994 371(1-2) 37-42', 'firstchar' => 'N', 'twochars' => 'Ne', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array( [maximum depth reached] ), 'Keyword' => array([maximum depth reached]) ), (int) 9 => array( 'id' => '013707', 'authors' => 'Weissenbacher, N.;Lendl, B.;Frank, J.;Wanzenbock, H.D.;Mizaikoff, B.;Kellner, R.', 'authorsweb' => 'N. Weissenbacher*, B. Lendl, J. Frank, H. D. Wanzenböck, B. Mizaikoff and R. Kellner', 'title' => 'Continuous surface-enhanced raman-spectroscopy for the detection of trace organic pollutants in aqueous systems', 'journal' => 'J. Mol. Struct.', 'journal_id' => '0628', 'fadid' => 'JMRS1997V0410P00539', 'year' => '1997', 'volume' => '410', 'issue' => '1', 'startpage' => '539', 'endpage' => '542', 'type' => 'Journal Article', 'analytes' => ';2050;1583;1774;0504;1478;', 'matrices' => '', 'techniques' => ';0410;', 'keywords' => '', 'abstract' => 'In Raman spectroscopy, detection limits for organic pollutants in water can be lowered by several orders of magnitude when surface enhanced techniques are applied. In this work a continuous analytical device based on flow injection analysis using SERS detection is proposed. This system was tested with model analytes such as pyridine and nicotinic acid as well as several pesticides (carbendazim, metazachlorine). (C) 1997 Elsevier Science B.V. 22 References', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'No', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '3', 'urlcheck' => '2014-10-12 09:49:43', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => null, 'pauthor' => 'Weissenbacher, N.', 'address' => 'Institute for Analytical Chemistry, Vienna University of Technology, Getreidemarkt 9/151, A-1060, Vienna, Austria', 'email' => 'NA', 'notes' => null, 'url' => '10.1016/S0022-2860(96)09531-2', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Continuous surface-enhanced raman-spectroscopy for the detection of trace organic pollutants in aqueous systems', J. Mol. Struct., 1997 410(1) 539-542', 'firstchar' => 'C', 'twochars' => 'Co', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array([maximum depth reached]) ), (int) 10 => array( 'id' => '014097', 'authors' => 'Sawata, S.;Kai, E.;Ikebukuro, K.;Iida, T.;Honda, T.;Karube, I.', 'authorsweb' => 'Sawata S, Kai E, Ikebukuro K, Iida T, Honda T, Karube I.', 'title' => 'Novel detection system of flow injection analysis. 1. The existence of significant relation between secondary structure of DNA and sensitivity in signal detection', 'journal' => 'Nucleic Acids Symp. Ser.', 'journal_id' => '1346', 'fadid' => 'NASS1997V0037P00247', 'year' => '1997', 'volume' => '37', 'issue' => '1', 'startpage' => '247', 'endpage' => '248', 'type' => 'Journal Article', 'analytes' => ';0847;', 'matrices' => '', 'techniques' => ';0410;', 'keywords' => ';0401;', 'abstract' => 'Polymerase Chain Reaction (PCR) products were detected quantitatively using a flow injection type sensor, based on Surface Plasmon Resonance (SPR). We used asymmetric PCR to amplify the two kinds of products; their DNA lengths are different. This novel design permitted us not only to detect PCR products with high-sensitivity, but also to develop a rapid DNA detection system for the sense of the genetic pathogen.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'No', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '0', 'urlcheck' => '2014-10-13 19:09:08', 'urlcheckcode' => 'HTTP/1.1 200 OK', 'pauthor_id' => '00227', 'pauthor' => '!Karube, I.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => 'www.ncbi.nlm.nih.gov/pubmed/9586092', 'urltype' => 'absurl', 'gotpdf' => 'no', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Novel detection system of flow injection analysis. 1. The existence of significant relation between secondary structure of DNA and sensitivity in signal detection', Nucleic Acids Symp. Ser., 1997 37(1) 247-248', 'firstchar' => 'N', 'twochars' => 'No', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 11 => array( 'id' => '014429', 'authors' => 'Storey, J.M.E.;Barber, T.E.;Shelton, R.D.;Wachter, E.A.;Carron, K.T.;Jiang, Y.', 'authorsweb' => 'NA', 'title' => 'Applications of surface-enhanced Raman scattering (SERS) to chemical detection', 'journal' => 'Spectroscopy', 'journal_id' => '0489', 'fadid' => 'STRS1995V0010P00020', 'year' => '1995', 'volume' => '10', 'issue' => '3', 'startpage' => '20', 'endpage' => '25', 'type' => 'Journal Article', 'analytes' => ';0716;1186;1582;', 'matrices' => ';0343;0372;', 'techniques' => ';0410;', 'keywords' => ';0389;', 'abstract' => 'lectrochemical surface-enhanced Raman spectrometry (SERS) was used to detect chlorinated hydrocarbons in ground water, in tobacco smoke and aqueous cyanide ions. Hybrid substrate SERS was used for the detection of organic compounds in liquid and gas phases, using a flow-through cell. The experimental protocols were described previously. (Appl Spectrosc., 1994, 48, 1265; Shelton et al., Ibid., 1994, 48, 1007; Wachter et al.,Ibid., 1995, 49, 193; and Barber et al., Ibid., 1994, 48, 1423). The detection limits for hydrocarbons in electrolytes were a few ppm; they were an order of magnitude higher in groundwater. No calibration data are given. The response to cyanide was linear for 10^-100 ppm. The detection limit for nicotine in smoke was 15 ppb (no calibration data given). The advantages and limitations of the methods are discussed and future research directions are outlined.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'No', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '0', 'urlcheck' => '2006-05-20 19:26:31', 'urlcheckcode' => '', 'pauthor_id' => null, 'pauthor' => 'NA', 'address' => 'Oak Ridge Natl. Lab., Health Sci. Res. Div., Oak Ridge, TN 37831-6113 UK', 'email' => 'NA', 'notes' => null, 'url' => 'NA', 'urltype' => 'NA', 'gotpdf' => 'no', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Applications of surface-enhanced Raman scattering (SERS) to chemical detection', Spectroscopy, 1995 10(3) 20-25', 'firstchar' => 'A', 'twochars' => 'Ap', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array( [maximum depth reached] ), 'Keyword' => array( [maximum depth reached] ) ), (int) 12 => array( 'id' => '014511', 'authors' => 'Fujiwara, K.;Ito, S.', 'authorsweb' => 'Kitao Fujiwara and Seiji Ito', 'title' => 'Application of waveguiding in solutions for absorption and fluorescence spectrometry', 'journal' => 'Trends Anal. Chem.', 'journal_id' => '0653', 'fadid' => 'TRAC1991V0010P00184', 'year' => '1991', 'volume' => '10', 'issue' => '6', 'startpage' => '184', 'endpage' => '190', 'type' => 'Journal Article', 'analytes' => '', 'matrices' => '', 'techniques' => ';0252;0410;', 'keywords' => ';0043;0167;0521;', 'abstract' => 'Several waveguiding techniques in solution are presented in the context of spectrometry. Although light propagation in dense media via total reflection is a commonly used technique with optical fibers, it is also possible in solutions. This is very useful for improving both sensitivity and spatial resolution, especially in absorption and fluorescence spectrometry, by elongating the optical path length and controlling the angle of incidence of light in the measurement area of a sample. ', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'No', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '26', 'urlcheck' => '2014-10-12 02:21:14', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => null, 'pauthor' => 'NA', 'address' => 'NA', 'email' => 'NA', 'notes' => null, 'url' => '10.1016/0165-9936(91)85019-N', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Application of waveguiding in solutions for absorption and fluorescence spectrometry', Trends Anal. Chem., 1991 10(6) 184-190', 'firstchar' => 'A', 'twochars' => 'Ap', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array([maximum depth reached]), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 13 => array( 'id' => '014536', 'authors' => 'Vo Dinh, T.', 'authorsweb' => 'Tuan Vo-Dinh', 'title' => 'Surface enhanced raman spectroscopy using metallic nanostructures', 'journal' => 'Trends Anal. Chem.', 'journal_id' => '0653', 'fadid' => 'TRAC1998V0017P00557', 'year' => '1998', 'volume' => '17', 'issue' => '8-9', 'startpage' => '557', 'endpage' => '582', 'type' => 'Journal Article', 'analytes' => '', 'matrices' => ';0404;0093;', 'techniques' => ';0410;', 'keywords' => ';0043;0215;0389;', 'abstract' => 'This article provides an overview of the development and application of the surface-enhanced Raman scattering (SERS) techniques using metal-coated nanostructures on solid substrates, An introduction to theoretical principles of the SERS effect and the different SERS-active media is presented. The focus is on nanostructured solid substrates and their practical applications in chemical, environmental and biomedical areas. Specific examples of analytical techniques, instruments and sensors developed in the author's laboratory will be discussed to illustrate the usefulness and potential of the SERS techniques.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'No', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '38', 'urlcheck' => '2014-10-12 10:04:45', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => null, 'pauthor' => 'Vo Dinh, T.', 'address' => 'Advanced Monitoring Development Group, Life Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6101, USA', 'email' => 'NA', 'notes' => null, 'url' => '10.1016/S0165-9936(98)00069-7', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Surface enhanced raman spectroscopy using metallic nanostructures', Trends Anal. Chem., 1998 17(8-9) 557-582', 'firstchar' => 'S', 'twochars' => 'Su', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array([maximum depth reached]), 'Matrix' => array( [maximum depth reached] ), 'Keyword' => array( [maximum depth reached] ) ), (int) 14 => array( 'id' => '014560', 'authors' => 'Ruperez, A.;Montes, R.;Laserna, J.J.', 'authorsweb' => 'A. Rupérez, R. Montes and J. J. Laserna*', 'title' => 'Identification of stimulant drugs by surface-enhanced raman spectrometry on colloidal silver', 'journal' => 'Vib. Spectrosc.', 'journal_id' => '0655', 'fadid' => 'VIBS1991V0002P00145', 'year' => '1991', 'volume' => '2', 'issue' => '2-3', 'startpage' => '145', 'endpage' => '154', 'type' => 'Journal Article', 'analytes' => ';0862;', 'matrices' => '', 'techniques' => ';0032;0055;0410;', 'keywords' => '', 'abstract' => 'The surface-enhanced Raman (SER) spectra of stimulant drugs, including mefenorex, pentylenetetrazole, -amphetamine and pemoline, were obtained on colloidal silver. Silver colloids are prepared in a single step, at room temperature, by chemical reduction of Ag+ with sodium tetrahydroborate. Spectra are recorded using drug concentrations at the g mL-1 level. Individual drugs can be identified by characteristic vibrational bands. The SER spectrum of human urine and that of human urine spiked with mixtures of stimulant drugs are reported.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'No', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '7', 'urlcheck' => '2014-10-12 02:21:21', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '01097', 'pauthor' => '!Laserna, J.J.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1016/0924-2031(91)85020-N', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Identification of stimulant drugs by surface-enhanced raman spectrometry on colloidal silver', Vib. Spectrosc., 1991 2(2-3) 145-154', 'firstchar' => 'I', 'twochars' => 'Id', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array([maximum depth reached]) ) ) ) $c = array( 'id' => '014536', 'authors' => 'Vo Dinh, T.', 'authorsweb' => 'Tuan Vo-Dinh', 'title' => 'Surface enhanced raman spectroscopy using metallic nanostructures', 'journal' => 'Trends Anal. Chem.', 'journal_id' => '0653', 'fadid' => 'TRAC1998V0017P00557', 'year' => '1998', 'volume' => '17', 'issue' => '8-9', 'startpage' => '557', 'endpage' => '582', 'type' => 'Journal Article', 'analytes' => '', 'matrices' => ';0404;0093;', 'techniques' => ';0410;', 'keywords' => ';0043;0215;0389;', 'abstract' => 'This article provides an overview of the development and application of the surface-enhanced Raman scattering (SERS) techniques using metal-coated nanostructures on solid substrates, An introduction to theoretical principles of the SERS effect and the different SERS-active media is presented. The focus is on nanostructured solid substrates and their practical applications in chemical, environmental and biomedical areas. Specific examples of analytical techniques, instruments and sensors developed in the author's laboratory will be discussed to illustrate the usefulness and potential of the SERS techniques.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'No', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '38', 'urlcheck' => '2014-10-12 10:04:45', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => null, 'pauthor' => 'Vo Dinh, T.', 'address' => 'Advanced Monitoring Development Group, Life Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6101, USA', 'email' => 'NA', 'notes' => null, 'url' => '10.1016/S0165-9936(98)00069-7', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Surface enhanced raman spectroscopy using metallic nanostructures', Trends Anal. Chem., 1998 17(8-9) 557-582', 'firstchar' => 'S', 'twochars' => 'Su', 'CitationsTechnique' => array( 'id' => '015290', 'citation_id' => '014536', 'technique_id' => '0410' ), 'Analyte' => array(), 'Matrix' => array( (int) 0 => array( 'id' => '0404', 'label' => 'Environmental', 'level1' => 'Environmental', 'level2' => '', 'level3' => '', 'level4' => '', 'level5' => '', 'synonyms' => '', 'total' => '186', 'url' => '', 'updated' => '2015-12-09 21:04:43', 'name' => 'Environmental', 'nametotal' => 'Environmental**186', 'first' => 'E', 'CitationsMatrix' => array( [maximum depth reached] ) ), (int) 1 => array( 'id' => '0093', 'label' => 'Biological', 'level1' => 'Biological', 'level2' => '', 'level3' => '', 'level4' => '', 'level5' => '', 'synonyms' => '', 'total' => '116', 'url' => '', 'updated' => '2015-12-09 21:06:17', 'name' => 'Biological', 'nametotal' => 'Biological**116', 'first' => 'B', 'CitationsMatrix' => array( [maximum depth reached] ) ) ), 'Keyword' => array( (int) 0 => array( 'id' => '0043', 'type' => 'Manifold component', 'keyword' => 'Apparatus', 'newKeyword' => '', 'synonyms' => '', 'fao' => '', 'total' => '466', 'first' => 'A', 'keytotal' => 'Apparatus**466', 'CitationsKeyword' => array( [maximum depth reached] ) ), (int) 1 => array( 'id' => '0215', 'type' => 'Manifold component', 'keyword' => 'Instrumentation', 'newKeyword' => '', 'synonyms' => '', 'fao' => '', 'total' => '48', 'first' => 'I', 'keytotal' => 'Instrumentation**48', 'CitationsKeyword' => array( [maximum depth reached] ) ), (int) 2 => array( 'id' => '0389', 'type' => 'Application', 'keyword' => 'Review', 'newKeyword' => '', 'synonyms' => '', 'fao' => '', 'total' => '897', 'first' => 'R', 'keytotal' => 'Review**897', 'CitationsKeyword' => array( [maximum depth reached] ) ) ) ) $i = (int) 13 $path = '' $a = '' $url = 'http://dx.doi.org/10.1016/S0165-9936(98)00069-7' $aus = 'Tuan Vo-Dinh'include - APP/View/Elements/citation.ctp, line 40 View::_evaluate() - CORE/Cake/View/View.php, line 971 View::_render() - CORE/Cake/View/View.php, line 933 View::_renderElement() - CORE/Cake/View/View.php, line 1224 View::element() - CORE/Cake/View/View.php, line 418 include - APP/View/Techniques/view.ctp, line 52 View::_evaluate() - CORE/Cake/View/View.php, line 971 View::_render() - CORE/Cake/View/View.php, line 933 View::render() - CORE/Cake/View/View.php, line 473 Controller::render() - CORE/Cake/Controller/Controller.php, line 968 Dispatcher::_invoke() - CORE/Cake/Routing/Dispatcher.php, line 200 Dispatcher::dispatch() - CORE/Cake/Routing/Dispatcher.php, line 167 [main] - APP/webroot/index.php, line 109
"Identification Of Stimulant Drugs By Surface-enhanced Raman Spectrometry On Colloidal Silver"
Vib. Spectrosc.
1991 Volume 2, Issue 2-3 Pages 145-154
Notice (8): Undefined variable: uid [APP/View/Elements/citation.ctp, line 40]Code Context?>
<?php
if($uid!='') {
$viewFile = '/home/stuchalk/public_html/fad/app/View/Elements/citation.ctp' $dataForView = array( 'data' => array( 'Technique' => array( 'id' => '0410', 'label' => 'Raman', 'level1' => 'Raman', 'level2' => 'surface enhanced', 'level3' => '', 'level4' => '', 'level5' => '', 'synonyms' => 'Surface enhanced raman spectroscopy,SERS', 'champ' => '', 'total' => '15', 'updated' => '0000-00-00 00:00:00', 'name' => 'Raman, surface enhanced', 'nametotal' => 'Raman, surface enhanced**15', 'first' => 'R' ), 'Citation' => array( (int) 0 => array( [maximum depth reached] ), (int) 1 => array( [maximum depth reached] ), (int) 2 => array( [maximum depth reached] ), (int) 3 => array( [maximum depth reached] ), (int) 4 => array( [maximum depth reached] ), (int) 5 => array( [maximum depth reached] ), (int) 6 => array( [maximum depth reached] ), (int) 7 => array( [maximum depth reached] ), (int) 8 => array( [maximum depth reached] ), (int) 9 => array( [maximum depth reached] ), (int) 10 => array( [maximum depth reached] ), (int) 11 => array( [maximum depth reached] ), (int) 12 => array( [maximum depth reached] ), (int) 13 => array( [maximum depth reached] ), (int) 14 => array( [maximum depth reached] ) ) ), 'c' => array( 'id' => '014560', 'authors' => 'Ruperez, A.;Montes, R.;Laserna, J.J.', 'authorsweb' => 'A. Rupérez, R. Montes and J. J. Laserna*', 'title' => 'Identification of stimulant drugs by surface-enhanced raman spectrometry on colloidal silver', 'journal' => 'Vib. Spectrosc.', 'journal_id' => '0655', 'fadid' => 'VIBS1991V0002P00145', 'year' => '1991', 'volume' => '2', 'issue' => '2-3', 'startpage' => '145', 'endpage' => '154', 'type' => 'Journal Article', 'analytes' => ';0862;', 'matrices' => '', 'techniques' => ';0032;0055;0410;', 'keywords' => '', 'abstract' => 'The surface-enhanced Raman (SER) spectra of stimulant drugs, including mefenorex, pentylenetetrazole, -amphetamine and pemoline, were obtained on colloidal silver. Silver colloids are prepared in a single step, at room temperature, by chemical reduction of Ag+ with sodium tetrahydroborate. Spectra are recorded using drug concentrations at the g mL-1 level. Individual drugs can be identified by characteristic vibrational bands. The SER spectrum of human urine and that of human urine spiked with mixtures of stimulant drugs are reported.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'No', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '7', 'urlcheck' => '2014-10-12 02:21:21', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '01097', 'pauthor' => '!Laserna, J.J.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1016/0924-2031(91)85020-N', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Identification of stimulant drugs by surface-enhanced raman spectrometry on colloidal silver', Vib. Spectrosc., 1991 2(2-3) 145-154', 'firstchar' => 'I', 'twochars' => 'Id', 'CitationsTechnique' => array( 'id' => '015315', 'citation_id' => '014560', 'technique_id' => '0410' ), 'Analyte' => array( (int) 0 => array( [maximum depth reached] ) ), 'Matrix' => array(), 'Keyword' => array() ), 'i' => (int) 14 ) $data = array( 'Technique' => array( 'id' => '0410', 'label' => 'Raman', 'level1' => 'Raman', 'level2' => 'surface enhanced', 'level3' => '', 'level4' => '', 'level5' => '', 'synonyms' => 'Surface enhanced raman spectroscopy,SERS', 'champ' => '', 'total' => '15', 'updated' => '0000-00-00 00:00:00', 'name' => 'Raman, surface enhanced', 'nametotal' => 'Raman, surface enhanced**15', 'first' => 'R' ), 'Citation' => array( (int) 0 => array( 'id' => '006258', 'authors' => 'Cabalin, L.M.;Ruperez, A.;Laserna, J.J.', 'authorsweb' => 'L. M. Cabalín, A. Rupérez and J. J. Laserna*', 'title' => 'Flow injection analysis and liquid chromatography: surface enhanced Raman spectrometry detection by using a windowless flow cell', 'journal' => 'Anal. Chim. Acta', 'journal_id' => '0584', 'fadid' => 'ANCA1996V0318P00203', 'year' => '1996', 'volume' => '318', 'issue' => '2', 'startpage' => '203', 'endpage' => '210', 'type' => 'Journal Article', 'analytes' => ';0146;0199;2037;1732;2402;', 'matrices' => '', 'techniques' => ';0032;0410;', 'keywords' => ';0167;0302;', 'abstract' => 'A windowless flow cell was developed for detection by surface-enhanced Raman spectrometry (SERS) in FIA and LC. The flow cell consisted of two stainless-steel tubes (0.16 mm i.d.; 1.4 mm o.d.) mounted on an Al frame so that the ends were ~e;1.6 mm apart. The liquid draining from the upper to the lower tube was supported by surface tension and formed a column (1.4 mm diameter). The mobile phase from the FIA or LC was merged with a silver hydrosol stream then propelled in to the flow cell. The Raman spectra were recorded using a focussed Ar ion laser beam (488 nm; 85 mW) as the source. The performance of the flow cell was optimized using five drugs (amiloride, amiphenazole, 2-mercaptopyridine, pemoline and triamterene) as model analytes. The maximum SERS signal was obtained with flow rates of 0.075 ml/ml and 1.5 ml/ml for the mobile phase and silver hydrosol, respectively. The reproducibility (n = 5) of the FIA-SERS system for the determination of 625 ng amiloride was 1%.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '1', 'urlcheck' => '2014-10-11 16:18:55', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '01097', 'pauthor' => '!Laserna, J.J.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1016/0003-2670(95)00441-6', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Flow injection analysis and liquid chromatography: surface enhanced Raman spectrometry detection by using a windowless flow cell', Anal. Chim. Acta, 1996 318(2) 203-210', 'firstchar' => 'F', 'twochars' => 'Fl', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 1 => array( 'id' => '006451', 'authors' => 'Somsen, G.W.;Coulter, S.K.;Gooijer, C.;Velthorst, N.H.;Brinkman, U.A.T.', 'authorsweb' => 'G. W. Somsen*, S. K. Coulter, C. Gooijer, N. H. Velthorst and U. A. Th. Brinkman', 'title' => 'Coupling of column liquid-chromatography and surface-enhanced resonance raman-spectroscopy via a thin-layer chromatographic plate', 'journal' => 'Anal. Chim. Acta', 'journal_id' => '0584', 'fadid' => 'ANCA1997V0349P00189', 'year' => '1997', 'volume' => '349', 'issue' => '1-3', 'startpage' => '189', 'endpage' => '197', 'type' => 'Journal Article', 'analytes' => '', 'matrices' => '', 'techniques' => ';0410;0038;', 'keywords' => ';0339;0302;', 'abstract' => 'Surface-enhanced resonance Raman (SERR) spectroscopy was used to characterize compounds separated by column liquid chromatography (LC). Three percent of the effluent from a conventional-size LC column were immobilized on a moving thin-layer chromatography (TLC) plate using a spray-jet solvent-elimination interface. Next, colloidal silver was applied to the analyte spots and in situ SERR spectra were recorded with a multichannel micro-Raman spectrometer. Storage of the LC effluent avoids the need to use a continuous-flow of colloidal silver and, in principle allows compounds to be detected independently of LC conditions like eluent composition and flow rate. Using dyes as test compounds, the method was optimized and aspects were studied such as type of TLC plate, LC separation of the dyes, preservation of LC integrity during immobilization, and SERR analysis of the deposited compounds. With a silica TLC plate as deposition substrate, good-quality and characteristic SERR spectra were obtained for the dyes which were separated on a cyanoproyl-modified silica LC column with methanol-water containing the volatile additives ammonium acetate and triethylamine as eluent. The minimum identifiable concentration of the dyes was about 250 ng mL-1 (750 pg applied on the plate). For some strong Raman scatterers such as nile blue and pararosaniline, the major spectral peaks could be observed down to concentrations of 25 ng mL-1. 36 References', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '3', 'urlcheck' => '2014-10-11 16:23:46', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '01300', 'pauthor' => '!Somsen, G.W.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1016/S0003-2670(97)00011-1', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Coupling of column liquid-chromatography and surface-enhanced resonance raman-spectroscopy via a thin-layer chromatographic plate', Anal. Chim. Acta, 1997 349(1-3) 189-197', 'firstchar' => 'C', 'twochars' => 'Co', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array([maximum depth reached]), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 2 => array( 'id' => '006887', 'authors' => 'Laserna, J.J.;Berthod, A.;Winefordner, J.D.', 'authorsweb' => 'J. J. Laserna, A. Berthod and J. D. Winefordner ', 'title' => 'Quantitative analysis by surface-enhanced raman spectrometry on silver hydrosols in a flow injection system', 'journal' => 'Talanta', 'journal_id' => '0569', 'fadid' => 'TALT1987V0034P00745', 'year' => '1987', 'volume' => '34', 'issue' => '8', 'startpage' => '745', 'endpage' => '747', 'type' => 'Journal Article', 'analytes' => ';0056;0401;', 'matrices' => '', 'techniques' => ';0410;', 'keywords' => ';0457;', 'abstract' => 'The application of surface-enhanced Raman scattering (SERS) in quantitative analysis is demonstrated by the determination of 4-aminobenzoic acid(I) and acridin-9-amine(II) on silver suspensions by SERS in a flow injection system. Two peristaltic pumps were used to mix 2 mM NaBH4 and 1 mM AgNO3 and pump the resulting silver suspension through the flow injection analysis system. The flow injection analysis system is described (with diagram). The sample solution contained I in aqueous 40% ethanol or II in ethanol. The calibration graph was rectilinear for 4 to 100 µg mL-1 of I, and the coefficient of variation (n = 6) was 3.2%. The system required cleaning with 40% HNO3 after 10 to 15 injections.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '7', 'urlcheck' => '2014-10-11 14:54:34', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '01400', 'pauthor' => '!Winefordner, J.D.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1016/0039-9140(87)80234-5', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Quantitative analysis by surface-enhanced raman spectrometry on silver hydrosols in a flow injection system', Talanta, 1987 34(8) 745-747', 'firstchar' => 'Q', 'twochars' => 'Qu', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 3 => array( 'id' => '007977', 'authors' => 'Weissenbacher, N.;Lendl, B.;Frank, J.;Wanzenbock, H.D.;Kellner, R.', 'authorsweb' => 'N. Weißenbacher, B. Lendl, J. Frank, H. D. Wanzenböck and R. Kellner', 'title' => 'Surface enhanced raman spectroscopy as a molecular specific detection system in aqueous flow-through systems', 'journal' => 'Analyst', 'journal_id' => '0864', 'fadid' => 'ANAL1998V0123P01057', 'year' => '1998', 'volume' => '123', 'issue' => '5', 'startpage' => '1057', 'endpage' => '1060', 'type' => 'Journal Article', 'analytes' => ';1583;', 'matrices' => '', 'techniques' => ';0410;0409;', 'keywords' => ';0446;0167;0043;0258;', 'abstract' => 'Surface enhanced Raman scattering (SERS) is proposed as a mol. specific technique for direct measurements of organic molecules in aqueous solutions An FT-Raman spectrometer was interfaced with a flow injection manifold operated in the stopped-flow mode enabling reproducible collection of SERS spectra due to the automation of the anal. procedure. For SERS a solid state substrate placed in a newly developed flow-cell was used. Multiple measurements on one single SERS substrate were achieved by rinsing the substrate with reagents such as 3 M KCl or 0.1 M NaOH solutions prior to the next measurements to remove retained analytes from the surface of the SERS substrate. This procedure allowed for improved precision as compared with a conventional batch approach. Quant. aspects were studied by establishing a calibration curve for nicotinic acid which was used as a model analyte. A linear dependence of the recorded SERS intensities from the logarithm of the analyte concentration. was obtained throughout the whole studied concentration. range (0.001-0.1 M, correlation coefficient r2 = 0.97). The standard deviation of the method sx0 is 0.122 mM and detection limit 1.7 mM, respectively. The results demonstrate the potential of SERS spectroscopy to be used as a molecular specific detector in aqueous flow systems such as flow injection anal.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '5', 'urlcheck' => '2014-10-12 09:52:18', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '00241', 'pauthor' => '!Lendl, B.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1039/a705837c', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Surface enhanced raman spectroscopy as a molecular specific detection system in aqueous flow-through systems', Analyst, 1998 123(5) 1057-1060', 'firstchar' => 'S', 'twochars' => 'Su', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 4 => array( 'id' => '008516', 'authors' => 'Force, R.K.', 'authorsweb' => 'R. Ken Force', 'title' => 'Surface-enhanced raman spectroscopy at a silver electrode as a detector in flow injection analysis', 'journal' => 'Anal. Chem.', 'journal_id' => '0499', 'fadid' => 'ANCH1988V0060P01987', 'year' => '1988', 'volume' => '60', 'issue' => '18', 'startpage' => '1987', 'endpage' => '1989', 'type' => 'Journal Article', 'analytes' => '', 'matrices' => '', 'techniques' => ';0214;0410;', 'keywords' => '', 'abstract' => 'A Ag-ring reference (diameter 5 mm) and a Ag-disc working electrode (diameter 3 mm) were sealed 1 mm apart in a Pyrex tube (o.d. 7 mm) and polished smooth. The Ag ring was anodized at 0.4 V (vs. a SCE) in 0.1 M KCl to produce a Ag - AgCl reference electrode with a potential of ~0.190 to ~0.200 V (vs. a NHE) in the 0.1 M KCl used as mobile phase and supporting electrolyte. The apparatus was applied in flow injection analysis for 50.0 mM pyridine (1 mL injections) in KCl flowing at 2 mL min-1. The potential was held at -0.6 V. Raman spectra were recorded from 990 to 1050 cm-1 in 2-cm-1 steps. A detection limit of ~250 nM was achieved. A Ag-ring reference (diameter 5 mm) and a Ag-disc working electrode (diameter 3 mm) were sealed 1 mm apart in a Pyrex tube (o.d. 7 mm) and polished smooth.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '0', 'urlcheck' => '2014-10-11 18:35:15', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '00965', 'pauthor' => '!Force, R.K.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1021/ac00169a033', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Surface-enhanced raman spectroscopy at a silver electrode as a detector in flow injection analysis', Anal. Chem., 1988 60(18) 1987-1989', 'firstchar' => 'S', 'twochars' => 'Su', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array([maximum depth reached]), 'Matrix' => array([maximum depth reached]), 'Keyword' => array([maximum depth reached]) ), (int) 5 => array( 'id' => '008566', 'authors' => 'Pothier, N.J.;Force, R.K.', 'authorsweb' => 'Neil J. Pothier and R. Ken Force', 'title' => 'Surface-enhanced raman spectroscopy at a silver electrode as a detection system in flowing streams', 'journal' => 'Anal. Chem.', 'journal_id' => '0499', 'fadid' => 'ANCH1990V0062P00678', 'year' => '1990', 'volume' => '62', 'issue' => '7', 'startpage' => '678', 'endpage' => '680', 'type' => 'Journal Article', 'analytes' => ';0064;2356;0747;', 'matrices' => '', 'techniques' => ';0410;0210;0038;', 'keywords' => ';0276;0446;0109;', 'abstract' => 'A three-electrode surface-enhanced Raman spectroscopy detector, with a Ag working electrode, Pt foil auxiliary electrode and SCE reference and a cell volume of 30 µL, was evaluated for use with HPLC and flow injection analysis. In a flowing system, the analyte is rapidly removed from the electrode surface in 10 s, and spectra was obtained in 5 s with an optical multichannel analyzer.. Under stopped-flow conditions, detection limits were 175, 233 and 211 pmol for adenine, thymine and cytosine, respectively.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '3', 'urlcheck' => '2014-10-11 18:35:47', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '00965', 'pauthor' => '!Force, R.K.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1021/ac00206a005', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Surface-enhanced raman spectroscopy at a silver electrode as a detection system in flowing streams', Anal. Chem., 1990 62(7) 678-680', 'firstchar' => 'S', 'twochars' => 'Su', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 6 => array( 'id' => '008582', 'authors' => 'Ni, F.;Sheng, R.S.;Cotton, T.M.', 'authorsweb' => 'Fan Ni, Rongsheng Sheng, and Therese M. Cotton', 'title' => 'Flow injection analysis and real-time detection of RNA bases by surface-enhanced Raman spectroscopy', 'journal' => 'Anal. Chem.', 'journal_id' => '0499', 'fadid' => 'ANCH1990V0062P01958', 'year' => '1990', 'volume' => '62', 'issue' => '18', 'startpage' => '1958', 'endpage' => '1963', 'type' => 'Journal Article', 'analytes' => ';0365;', 'matrices' => '', 'techniques' => ';0410;0038;', 'keywords' => ';0216;0320;0302;', 'abstract' => 'Surface-enhanced Raman scattering (SERS) spectroscopy has been successfully interfaced with a flow injection analysis system to detect RNA bases in real time. Four of the major base components of RNA, uracil, cytosine, adenine, and guanine, were introduced into the flow injection system and were mixed with a Ag sol prior to SERS measurements. Several experimental parameters including pH, temperature, flow rate, and tubing materials were examined, and their impact on the SERS spectra is presented here. The feasibility of interfacing flow injection based SERS detection methods with liquid or high performance liquid chromatography for the detection of individual components in a complex mixture is also assessed.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '2', 'urlcheck' => '2014-10-11 18:36:03', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => null, 'pauthor' => 'Cotton, T.M.', 'address' => 'Department of Chemistry, Iowa State University, Ames, Iowa 50011 USA', 'email' => 'NA', 'notes' => null, 'url' => '10.1021/ac00217a012', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Flow injection analysis and real-time detection of RNA bases by surface-enhanced Raman spectroscopy', Anal. Chem., 1990 62(18) 1958-1963', 'firstchar' => 'F', 'twochars' => 'Fl', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 7 => array( 'id' => '009344', 'authors' => 'Laserna, J.J.;Berthod, A.;Winefordner, J.D.', 'authorsweb' => 'J. J. Laserna, A. Berthod and J. D. Winefordner*', 'title' => 'Evaluation and optimization of experimental conditions for surface-enhanced raman detection of analytes in flow injection analysis', 'journal' => 'Microchem. J.', 'journal_id' => '0639', 'fadid' => 'MCHJ1988V0038P00125', 'year' => '1988', 'volume' => '38', 'issue' => '1', 'startpage' => '125', 'endpage' => '126', 'type' => 'Journal Article', 'analytes' => ';0399;0055;', 'matrices' => '', 'techniques' => ';0410;', 'keywords' => ';0110;0302;', 'abstract' => 'The Raman instrumentation included a 100-mW Ar ion laser operated at 514.5 nm, a double monochromator and a cooled Hamamatsu R-928 photomultiplier tube with photon counting system as the detector. Vertically polarized light was used, with right-angle geometry for Raman sampling and a long-wave-pass glass filter to suppress Rayleigh-scattered light. Spectra were obtained by single scans. Flow streams of 1 mM AgNO3 and 2 mM NaBH4 were merged to form a silver hydrosol matrix, and 4-aminobenzoic acid(I) and acridin-9-amine were used successfully as test analytes. The detector flow-cell was a silica tube (3 mm x 0.5 mm;~0.6 µL). For maximum signal response with I, the total flow rate was 0.7 mL min-1 and the pH was adjusted with HNO3 to 3.2.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '14', 'urlcheck' => '2014-10-12 00:26:48', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '01400', 'pauthor' => '!Winefordner, J.D.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1016/0026-265X(88)90011-2', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Evaluation and optimization of experimental conditions for surface-enhanced raman detection of analytes in flow injection analysis', Microchem. J., 1988 38(1) 125-126', 'firstchar' => 'E', 'twochars' => 'Ev', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 8 => array( 'id' => '010331', 'authors' => 'Gouveia, V.J.P.;Gutz, I.G.R.;Rubim, J.C.', 'authorsweb' => 'Vitor J. P. Gouveia, Ivano G. Gutz and Joel C. Rubim*', 'title' => 'New spectroelectrochemical cell for flow injection analysis and its application to the determination of iron(II) down to the femtomole level by surface-enhanced resonance Raman scattering (SERRS)', 'journal' => 'J. Electroanal. Chem.', 'journal_id' => '0709', 'fadid' => 'JECH1994V0371P00037', 'year' => '1994', 'volume' => '371', 'issue' => '1-2', 'startpage' => '37', 'endpage' => '42', 'type' => 'Journal Article', 'analytes' => ';1294;', 'matrices' => ';0404;', 'techniques' => ';0226;0410;', 'keywords' => '', 'abstract' => 'A principal feature of the cell (diagrams presented) is the in situ renewal of the surface-enhanced Raman-active Ag substratum. Before injection of the analyte, Ag+ are introduced, and Ag is electro-deposited on a vitreous-carbon electrode; after the Raman spectrum of the adsorbed analyte has been recorded, the Ag is removed by anodic stripping. Fe(II) was determined in a 130 µL injected sample as its tris(bipyridyl) complex, which exhibits both a resonance Raman effect when excited with Ar+ laser 514.5 nm radiation and surface-enhanced Raman scattering when adsorbed on Ag. The calibration graph was sigmoidal, but usable for 10 nM-10 µM-Fe(II), and the detection limit was 1 nM, which represented detection of Fe(II) at the femtomole level.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '13', 'urlcheck' => '2014-10-12 09:04:46', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => null, 'pauthor' => 'Rubim, J.C.', 'address' => 'Institututo de Química da Universidade de São Paulo C.P.20780, 01498, São Paulo, SP Brazil', 'email' => 'NA', 'notes' => null, 'url' => '10.1016/0022-0728(93)03220-J', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''New spectroelectrochemical cell for flow injection analysis and its application to the determination of iron(II) down to the femtomole level by surface-enhanced resonance Raman scattering (SERRS)', J. Electroanal. Chem., 1994 371(1-2) 37-42', 'firstchar' => 'N', 'twochars' => 'Ne', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array( [maximum depth reached] ), 'Keyword' => array([maximum depth reached]) ), (int) 9 => array( 'id' => '013707', 'authors' => 'Weissenbacher, N.;Lendl, B.;Frank, J.;Wanzenbock, H.D.;Mizaikoff, B.;Kellner, R.', 'authorsweb' => 'N. Weissenbacher*, B. Lendl, J. Frank, H. D. Wanzenböck, B. Mizaikoff and R. Kellner', 'title' => 'Continuous surface-enhanced raman-spectroscopy for the detection of trace organic pollutants in aqueous systems', 'journal' => 'J. Mol. Struct.', 'journal_id' => '0628', 'fadid' => 'JMRS1997V0410P00539', 'year' => '1997', 'volume' => '410', 'issue' => '1', 'startpage' => '539', 'endpage' => '542', 'type' => 'Journal Article', 'analytes' => ';2050;1583;1774;0504;1478;', 'matrices' => '', 'techniques' => ';0410;', 'keywords' => '', 'abstract' => 'In Raman spectroscopy, detection limits for organic pollutants in water can be lowered by several orders of magnitude when surface enhanced techniques are applied. In this work a continuous analytical device based on flow injection analysis using SERS detection is proposed. This system was tested with model analytes such as pyridine and nicotinic acid as well as several pesticides (carbendazim, metazachlorine). (C) 1997 Elsevier Science B.V. 22 References', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'No', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '3', 'urlcheck' => '2014-10-12 09:49:43', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => null, 'pauthor' => 'Weissenbacher, N.', 'address' => 'Institute for Analytical Chemistry, Vienna University of Technology, Getreidemarkt 9/151, A-1060