Contact Info
Stuart Chalk, Ph.D.
Department of Chemistry
University of North Florida
Phone: 1-904-620-1938
Fax: 1-904-620-3535
Email: schalk@unf.edu
Website: @unf
Mass spectrometry
Citations 5
"Notched Broad-band Excitation Of Ions In A Bench-top Ion-trap Mass Spectrometer"
Anal. Chim. Acta
1995 Volume 303, Issue 2-3 Pages 149-162
Notice (8): Undefined variable: uid [APP/View/Elements/citation.ctp, line 40]Manish H. Soni, Philip S. H. Wong and R. Graham Cooks*Code Context?>
<?php
if($uid!='') {
$viewFile = '/home/stuchalk/public_html/fad/app/View/Elements/citation.ctp' $dataForView = array( 'data' => array( 'Technique' => array( 'id' => '0353', 'label' => 'Mass spectrometry', 'level1' => 'Mass spectrometry', 'level2' => 'ion trap', 'level3' => '', 'level4' => '', 'level5' => '', 'synonyms' => 'Ion trap mass spectrometry,ITMS', 'champ' => '', 'total' => '5', 'updated' => '0000-00-00 00:00:00', 'name' => 'Mass spectrometry, ion trap', 'nametotal' => 'Mass spectrometry, ion trap**5', 'first' => 'M' ), 'Citation' => array( (int) 0 => array( [maximum depth reached] ), (int) 1 => array( [maximum depth reached] ), (int) 2 => array( [maximum depth reached] ), (int) 3 => array( [maximum depth reached] ), (int) 4 => array( [maximum depth reached] ) ) ), 'c' => array( 'id' => '006091', 'authors' => 'Soni, M.H.;Wong, P.S.H.;Cooks, R.G.', 'authorsweb' => 'Manish H. Soni, Philip S. H. Wong and R. Graham Cooks*', 'title' => 'Notched broad-band excitation of ions in a bench-top ion-trap mass spectrometer', 'journal' => 'Anal. Chim. Acta', 'journal_id' => '0584', 'fadid' => 'ANCA1995V0303P00149', 'year' => '1995', 'volume' => '303', 'issue' => '2-3', 'startpage' => '149', 'endpage' => '162', 'type' => 'Journal Article', 'analytes' => ';1664;', 'matrices' => '', 'techniques' => ';0359;0353;', 'keywords' => ';0216;0343;', 'abstract' => 'Selected ion-monitoring, tandem MS and mass-selective ion-molecule collisional applications of the title technique were demonstrated over the mass range 0-650 Da, with a 600 kHz pulse width and a He reverse-flow (2 ml/min) dual membrane sample introduction system with 70 eV EI. A variety of model volatile organic molecules in aqueous and aqueous 1% methanol were introduced using a flow injection system as described by Bauer and Cooks (Am. Lab., Oct 1993) and detected to parts per quadrillion levels.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '0', 'urlcheck' => '2014-10-11 16:14:36', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '01454', 'pauthor' => '!Cooks, R.G.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1016/0003-2670(94)00521-M', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Notched broad-band excitation of ions in a bench-top ion-trap mass spectrometer', Anal. Chim. Acta, 1995 303(2-3) 149-162', 'firstchar' => 'N', 'twochars' => 'No', 'CitationsTechnique' => array( 'id' => '002646', 'citation_id' => '006091', 'technique_id' => '0353' ), 'Analyte' => array( (int) 0 => array( [maximum depth reached] ) ), 'Matrix' => array(), 'Keyword' => array( (int) 0 => array( [maximum depth reached] ), (int) 1 => array( [maximum depth reached] ) ) ), 'i' => (int) 0 ) $data = array( 'Technique' => array( 'id' => '0353', 'label' => 'Mass spectrometry', 'level1' => 'Mass spectrometry', 'level2' => 'ion trap', 'level3' => '', 'level4' => '', 'level5' => '', 'synonyms' => 'Ion trap mass spectrometry,ITMS', 'champ' => '', 'total' => '5', 'updated' => '0000-00-00 00:00:00', 'name' => 'Mass spectrometry, ion trap', 'nametotal' => 'Mass spectrometry, ion trap**5', 'first' => 'M' ), 'Citation' => array( (int) 0 => array( 'id' => '006091', 'authors' => 'Soni, M.H.;Wong, P.S.H.;Cooks, R.G.', 'authorsweb' => 'Manish H. Soni, Philip S. H. Wong and R. Graham Cooks*', 'title' => 'Notched broad-band excitation of ions in a bench-top ion-trap mass spectrometer', 'journal' => 'Anal. Chim. Acta', 'journal_id' => '0584', 'fadid' => 'ANCA1995V0303P00149', 'year' => '1995', 'volume' => '303', 'issue' => '2-3', 'startpage' => '149', 'endpage' => '162', 'type' => 'Journal Article', 'analytes' => ';1664;', 'matrices' => '', 'techniques' => ';0359;0353;', 'keywords' => ';0216;0343;', 'abstract' => 'Selected ion-monitoring, tandem MS and mass-selective ion-molecule collisional applications of the title technique were demonstrated over the mass range 0-650 Da, with a 600 kHz pulse width and a He reverse-flow (2 ml/min) dual membrane sample introduction system with 70 eV EI. A variety of model volatile organic molecules in aqueous and aqueous 1% methanol were introduced using a flow injection system as described by Bauer and Cooks (Am. Lab., Oct 1993) and detected to parts per quadrillion levels.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '0', 'urlcheck' => '2014-10-11 16:14:36', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '01454', 'pauthor' => '!Cooks, R.G.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1016/0003-2670(94)00521-M', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Notched broad-band excitation of ions in a bench-top ion-trap mass spectrometer', Anal. Chim. Acta, 1995 303(2-3) 149-162', 'firstchar' => 'N', 'twochars' => 'No', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 1 => array( 'id' => '007036', 'authors' => 'Bauer, S.J.;Cooks, R.G.', 'authorsweb' => 'Scott J. Bauer and R. Graham Cooks', 'title' => 'Performance of an ion trap mass spectrometer modified to accept a direct insertion membrane probe in analysis of low level pollutants in water', 'journal' => 'Talanta', 'journal_id' => '0569', 'fadid' => 'TALT1993V0040P01031', 'year' => '1993', 'volume' => '40', 'issue' => '7', 'startpage' => '1031', 'endpage' => '1039', 'type' => 'Journal Article', 'analytes' => ';0379;0381;0936;', 'matrices' => ';1079;', 'techniques' => ';0353;', 'keywords' => ';0253;0216;0344;0415;0444;', 'abstract' => 'Modifications to a Finnigan ITS40 ion trap mass spectrometer are described which allow its use with a direct insertion probe. Details are given of the fabrication of a membrane probe for such an instrument. The membrane probe, which includes facilities for heating the fluid, employs a tubular membrane which is located just outside the electrode structure of the ion trap. Direct analysis of organic compounds in aqueous solution is demonstrated using a silicone membrane, with compounds such as benzene, chlorobenzene and dichloroethene being studied below the 1 ppb level. The effects of operating parameters including probe temperature, ion trap temperature, solution flow rate, mass spectrometer scan speed, and instrument tune procedures are explored in detail. Optimum performance characteristics are identified and trace level detection of eight organic compounds in the parts per trillion range is demonstrated. In seven of the eight cases studied, detection limits are below the EPA practical limit of quantitation levels. It is shown that the most sensitive mode of operation is when steady state passage of the analyte across the membrane is achieved, however, the time required for this is long in the case of some samples, and a dynamic flow injection analysis procedure is then favored. Use of the modified inlet system for solid sample introduction via a standard solids probe is also demonstrated. [References: 19]', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '15', 'urlcheck' => '2014-10-11 15:00:38', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '01454', 'pauthor' => '!Cooks, R.G.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1016/0039-9140(93)80163-L', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Performance of an ion trap mass spectrometer modified to accept a direct insertion membrane probe in analysis of low level pollutants in water', Talanta, 1993 40(7) 1031-1039', 'firstchar' => 'P', 'twochars' => 'Pe', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array( [maximum depth reached] ), 'Keyword' => array( [maximum depth reached] ) ), (int) 2 => array( 'id' => '007146', 'authors' => 'Kasthurikrishnan, N.;Cooks, R.G.', 'authorsweb' => 'N. Kasthurikrishnan and R. G. Cooks*, ', 'title' => 'Online flow injection analysis of volatile organic compounds in seawater by membrane introduction mass spectrometry', 'journal' => 'Talanta', 'journal_id' => '0569', 'fadid' => 'TALT1995V0042P01325', 'year' => '1995', 'volume' => '42', 'issue' => '9', 'startpage' => '1325', 'endpage' => '1334', 'type' => 'Journal Article', 'analytes' => ';1665;', 'matrices' => ';0397;', 'techniques' => ';0353;0359;', 'keywords' => ';0462;0344;', 'abstract' => 'FIA with membrane introduction MS for the determination of volatile organic compounds (VOC) in seawater was examined and was compared to measurements made in water. MS was performed using a benchtop ion-trap mass spectrometer and characterization of various aspects of the flow injection and ion-trap combination was carried out. The analyte responses were linear over several orders of magnitude (e.g. for methylene chloride), independent of seawater pH (e.g. for chlorobenzene) and independent of matrix effects for the VOC studied. A comparison of the performance of a microporous (Teflon) membrane was made, and the former provided lower detection limits which were in the parts-per-trillion range. The microporous membrane provided faster response times by a factor of four to five for relatively more polar compounds.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '2007-07-11 02:34:54', 'hits' => '16', 'urlcheck' => '2014-10-11 15:03:44', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '01454', 'pauthor' => '!Cooks, R.G.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1016/0039-9140(95)01588-3', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Online flow injection analysis of volatile organic compounds in seawater by membrane introduction mass spectrometry', Talanta, 1995 42(9) 1325-1334', 'firstchar' => 'O', 'twochars' => 'On', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array( [maximum depth reached] ), 'Keyword' => array( [maximum depth reached] ) ), (int) 3 => array( 'id' => '014174', 'authors' => 'Hayward, M.J.;Riederer, D.E.;Kotiaho, T.;Cooks, R.G.;Austin, G.D.;Syu, M.J.;Tsao, G.T.', 'authorsweb' => 'M.J. Hayward, D.E. Riederer, T. Kotiaho, R.G. Cooks, G.D. Austin, M.-J. Syu and G.T. Tsao', 'title' => 'Bioreactor monitoring using flow injection - membrane-introduction mass spectrometry with an ion-trap detector', 'journal' => 'Process Control Qual.', 'journal_id' => '0987', 'fadid' => 'PCQU1991V0001P00105', 'year' => '1991', 'volume' => '1', 'issue' => '2', 'startpage' => '105', 'endpage' => '116', 'type' => 'Journal Article', 'analytes' => ';0466;0021;0009;0931;', 'matrices' => ';0405;', 'techniques' => ';0353;0359;', 'keywords' => ';0253;', 'abstract' => 'Plugs (250 µL) of the fermentation broth were injected into a stream (1 mL min-1) of water, followed after 2 min by a plug of standard solution The flow injection system delivered the sample and standard to a special membrane probe (described with diagram) to introduce analytes into an ion-trap mass spectrometer. The major liquid phase products (e.g., butane-2,3-diol, acetoin, acetic acid and ethanol) were monitored by scanning from m/e 45 to 95 by water CI at 20 µTorr. The monitoring sequence was consecutive plugs of fermentation broth, standard, broth acidified with 0.1 M HCl (1:1) and acidified standard and monitoring at m/e 47, 61, 73 and 89. Acidification was required for acetic acid to permeate the membrane.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '2007-07-10 10:15:43', 'hits' => '0', 'urlcheck' => '2006-05-20 19:24:38', 'urlcheckcode' => '', 'pauthor_id' => '01454', 'pauthor' => '!Cooks, R.G.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => 'NA', 'urltype' => 'NA', 'gotpdf' => 'no', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Bioreactor monitoring using flow injection - membrane-introduction mass spectrometry with an ion-trap detector', Process Control Qual., 1991 1(2) 105-116', 'firstchar' => 'B', 'twochars' => 'Bi', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array( [maximum depth reached] ), 'Keyword' => array( [maximum depth reached] ) ), (int) 4 => array( 'id' => '014275', 'authors' => 'Dejarme, L.E.;Bauer, S.J.;Cooks, R.G.;Lauritsen, F.R.;Kotiaho, T.;Graf, T.', 'authorsweb' => 'L. E. Dejarme, S. J. Bauer, R. G. Cooks, F. R. Lauritsen, T. Kotiaho, T. Graf', 'title' => 'Jet separator membrane introduction mass spectrometry for online quantitation of volatile organic compounds in aqueous solutions', 'journal' => 'Rapid Commun. Mass Spectrom.', 'journal_id' => '0783', 'fadid' => 'RCMS1993V0007P00935', 'year' => '1993', 'volume' => '7', 'issue' => '10', 'startpage' => '935', 'endpage' => '942', 'type' => 'Journal Article', 'analytes' => ';1665;', 'matrices' => ';1079;', 'techniques' => ';0353;0363;0359;', 'keywords' => ';0253;', 'abstract' => 'A new technique is described for the direct detection of volatile organic compounds present in aqueous solutions at levels in the parts per trillion range. The sample is enriched in analyte in two consecutive stages; one utilizes a semi-permeable membrane interface and the other a jet separator. The analyte solution is sampled as it flows coaxially over a semi-permeable capillary membrane, the interior of which is continuously purged by helium. The permeate is pneumatically transported to the mass spectrometer via a jet separator, which is used to remove excess helium and water from the analyte vapor stream. Data are reported for two instruments; in one the membrane/jet separator system is interfaced to a single quadrupole mass spectrometer via a custom-built metal jet separator with a variable capillary gap. In the second, an ion-trap mass spectrometer is used in conjunction with a conventional fixed-gap quartz jet separator. Typical analyte response times are 2-5 min at ambient temperature, and flow injection methods are used for sample delivery. Direct comparisons, made under identical instrumental conditions, show that the jet separator system displays even lower detection limits than a conventional direct-insertion membrane probe. Detection limits in the range 30 parts per trillion to a few parts per billion are observed for selected volatile organic compounds and the response is linear over 3 orders of magnitude. [References: 31]', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'No', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '8', 'urlcheck' => '2014-10-12 08:55:07', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '01454', 'pauthor' => '!Cooks, R.G.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1002/rcm.1290071015', 'urltype' => 'doi', 'gotpdf' => 'no', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Jet separator membrane introduction mass spectrometry for online quantitation of volatile organic compounds in aqueous solutions', Rapid Commun. Mass Spectrom., 1993 7(10) 935-942', 'firstchar' => 'J', 'twochars' => 'Je', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array( [maximum depth reached] ), 'Keyword' => array( [maximum depth reached] ) ) ) ) $c = array( 'id' => '006091', 'authors' => 'Soni, M.H.;Wong, P.S.H.;Cooks, R.G.', 'authorsweb' => 'Manish H. Soni, Philip S. H. Wong and R. Graham Cooks*', 'title' => 'Notched broad-band excitation of ions in a bench-top ion-trap mass spectrometer', 'journal' => 'Anal. Chim. Acta', 'journal_id' => '0584', 'fadid' => 'ANCA1995V0303P00149', 'year' => '1995', 'volume' => '303', 'issue' => '2-3', 'startpage' => '149', 'endpage' => '162', 'type' => 'Journal Article', 'analytes' => ';1664;', 'matrices' => '', 'techniques' => ';0359;0353;', 'keywords' => ';0216;0343;', 'abstract' => 'Selected ion-monitoring, tandem MS and mass-selective ion-molecule collisional applications of the title technique were demonstrated over the mass range 0-650 Da, with a 600 kHz pulse width and a He reverse-flow (2 ml/min) dual membrane sample introduction system with 70 eV EI. A variety of model volatile organic molecules in aqueous and aqueous 1% methanol were introduced using a flow injection system as described by Bauer and Cooks (Am. Lab., Oct 1993) and detected to parts per quadrillion levels.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '0', 'urlcheck' => '2014-10-11 16:14:36', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '01454', 'pauthor' => '!Cooks, R.G.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1016/0003-2670(94)00521-M', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Notched broad-band excitation of ions in a bench-top ion-trap mass spectrometer', Anal. Chim. Acta, 1995 303(2-3) 149-162', 'firstchar' => 'N', 'twochars' => 'No', 'CitationsTechnique' => array( 'id' => '002646', 'citation_id' => '006091', 'technique_id' => '0353' ), 'Analyte' => array( (int) 0 => array( 'id' => '01664', 'name' => 'Organic compounds', 'iupac_name' => '', 'casrn' => '', 'synonyms' => '', 'total' => '31', 'inchi' => '', 'inchikey' => '', 'formula' => '', 'oxstate' => null, 'url' => '', 'charge' => null, 'class1' => '', 'class2' => '', 'class3' => '', 'class4' => '', 'class5' => '', 'isgroup' => 'no', 'checked' => 'no', 'citation_count' => '0', 'updated' => '2015-12-11 09:53:17', 'first' => 'O', 'nametotal' => 'Organic compounds**31', 'AnalytesCitation' => array( [maximum depth reached] ) ) ), 'Matrix' => array(), 'Keyword' => array( (int) 0 => array( 'id' => '0216', 'type' => 'Hardware', 'keyword' => 'Interface', 'newKeyword' => '', 'synonyms' => '', 'fao' => '', 'total' => '130', 'first' => 'I', 'keytotal' => 'Interface**130', 'CitationsKeyword' => array( [maximum depth reached] ) ), (int) 1 => array( 'id' => '0343', 'type' => 'Detection limit', 'keyword' => 'PPQ', 'newKeyword' => '', 'synonyms' => '', 'fao' => '', 'total' => '3', 'first' => 'P', 'keytotal' => 'PPQ**3', 'CitationsKeyword' => array( [maximum depth reached] ) ) ) ) $i = (int) 0 $path = '' $a = '' $url = 'http://dx.doi.org/10.1016/0003-2670(94)00521-M' $aus = 'Manish H. Soni, Philip S. H. Wong and R. Graham Cooks*'include - APP/View/Elements/citation.ctp, line 40 View::_evaluate() - CORE/Cake/View/View.php, line 971 View::_render() - CORE/Cake/View/View.php, line 933 View::_renderElement() - CORE/Cake/View/View.php, line 1224 View::element() - CORE/Cake/View/View.php, line 418 include - APP/View/Techniques/view.ctp, line 52 View::_evaluate() - CORE/Cake/View/View.php, line 971 View::_render() - CORE/Cake/View/View.php, line 933 View::render() - CORE/Cake/View/View.php, line 473 Controller::render() - CORE/Cake/Controller/Controller.php, line 968 Dispatcher::_invoke() - CORE/Cake/Routing/Dispatcher.php, line 200 Dispatcher::dispatch() - CORE/Cake/Routing/Dispatcher.php, line 167 [main] - APP/webroot/index.php, line 109
"Performance Of An Ion Trap Mass Spectrometer Modified To Accept A Direct Insertion Membrane Probe In Analysis Of Low Level Pollutants In Water"
Talanta
1993 Volume 40, Issue 7 Pages 1031-1039
Notice (8): Undefined variable: uid [APP/View/Elements/citation.ctp, line 40]Scott J. Bauer and R. Graham CooksCode Context?>
<?php
if($uid!='') {
$viewFile = '/home/stuchalk/public_html/fad/app/View/Elements/citation.ctp' $dataForView = array( 'data' => array( 'Technique' => array( 'id' => '0353', 'label' => 'Mass spectrometry', 'level1' => 'Mass spectrometry', 'level2' => 'ion trap', 'level3' => '', 'level4' => '', 'level5' => '', 'synonyms' => 'Ion trap mass spectrometry,ITMS', 'champ' => '', 'total' => '5', 'updated' => '0000-00-00 00:00:00', 'name' => 'Mass spectrometry, ion trap', 'nametotal' => 'Mass spectrometry, ion trap**5', 'first' => 'M' ), 'Citation' => array( (int) 0 => array( [maximum depth reached] ), (int) 1 => array( [maximum depth reached] ), (int) 2 => array( [maximum depth reached] ), (int) 3 => array( [maximum depth reached] ), (int) 4 => array( [maximum depth reached] ) ) ), 'c' => array( 'id' => '007036', 'authors' => 'Bauer, S.J.;Cooks, R.G.', 'authorsweb' => 'Scott J. Bauer and R. Graham Cooks', 'title' => 'Performance of an ion trap mass spectrometer modified to accept a direct insertion membrane probe in analysis of low level pollutants in water', 'journal' => 'Talanta', 'journal_id' => '0569', 'fadid' => 'TALT1993V0040P01031', 'year' => '1993', 'volume' => '40', 'issue' => '7', 'startpage' => '1031', 'endpage' => '1039', 'type' => 'Journal Article', 'analytes' => ';0379;0381;0936;', 'matrices' => ';1079;', 'techniques' => ';0353;', 'keywords' => ';0253;0216;0344;0415;0444;', 'abstract' => 'Modifications to a Finnigan ITS40 ion trap mass spectrometer are described which allow its use with a direct insertion probe. Details are given of the fabrication of a membrane probe for such an instrument. The membrane probe, which includes facilities for heating the fluid, employs a tubular membrane which is located just outside the electrode structure of the ion trap. Direct analysis of organic compounds in aqueous solution is demonstrated using a silicone membrane, with compounds such as benzene, chlorobenzene and dichloroethene being studied below the 1 ppb level. The effects of operating parameters including probe temperature, ion trap temperature, solution flow rate, mass spectrometer scan speed, and instrument tune procedures are explored in detail. Optimum performance characteristics are identified and trace level detection of eight organic compounds in the parts per trillion range is demonstrated. In seven of the eight cases studied, detection limits are below the EPA practical limit of quantitation levels. It is shown that the most sensitive mode of operation is when steady state passage of the analyte across the membrane is achieved, however, the time required for this is long in the case of some samples, and a dynamic flow injection analysis procedure is then favored. Use of the modified inlet system for solid sample introduction via a standard solids probe is also demonstrated. [References: 19]', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '15', 'urlcheck' => '2014-10-11 15:00:38', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '01454', 'pauthor' => '!Cooks, R.G.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1016/0039-9140(93)80163-L', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Performance of an ion trap mass spectrometer modified to accept a direct insertion membrane probe in analysis of low level pollutants in water', Talanta, 1993 40(7) 1031-1039', 'firstchar' => 'P', 'twochars' => 'Pe', 'CitationsTechnique' => array( 'id' => '003878', 'citation_id' => '007036', 'technique_id' => '0353' ), 'Analyte' => array( (int) 0 => array( [maximum depth reached] ), (int) 1 => array( [maximum depth reached] ), (int) 2 => array( [maximum depth reached] ) ), 'Matrix' => array( (int) 0 => array( [maximum depth reached] ) ), 'Keyword' => array( (int) 0 => array( [maximum depth reached] ), (int) 1 => array( [maximum depth reached] ), (int) 2 => array( [maximum depth reached] ), (int) 3 => array( [maximum depth reached] ), (int) 4 => array( [maximum depth reached] ) ) ), 'i' => (int) 1 ) $data = array( 'Technique' => array( 'id' => '0353', 'label' => 'Mass spectrometry', 'level1' => 'Mass spectrometry', 'level2' => 'ion trap', 'level3' => '', 'level4' => '', 'level5' => '', 'synonyms' => 'Ion trap mass spectrometry,ITMS', 'champ' => '', 'total' => '5', 'updated' => '0000-00-00 00:00:00', 'name' => 'Mass spectrometry, ion trap', 'nametotal' => 'Mass spectrometry, ion trap**5', 'first' => 'M' ), 'Citation' => array( (int) 0 => array( 'id' => '006091', 'authors' => 'Soni, M.H.;Wong, P.S.H.;Cooks, R.G.', 'authorsweb' => 'Manish H. Soni, Philip S. H. Wong and R. Graham Cooks*', 'title' => 'Notched broad-band excitation of ions in a bench-top ion-trap mass spectrometer', 'journal' => 'Anal. Chim. Acta', 'journal_id' => '0584', 'fadid' => 'ANCA1995V0303P00149', 'year' => '1995', 'volume' => '303', 'issue' => '2-3', 'startpage' => '149', 'endpage' => '162', 'type' => 'Journal Article', 'analytes' => ';1664;', 'matrices' => '', 'techniques' => ';0359;0353;', 'keywords' => ';0216;0343;', 'abstract' => 'Selected ion-monitoring, tandem MS and mass-selective ion-molecule collisional applications of the title technique were demonstrated over the mass range 0-650 Da, with a 600 kHz pulse width and a He reverse-flow (2 ml/min) dual membrane sample introduction system with 70 eV EI. A variety of model volatile organic molecules in aqueous and aqueous 1% methanol were introduced using a flow injection system as described by Bauer and Cooks (Am. Lab., Oct 1993) and detected to parts per quadrillion levels.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '0', 'urlcheck' => '2014-10-11 16:14:36', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '01454', 'pauthor' => '!Cooks, R.G.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1016/0003-2670(94)00521-M', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Notched broad-band excitation of ions in a bench-top ion-trap mass spectrometer', Anal. Chim. Acta, 1995 303(2-3) 149-162', 'firstchar' => 'N', 'twochars' => 'No', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 1 => array( 'id' => '007036', 'authors' => 'Bauer, S.J.;Cooks, R.G.', 'authorsweb' => 'Scott J. Bauer and R. Graham Cooks', 'title' => 'Performance of an ion trap mass spectrometer modified to accept a direct insertion membrane probe in analysis of low level pollutants in water', 'journal' => 'Talanta', 'journal_id' => '0569', 'fadid' => 'TALT1993V0040P01031', 'year' => '1993', 'volume' => '40', 'issue' => '7', 'startpage' => '1031', 'endpage' => '1039', 'type' => 'Journal Article', 'analytes' => ';0379;0381;0936;', 'matrices' => ';1079;', 'techniques' => ';0353;', 'keywords' => ';0253;0216;0344;0415;0444;', 'abstract' => 'Modifications to a Finnigan ITS40 ion trap mass spectrometer are described which allow its use with a direct insertion probe. Details are given of the fabrication of a membrane probe for such an instrument. The membrane probe, which includes facilities for heating the fluid, employs a tubular membrane which is located just outside the electrode structure of the ion trap. Direct analysis of organic compounds in aqueous solution is demonstrated using a silicone membrane, with compounds such as benzene, chlorobenzene and dichloroethene being studied below the 1 ppb level. The effects of operating parameters including probe temperature, ion trap temperature, solution flow rate, mass spectrometer scan speed, and instrument tune procedures are explored in detail. Optimum performance characteristics are identified and trace level detection of eight organic compounds in the parts per trillion range is demonstrated. In seven of the eight cases studied, detection limits are below the EPA practical limit of quantitation levels. It is shown that the most sensitive mode of operation is when steady state passage of the analyte across the membrane is achieved, however, the time required for this is long in the case of some samples, and a dynamic flow injection analysis procedure is then favored. Use of the modified inlet system for solid sample introduction via a standard solids probe is also demonstrated. [References: 19]', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '15', 'urlcheck' => '2014-10-11 15:00:38', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '01454', 'pauthor' => '!Cooks, R.G.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1016/0039-9140(93)80163-L', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Performance of an ion trap mass spectrometer modified to accept a direct insertion membrane probe in analysis of low level pollutants in water', Talanta, 1993 40(7) 1031-1039', 'firstchar' => 'P', 'twochars' => 'Pe', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array( [maximum depth reached] ), 'Keyword' => array( [maximum depth reached] ) ), (int) 2 => array( 'id' => '007146', 'authors' => 'Kasthurikrishnan, N.;Cooks, R.G.', 'authorsweb' => 'N. Kasthurikrishnan and R. G. Cooks*, ', 'title' => 'Online flow injection analysis of volatile organic compounds in seawater by membrane introduction mass spectrometry', 'journal' => 'Talanta', 'journal_id' => '0569', 'fadid' => 'TALT1995V0042P01325', 'year' => '1995', 'volume' => '42', 'issue' => '9', 'startpage' => '1325', 'endpage' => '1334', 'type' => 'Journal Article', 'analytes' => ';1665;', 'matrices' => ';0397;', 'techniques' => ';0353;0359;', 'keywords' => ';0462;0344;', 'abstract' => 'FIA with membrane introduction MS for the determination of volatile organic compounds (VOC) in seawater was examined and was compared to measurements made in water. MS was performed using a benchtop ion-trap mass spectrometer and characterization of various aspects of the flow injection and ion-trap combination was carried out. The analyte responses were linear over several orders of magnitude (e.g. for methylene chloride), independent of seawater pH (e.g. for chlorobenzene) and independent of matrix effects for the VOC studied. A comparison of the performance of a microporous (Teflon) membrane was made, and the former provided lower detection limits which were in the parts-per-trillion range. The microporous membrane provided faster response times by a factor of four to five for relatively more polar compounds.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '2007-07-11 02:34:54', 'hits' => '16', 'urlcheck' => '2014-10-11 15:03:44', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '01454', 'pauthor' => '!Cooks, R.G.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1016/0039-9140(95)01588-3', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Online flow injection analysis of volatile organic compounds in seawater by membrane introduction mass spectrometry', Talanta, 1995 42(9) 1325-1334', 'firstchar' => 'O', 'twochars' => 'On', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array( [maximum depth reached] ), 'Keyword' => array( [maximum depth reached] ) ), (int) 3 => array( 'id' => '014174', 'authors' => 'Hayward, M.J.;Riederer, D.E.;Kotiaho, T.;Cooks, R.G.;Austin, G.D.;Syu, M.J.;Tsao, G.T.', 'authorsweb' => 'M.J. Hayward, D.E. Riederer, T. Kotiaho, R.G. Cooks, G.D. Austin, M.-J. Syu and G.T. Tsao', 'title' => 'Bioreactor monitoring using flow injection - membrane-introduction mass spectrometry with an ion-trap detector', 'journal' => 'Process Control Qual.', 'journal_id' => '0987', 'fadid' => 'PCQU1991V0001P00105', 'year' => '1991', 'volume' => '1', 'issue' => '2', 'startpage' => '105', 'endpage' => '116', 'type' => 'Journal Article', 'analytes' => ';0466;0021;0009;0931;', 'matrices' => ';0405;', 'techniques' => ';0353;0359;', 'keywords' => ';0253;', 'abstract' => 'Plugs (250 µL) of the fermentation broth were injected into a stream (1 mL min-1) of water, followed after 2 min by a plug of standard solution The flow injection system delivered the sample and standard to a special membrane probe (described with diagram) to introduce analytes into an ion-trap mass spectrometer. The major liquid phase products (e.g., butane-2,3-diol, acetoin, acetic acid and ethanol) were monitored by scanning from m/e 45 to 95 by water CI at 20 µTorr. The monitoring sequence was consecutive plugs of fermentation broth, standard, broth acidified with 0.1 M HCl (1:1) and acidified standard and monitoring at m/e 47, 61, 73 and 89. Acidification was required for acetic acid to permeate the membrane.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '2007-07-10 10:15:43', 'hits' => '0', 'urlcheck' => '2006-05-20 19:24:38', 'urlcheckcode' => '', 'pauthor_id' => '01454', 'pauthor' => '!Cooks, R.G.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => 'NA', 'urltype' => 'NA', 'gotpdf' => 'no', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Bioreactor monitoring using flow injection - membrane-introduction mass spectrometry with an ion-trap detector', Process Control Qual., 1991 1(2) 105-116', 'firstchar' => 'B', 'twochars' => 'Bi', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array( [maximum depth reached] ), 'Keyword' => array( [maximum depth reached] ) ), (int) 4 => array( 'id' => '014275', 'authors' => 'Dejarme, L.E.;Bauer, S.J.;Cooks, R.G.;Lauritsen, F.R.;Kotiaho, T.;Graf, T.', 'authorsweb' => 'L. E. Dejarme, S. J. Bauer, R. G. Cooks, F. R. Lauritsen, T. Kotiaho, T. Graf', 'title' => 'Jet separator membrane introduction mass spectrometry for online quantitation of volatile organic compounds in aqueous solutions', 'journal' => 'Rapid Commun. Mass Spectrom.', 'journal_id' => '0783', 'fadid' => 'RCMS1993V0007P00935', 'year' => '1993', 'volume' => '7', 'issue' => '10', 'startpage' => '935', 'endpage' => '942', 'type' => 'Journal Article', 'analytes' => ';1665;', 'matrices' => ';1079;', 'techniques' => ';0353;0363;0359;', 'keywords' => ';0253;', 'abstract' => 'A new technique is described for the direct detection of volatile organic compounds present in aqueous solutions at levels in the parts per trillion range. The sample is enriched in analyte in two consecutive stages; one utilizes a semi-permeable membrane interface and the other a jet separator. The analyte solution is sampled as it flows coaxially over a semi-permeable capillary membrane, the interior of which is continuously purged by helium. The permeate is pneumatically transported to the mass spectrometer via a jet separator, which is used to remove excess helium and water from the analyte vapor stream. Data are reported for two instruments; in one the membrane/jet separator system is interfaced to a single quadrupole mass spectrometer via a custom-built metal jet separator with a variable capillary gap. In the second, an ion-trap mass spectrometer is used in conjunction with a conventional fixed-gap quartz jet separator. Typical analyte response times are 2-5 min at ambient temperature, and flow injection methods are used for sample delivery. Direct comparisons, made under identical instrumental conditions, show that the jet separator system displays even lower detection limits than a conventional direct-insertion membrane probe. Detection limits in the range 30 parts per trillion to a few parts per billion are observed for selected volatile organic compounds and the response is linear over 3 orders of magnitude. [References: 31]', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'No', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '8', 'urlcheck' => '2014-10-12 08:55:07', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '01454', 'pauthor' => '!Cooks, R.G.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1002/rcm.1290071015', 'urltype' => 'doi', 'gotpdf' => 'no', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Jet separator membrane introduction mass spectrometry for online quantitation of volatile organic compounds in aqueous solutions', Rapid Commun. Mass Spectrom., 1993 7(10) 935-942', 'firstchar' => 'J', 'twochars' => 'Je', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array( [maximum depth reached] ), 'Keyword' => array( [maximum depth reached] ) ) ) ) $c = array( 'id' => '007036', 'authors' => 'Bauer, S.J.;Cooks, R.G.', 'authorsweb' => 'Scott J. Bauer and R. Graham Cooks', 'title' => 'Performance of an ion trap mass spectrometer modified to accept a direct insertion membrane probe in analysis of low level pollutants in water', 'journal' => 'Talanta', 'journal_id' => '0569', 'fadid' => 'TALT1993V0040P01031', 'year' => '1993', 'volume' => '40', 'issue' => '7', 'startpage' => '1031', 'endpage' => '1039', 'type' => 'Journal Article', 'analytes' => ';0379;0381;0936;', 'matrices' => ';1079;', 'techniques' => ';0353;', 'keywords' => ';0253;0216;0344;0415;0444;', 'abstract' => 'Modifications to a Finnigan ITS40 ion trap mass spectrometer are described which allow its use with a direct insertion probe. Details are given of the fabrication of a membrane probe for such an instrument. The membrane probe, which includes facilities for heating the fluid, employs a tubular membrane which is located just outside the electrode structure of the ion trap. Direct analysis of organic compounds in aqueous solution is demonstrated using a silicone membrane, with compounds such as benzene, chlorobenzene and dichloroethene being studied below the 1 ppb level. The effects of operating parameters including probe temperature, ion trap temperature, solution flow rate, mass spectrometer scan speed, and instrument tune procedures are explored in detail. Optimum performance characteristics are identified and trace level detection of eight organic compounds in the parts per trillion range is demonstrated. In seven of the eight cases studied, detection limits are below the EPA practical limit of quantitation levels. It is shown that the most sensitive mode of operation is when steady state passage of the analyte across the membrane is achieved, however, the time required for this is long in the case of some samples, and a dynamic flow injection analysis procedure is then favored. Use of the modified inlet system for solid sample introduction via a standard solids probe is also demonstrated. [References: 19]', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '15', 'urlcheck' => '2014-10-11 15:00:38', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '01454', 'pauthor' => '!Cooks, R.G.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1016/0039-9140(93)80163-L', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Performance of an ion trap mass spectrometer modified to accept a direct insertion membrane probe in analysis of low level pollutants in water', Talanta, 1993 40(7) 1031-1039', 'firstchar' => 'P', 'twochars' => 'Pe', 'CitationsTechnique' => array( 'id' => '003878', 'citation_id' => '007036', 'technique_id' => '0353' ), 'Analyte' => array( (int) 0 => array( 'id' => '00379', 'name' => 'Benzene', 'iupac_name' => 'benzene', 'casrn' => '71-43-2', 'synonyms' => '(6)annulene; Benzene; Benzene ; benzine; Benzol; Benzolene; bicarburet of hydrogen; carbon oil; Coal naphtha; cyclohexatriene; mineral naphtha; motor benzol; nitration benzene; Phene; Phenyl hydride; pyrobenzol', 'total' => '9', 'inchi' => 'InChI=1S/C6H6/c1-2-4-6-5-3-1/h1-6H', 'inchikey' => 'UHOVQNZJYSORNB-UHFFFAOYSA-N', 'formula' => 'C6H6', 'oxstate' => '', 'url' => '', 'charge' => '0', 'class1' => 'Organic compound', 'class2' => 'NA', 'class3' => 'NA', 'class4' => 'Molecule', 'class5' => '', 'isgroup' => '', 'checked' => 'yes', 'citation_count' => '0', 'updated' => '2015-10-23 09:53:10', 'first' => 'B', 'nametotal' => 'Benzene**9', 'AnalytesCitation' => array( [maximum depth reached] ) ), (int) 1 => array( 'id' => '00381', 'name' => 'Chlorobenzene', 'iupac_name' => 'chlorobenzene', 'casrn' => '108-90-7', 'synonyms' => 'Benzene chloride; chlorobenzene; Chlorobenzene ; Chlorobenzene Mono; Chlorobenzol; MCB; monochlorobenzene; Monochlorobenzol; Phenyl Chloride', 'total' => '2', 'inchi' => 'InChI=1S/C6H5Cl/c7-6-4-2-1-3-5-6/h1-5H', 'inchikey' => 'MVPPADPHJFYWMZ-UHFFFAOYSA-N', 'formula' => 'C6H5Cl', 'oxstate' => '', 'url' => '', 'charge' => '0', 'class1' => 'Organic compound', 'class2' => 'NA', 'class3' => 'NA', 'class4' => 'Molecule', 'class5' => '', 'isgroup' => '', 'checked' => 'yes', 'citation_count' => '0', 'updated' => '2015-10-23 09:53:11', 'first' => 'C', 'nametotal' => 'Chlorobenzene**2', 'AnalytesCitation' => array( [maximum depth reached] ) ), (int) 2 => array( 'id' => '00936', 'name' => 'Dichloroethene', 'iupac_name' => '1,1-dichloroethene', 'casrn' => '25323-30-2', 'synonyms' => 'dichloroethene; Dichloroethene (all isomers); Dichloroethylene (all isomers); ', 'total' => '1', 'inchi' => 'InChI=1S/C2H2Cl2/c1-2(3)4/h1H2', 'inchikey' => 'LGXVIGDEPROXKC-UHFFFAOYSA-N', 'formula' => 'C2H2Cl2', 'oxstate' => 'Zero', 'url' => '', 'charge' => '0', 'class1' => 'Organic compound', 'class2' => 'NA', 'class3' => 'NA', 'class4' => 'Molecule', 'class5' => '', 'isgroup' => '', 'checked' => 'yes', 'citation_count' => '0', 'updated' => '2015-12-11 16:18:02', 'first' => 'D', 'nametotal' => 'Dichloroethene**1', 'AnalytesCitation' => array( [maximum depth reached] ) ) ), 'Matrix' => array( (int) 0 => array( 'id' => '1079', 'label' => 'Water', 'level1' => 'Water', 'level2' => '', 'level3' => '', 'level4' => '', 'level5' => '', 'synonyms' => '', 'total' => '308', 'url' => '', 'updated' => '2015-12-09 21:04:43', 'name' => 'Water', 'nametotal' => 'Water**308', 'first' => 'W', 'CitationsMatrix' => array( [maximum depth reached] ) ) ), 'Keyword' => array( (int) 0 => array( 'id' => '0253', 'type' => 'Membrane', 'keyword' => 'Membrane', 'newKeyword' => '', 'synonyms' => '', 'fao' => '', 'total' => '215', 'first' => 'M', 'keytotal' => 'Membrane**215', 'CitationsKeyword' => array( [maximum depth reached] ) ), (int) 1 => array( 'id' => '0216', 'type' => 'Hardware', 'keyword' => 'Interface', 'newKeyword' => '', 'synonyms' => '', 'fao' => '', 'total' => '130', 'first' => 'I', 'keytotal' => 'Interface**130', 'CitationsKeyword' => array( [maximum depth reached] ) ), (int) 2 => array( 'id' => '0344', 'type' => 'Detection limit', 'keyword' => 'PPT', 'newKeyword' => '', 'synonyms' => '', 'fao' => '', 'total' => '7', 'first' => 'P', 'keytotal' => 'PPT**7', 'CitationsKeyword' => array( [maximum depth reached] ) ), (int) 3 => array( 'id' => '0415', 'type' => 'Membrane', 'keyword' => 'Silicone membrane', 'newKeyword' => '', 'synonyms' => '', 'fao' => '', 'total' => '25', 'first' => 'S', 'keytotal' => 'Silicone membrane**25', 'CitationsKeyword' => array( [maximum depth reached] ) ), (int) 4 => array( 'id' => '0444', 'type' => 'Theory', 'keyword' => 'Steady state', 'newKeyword' => '', 'synonyms' => '', 'fao' => '', 'total' => '18', 'first' => 'S', 'keytotal' => 'Steady state**18', 'CitationsKeyword' => array( [maximum depth reached] ) ) ) ) $i = (int) 1 $path = '' $a = '' $url = 'http://dx.doi.org/10.1016/0039-9140(93)80163-L' $aus = 'Scott J. Bauer and R. Graham Cooks'include - APP/View/Elements/citation.ctp, line 40 View::_evaluate() - CORE/Cake/View/View.php, line 971 View::_render() - CORE/Cake/View/View.php, line 933 View::_renderElement() - CORE/Cake/View/View.php, line 1224 View::element() - CORE/Cake/View/View.php, line 418 include - APP/View/Techniques/view.ctp, line 52 View::_evaluate() - CORE/Cake/View/View.php, line 971 View::_render() - CORE/Cake/View/View.php, line 933 View::render() - CORE/Cake/View/View.php, line 473 Controller::render() - CORE/Cake/Controller/Controller.php, line 968 Dispatcher::_invoke() - CORE/Cake/Routing/Dispatcher.php, line 200 Dispatcher::dispatch() - CORE/Cake/Routing/Dispatcher.php, line 167 [main] - APP/webroot/index.php, line 109
"Online Flow Injection Analysis Of Volatile Organic Compounds In Seawater By Membrane Introduction Mass Spectrometry"
Talanta
1995 Volume 42, Issue 9 Pages 1325-1334
Notice (8): Undefined variable: uid [APP/View/Elements/citation.ctp, line 40]N. Kasthurikrishnan and R. G. Cooks*,Code Context?>
<?php
if($uid!='') {
$viewFile = '/home/stuchalk/public_html/fad/app/View/Elements/citation.ctp' $dataForView = array( 'data' => array( 'Technique' => array( 'id' => '0353', 'label' => 'Mass spectrometry', 'level1' => 'Mass spectrometry', 'level2' => 'ion trap', 'level3' => '', 'level4' => '', 'level5' => '', 'synonyms' => 'Ion trap mass spectrometry,ITMS', 'champ' => '', 'total' => '5', 'updated' => '0000-00-00 00:00:00', 'name' => 'Mass spectrometry, ion trap', 'nametotal' => 'Mass spectrometry, ion trap**5', 'first' => 'M' ), 'Citation' => array( (int) 0 => array( [maximum depth reached] ), (int) 1 => array( [maximum depth reached] ), (int) 2 => array( [maximum depth reached] ), (int) 3 => array( [maximum depth reached] ), (int) 4 => array( [maximum depth reached] ) ) ), 'c' => array( 'id' => '007146', 'authors' => 'Kasthurikrishnan, N.;Cooks, R.G.', 'authorsweb' => 'N. Kasthurikrishnan and R. G. Cooks*, ', 'title' => 'Online flow injection analysis of volatile organic compounds in seawater by membrane introduction mass spectrometry', 'journal' => 'Talanta', 'journal_id' => '0569', 'fadid' => 'TALT1995V0042P01325', 'year' => '1995', 'volume' => '42', 'issue' => '9', 'startpage' => '1325', 'endpage' => '1334', 'type' => 'Journal Article', 'analytes' => ';1665;', 'matrices' => ';0397;', 'techniques' => ';0353;0359;', 'keywords' => ';0462;0344;', 'abstract' => 'FIA with membrane introduction MS for the determination of volatile organic compounds (VOC) in seawater was examined and was compared to measurements made in water. MS was performed using a benchtop ion-trap mass spectrometer and characterization of various aspects of the flow injection and ion-trap combination was carried out. The analyte responses were linear over several orders of magnitude (e.g. for methylene chloride), independent of seawater pH (e.g. for chlorobenzene) and independent of matrix effects for the VOC studied. A comparison of the performance of a microporous (Teflon) membrane was made, and the former provided lower detection limits which were in the parts-per-trillion range. The microporous membrane provided faster response times by a factor of four to five for relatively more polar compounds.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '2007-07-11 02:34:54', 'hits' => '16', 'urlcheck' => '2014-10-11 15:03:44', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '01454', 'pauthor' => '!Cooks, R.G.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1016/0039-9140(95)01588-3', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Online flow injection analysis of volatile organic compounds in seawater by membrane introduction mass spectrometry', Talanta, 1995 42(9) 1325-1334', 'firstchar' => 'O', 'twochars' => 'On', 'CitationsTechnique' => array( 'id' => '004028', 'citation_id' => '007146', 'technique_id' => '0353' ), 'Analyte' => array( (int) 0 => array( [maximum depth reached] ) ), 'Matrix' => array( (int) 0 => array( [maximum depth reached] ) ), 'Keyword' => array( (int) 0 => array( [maximum depth reached] ), (int) 1 => array( [maximum depth reached] ) ) ), 'i' => (int) 2 ) $data = array( 'Technique' => array( 'id' => '0353', 'label' => 'Mass spectrometry', 'level1' => 'Mass spectrometry', 'level2' => 'ion trap', 'level3' => '', 'level4' => '', 'level5' => '', 'synonyms' => 'Ion trap mass spectrometry,ITMS', 'champ' => '', 'total' => '5', 'updated' => '0000-00-00 00:00:00', 'name' => 'Mass spectrometry, ion trap', 'nametotal' => 'Mass spectrometry, ion trap**5', 'first' => 'M' ), 'Citation' => array( (int) 0 => array( 'id' => '006091', 'authors' => 'Soni, M.H.;Wong, P.S.H.;Cooks, R.G.', 'authorsweb' => 'Manish H. Soni, Philip S. H. Wong and R. Graham Cooks*', 'title' => 'Notched broad-band excitation of ions in a bench-top ion-trap mass spectrometer', 'journal' => 'Anal. Chim. Acta', 'journal_id' => '0584', 'fadid' => 'ANCA1995V0303P00149', 'year' => '1995', 'volume' => '303', 'issue' => '2-3', 'startpage' => '149', 'endpage' => '162', 'type' => 'Journal Article', 'analytes' => ';1664;', 'matrices' => '', 'techniques' => ';0359;0353;', 'keywords' => ';0216;0343;', 'abstract' => 'Selected ion-monitoring, tandem MS and mass-selective ion-molecule collisional applications of the title technique were demonstrated over the mass range 0-650 Da, with a 600 kHz pulse width and a He reverse-flow (2 ml/min) dual membrane sample introduction system with 70 eV EI. A variety of model volatile organic molecules in aqueous and aqueous 1% methanol were introduced using a flow injection system as described by Bauer and Cooks (Am. Lab., Oct 1993) and detected to parts per quadrillion levels.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '0', 'urlcheck' => '2014-10-11 16:14:36', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '01454', 'pauthor' => '!Cooks, R.G.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1016/0003-2670(94)00521-M', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Notched broad-band excitation of ions in a bench-top ion-trap mass spectrometer', Anal. Chim. Acta, 1995 303(2-3) 149-162', 'firstchar' => 'N', 'twochars' => 'No', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 1 => array( 'id' => '007036', 'authors' => 'Bauer, S.J.;Cooks, R.G.', 'authorsweb' => 'Scott J. Bauer and R. Graham Cooks', 'title' => 'Performance of an ion trap mass spectrometer modified to accept a direct insertion membrane probe in analysis of low level pollutants in water', 'journal' => 'Talanta', 'journal_id' => '0569', 'fadid' => 'TALT1993V0040P01031', 'year' => '1993', 'volume' => '40', 'issue' => '7', 'startpage' => '1031', 'endpage' => '1039', 'type' => 'Journal Article', 'analytes' => ';0379;0381;0936;', 'matrices' => ';1079;', 'techniques' => ';0353;', 'keywords' => ';0253;0216;0344;0415;0444;', 'abstract' => 'Modifications to a Finnigan ITS40 ion trap mass spectrometer are described which allow its use with a direct insertion probe. Details are given of the fabrication of a membrane probe for such an instrument. The membrane probe, which includes facilities for heating the fluid, employs a tubular membrane which is located just outside the electrode structure of the ion trap. Direct analysis of organic compounds in aqueous solution is demonstrated using a silicone membrane, with compounds such as benzene, chlorobenzene and dichloroethene being studied below the 1 ppb level. The effects of operating parameters including probe temperature, ion trap temperature, solution flow rate, mass spectrometer scan speed, and instrument tune procedures are explored in detail. Optimum performance characteristics are identified and trace level detection of eight organic compounds in the parts per trillion range is demonstrated. In seven of the eight cases studied, detection limits are below the EPA practical limit of quantitation levels. It is shown that the most sensitive mode of operation is when steady state passage of the analyte across the membrane is achieved, however, the time required for this is long in the case of some samples, and a dynamic flow injection analysis procedure is then favored. Use of the modified inlet system for solid sample introduction via a standard solids probe is also demonstrated. [References: 19]', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '15', 'urlcheck' => '2014-10-11 15:00:38', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '01454', 'pauthor' => '!Cooks, R.G.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1016/0039-9140(93)80163-L', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Performance of an ion trap mass spectrometer modified to accept a direct insertion membrane probe in analysis of low level pollutants in water', Talanta, 1993 40(7) 1031-1039', 'firstchar' => 'P', 'twochars' => 'Pe', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array( [maximum depth reached] ), 'Keyword' => array( [maximum depth reached] ) ), (int) 2 => array( 'id' => '007146', 'authors' => 'Kasthurikrishnan, N.;Cooks, R.G.', 'authorsweb' => 'N. Kasthurikrishnan and R. G. Cooks*, ', 'title' => 'Online flow injection analysis of volatile organic compounds in seawater by membrane introduction mass spectrometry', 'journal' => 'Talanta', 'journal_id' => '0569', 'fadid' => 'TALT1995V0042P01325', 'year' => '1995', 'volume' => '42', 'issue' => '9', 'startpage' => '1325', 'endpage' => '1334', 'type' => 'Journal Article', 'analytes' => ';1665;', 'matrices' => ';0397;', 'techniques' => ';0353;0359;', 'keywords' => ';0462;0344;', 'abstract' => 'FIA with membrane introduction MS for the determination of volatile organic compounds (VOC) in seawater was examined and was compared to measurements made in water. MS was performed using a benchtop ion-trap mass spectrometer and characterization of various aspects of the flow injection and ion-trap combination was carried out. The analyte responses were linear over several orders of magnitude (e.g. for methylene chloride), independent of seawater pH (e.g. for chlorobenzene) and independent of matrix effects for the VOC studied. A comparison of the performance of a microporous (Teflon) membrane was made, and the former provided lower detection limits which were in the parts-per-trillion range. The microporous membrane provided faster response times by a factor of four to five for relatively more polar compounds.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '2007-07-11 02:34:54', 'hits' => '16', 'urlcheck' => '2014-10-11 15:03:44', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '01454', 'pauthor' => '!Cooks, R.G.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1016/0039-9140(95)01588-3', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Online flow injection analysis of volatile organic compounds in seawater by membrane introduction mass spectrometry', Talanta, 1995 42(9) 1325-1334', 'firstchar' => 'O', 'twochars' => 'On', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array( [maximum depth reached] ), 'Keyword' => array( [maximum depth reached] ) ), (int) 3 => array( 'id' => '014174', 'authors' => 'Hayward, M.J.;Riederer, D.E.;Kotiaho, T.;Cooks, R.G.;Austin, G.D.;Syu, M.J.;Tsao, G.T.', 'authorsweb' => 'M.J. Hayward, D.E. Riederer, T. Kotiaho, R.G. Cooks, G.D. Austin, M.-J. Syu and G.T. Tsao', 'title' => 'Bioreactor monitoring using flow injection - membrane-introduction mass spectrometry with an ion-trap detector', 'journal' => 'Process Control Qual.', 'journal_id' => '0987', 'fadid' => 'PCQU1991V0001P00105', 'year' => '1991', 'volume' => '1', 'issue' => '2', 'startpage' => '105', 'endpage' => '116', 'type' => 'Journal Article', 'analytes' => ';0466;0021;0009;0931;', 'matrices' => ';0405;', 'techniques' => ';0353;0359;', 'keywords' => ';0253;', 'abstract' => 'Plugs (250 µL) of the fermentation broth were injected into a stream (1 mL min-1) of water, followed after 2 min by a plug of standard solution The flow injection system delivered the sample and standard to a special membrane probe (described with diagram) to introduce analytes into an ion-trap mass spectrometer. The major liquid phase products (e.g., butane-2,3-diol, acetoin, acetic acid and ethanol) were monitored by scanning from m/e 45 to 95 by water CI at 20 µTorr. The monitoring sequence was consecutive plugs of fermentation broth, standard, broth acidified with 0.1 M HCl (1:1) and acidified standard and monitoring at m/e 47, 61, 73 and 89. Acidification was required for acetic acid to permeate the membrane.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '2007-07-10 10:15:43', 'hits' => '0', 'urlcheck' => '2006-05-20 19:24:38', 'urlcheckcode' => '', 'pauthor_id' => '01454', 'pauthor' => '!Cooks, R.G.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => 'NA', 'urltype' => 'NA', 'gotpdf' => 'no', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Bioreactor monitoring using flow injection - membrane-introduction mass spectrometry with an ion-trap detector', Process Control Qual., 1991 1(2) 105-116', 'firstchar' => 'B', 'twochars' => 'Bi', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array( [maximum depth reached] ), 'Keyword' => array( [maximum depth reached] ) ), (int) 4 => array( 'id' => '014275', 'authors' => 'Dejarme, L.E.;Bauer, S.J.;Cooks, R.G.;Lauritsen, F.R.;Kotiaho, T.;Graf, T.', 'authorsweb' => 'L. E. Dejarme, S. J. Bauer, R. G. Cooks, F. R. Lauritsen, T. Kotiaho, T. Graf', 'title' => 'Jet separator membrane introduction mass spectrometry for online quantitation of volatile organic compounds in aqueous solutions', 'journal' => 'Rapid Commun. Mass Spectrom.', 'journal_id' => '0783', 'fadid' => 'RCMS1993V0007P00935', 'year' => '1993', 'volume' => '7', 'issue' => '10', 'startpage' => '935', 'endpage' => '942', 'type' => 'Journal Article', 'analytes' => ';1665;', 'matrices' => ';1079;', 'techniques' => ';0353;0363;0359;', 'keywords' => ';0253;', 'abstract' => 'A new technique is described for the direct detection of volatile organic compounds present in aqueous solutions at levels in the parts per trillion range. The sample is enriched in analyte in two consecutive stages; one utilizes a semi-permeable membrane interface and the other a jet separator. The analyte solution is sampled as it flows coaxially over a semi-permeable capillary membrane, the interior of which is continuously purged by helium. The permeate is pneumatically transported to the mass spectrometer via a jet separator, which is used to remove excess helium and water from the analyte vapor stream. Data are reported for two instruments; in one the membrane/jet separator system is interfaced to a single quadrupole mass spectrometer via a custom-built metal jet separator with a variable capillary gap. In the second, an ion-trap mass spectrometer is used in conjunction with a conventional fixed-gap quartz jet separator. Typical analyte response times are 2-5 min at ambient temperature, and flow injection methods are used for sample delivery. Direct comparisons, made under identical instrumental conditions, show that the jet separator system displays even lower detection limits than a conventional direct-insertion membrane probe. Detection limits in the range 30 parts per trillion to a few parts per billion are observed for selected volatile organic compounds and the response is linear over 3 orders of magnitude. [References: 31]', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'No', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '8', 'urlcheck' => '2014-10-12 08:55:07', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '01454', 'pauthor' => '!Cooks, R.G.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1002/rcm.1290071015', 'urltype' => 'doi', 'gotpdf' => 'no', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Jet separator membrane introduction mass spectrometry for online quantitation of volatile organic compounds in aqueous solutions', Rapid Commun. Mass Spectrom., 1993 7(10) 935-942', 'firstchar' => 'J', 'twochars' => 'Je', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array( [maximum depth reached] ), 'Keyword' => array( [maximum depth reached] ) ) ) ) $c = array( 'id' => '007146', 'authors' => 'Kasthurikrishnan, N.;Cooks, R.G.', 'authorsweb' => 'N. Kasthurikrishnan and R. G. Cooks*, ', 'title' => 'Online flow injection analysis of volatile organic compounds in seawater by membrane introduction mass spectrometry', 'journal' => 'Talanta', 'journal_id' => '0569', 'fadid' => 'TALT1995V0042P01325', 'year' => '1995', 'volume' => '42', 'issue' => '9', 'startpage' => '1325', 'endpage' => '1334', 'type' => 'Journal Article', 'analytes' => ';1665;', 'matrices' => ';0397;', 'techniques' => ';0353;0359;', 'keywords' => ';0462;0344;', 'abstract' => 'FIA with membrane introduction MS for the determination of volatile organic compounds (VOC) in seawater was examined and was compared to measurements made in water. MS was performed using a benchtop ion-trap mass spectrometer and characterization of various aspects of the flow injection and ion-trap combination was carried out. The analyte responses were linear over several orders of magnitude (e.g. for methylene chloride), independent of seawater pH (e.g. for chlorobenzene) and independent of matrix effects for the VOC studied. A comparison of the performance of a microporous (Teflon) membrane was made, and the former provided lower detection limits which were in the parts-per-trillion range. The microporous membrane provided faster response times by a factor of four to five for relatively more polar compounds.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '2007-07-11 02:34:54', 'hits' => '16', 'urlcheck' => '2014-10-11 15:03:44', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '01454', 'pauthor' => '!Cooks, R.G.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1016/0039-9140(95)01588-3', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Online flow injection analysis of volatile organic compounds in seawater by membrane introduction mass spectrometry', Talanta, 1995 42(9) 1325-1334', 'firstchar' => 'O', 'twochars' => 'On', 'CitationsTechnique' => array( 'id' => '004028', 'citation_id' => '007146', 'technique_id' => '0353' ), 'Analyte' => array( (int) 0 => array( 'id' => '01665', 'name' => 'Organic compounds, volatile', 'iupac_name' => '', 'casrn' => '', 'synonyms' => '', 'total' => '2', 'inchi' => '', 'inchikey' => '', 'formula' => '', 'oxstate' => null, 'url' => '', 'charge' => null, 'class1' => '', 'class2' => '', 'class3' => '', 'class4' => '', 'class5' => '', 'isgroup' => 'no', 'checked' => 'no', 'citation_count' => '0', 'updated' => '2015-12-11 09:53:17', 'first' => 'O', 'nametotal' => 'Organic compounds, volatile**2', 'AnalytesCitation' => array( [maximum depth reached] ) ) ), 'Matrix' => array( (int) 0 => array( 'id' => '0397', 'label' => 'Sea ', 'level1' => 'Environmental', 'level2' => 'water', 'level3' => 'sea', 'level4' => '', 'level5' => '', 'synonyms' => 'seawater,ocean water', 'total' => '312', 'url' => '', 'updated' => '2015-12-08 19:41:10', 'name' => 'Environmental, water, sea', 'nametotal' => 'Environmental, water, sea**312', 'first' => 'E', 'CitationsMatrix' => array( [maximum depth reached] ) ) ), 'Keyword' => array( (int) 0 => array( 'id' => '0462', 'type' => 'Membrane', 'keyword' => 'Teflon membrane', 'newKeyword' => '', 'synonyms' => '', 'fao' => '', 'total' => '160', 'first' => 'T', 'keytotal' => 'Teflon membrane**160', 'CitationsKeyword' => array( [maximum depth reached] ) ), (int) 1 => array( 'id' => '0344', 'type' => 'Detection limit', 'keyword' => 'PPT', 'newKeyword' => '', 'synonyms' => '', 'fao' => '', 'total' => '7', 'first' => 'P', 'keytotal' => 'PPT**7', 'CitationsKeyword' => array( [maximum depth reached] ) ) ) ) $i = (int) 2 $path = '' $a = '' $url = 'http://dx.doi.org/10.1016/0039-9140(95)01588-3' $aus = 'N. Kasthurikrishnan and R. G. Cooks*, 'include - APP/View/Elements/citation.ctp, line 40 View::_evaluate() - CORE/Cake/View/View.php, line 971 View::_render() - CORE/Cake/View/View.php, line 933 View::_renderElement() - CORE/Cake/View/View.php, line 1224 View::element() - CORE/Cake/View/View.php, line 418 include - APP/View/Techniques/view.ctp, line 52 View::_evaluate() - CORE/Cake/View/View.php, line 971 View::_render() - CORE/Cake/View/View.php, line 933 View::render() - CORE/Cake/View/View.php, line 473 Controller::render() - CORE/Cake/Controller/Controller.php, line 968 Dispatcher::_invoke() - CORE/Cake/Routing/Dispatcher.php, line 200 Dispatcher::dispatch() - CORE/Cake/Routing/Dispatcher.php, line 167 [main] - APP/webroot/index.php, line 109
"Bioreactor Monitoring Using Flow Injection - Membrane-introduction Mass Spectrometry With An Ion-trap Detector"
Process Control Qual.
1991 Volume 1, Issue 2 Pages 105-116
Notice (8): Undefined variable: uid [APP/View/Elements/citation.ctp, line 40]M.J. Hayward, D.E. Riederer, T. Kotiaho, R.G. Cooks, G.D. Austin, M.-J. Syu and G.T. TsaoCode Context?>
<?php
if($uid!='') {
$viewFile = '/home/stuchalk/public_html/fad/app/View/Elements/citation.ctp' $dataForView = array( 'data' => array( 'Technique' => array( 'id' => '0353', 'label' => 'Mass spectrometry', 'level1' => 'Mass spectrometry', 'level2' => 'ion trap', 'level3' => '', 'level4' => '', 'level5' => '', 'synonyms' => 'Ion trap mass spectrometry,ITMS', 'champ' => '', 'total' => '5', 'updated' => '0000-00-00 00:00:00', 'name' => 'Mass spectrometry, ion trap', 'nametotal' => 'Mass spectrometry, ion trap**5', 'first' => 'M' ), 'Citation' => array( (int) 0 => array( [maximum depth reached] ), (int) 1 => array( [maximum depth reached] ), (int) 2 => array( [maximum depth reached] ), (int) 3 => array( [maximum depth reached] ), (int) 4 => array( [maximum depth reached] ) ) ), 'c' => array( 'id' => '014174', 'authors' => 'Hayward, M.J.;Riederer, D.E.;Kotiaho, T.;Cooks, R.G.;Austin, G.D.;Syu, M.J.;Tsao, G.T.', 'authorsweb' => 'M.J. Hayward, D.E. Riederer, T. Kotiaho, R.G. Cooks, G.D. Austin, M.-J. Syu and G.T. Tsao', 'title' => 'Bioreactor monitoring using flow injection - membrane-introduction mass spectrometry with an ion-trap detector', 'journal' => 'Process Control Qual.', 'journal_id' => '0987', 'fadid' => 'PCQU1991V0001P00105', 'year' => '1991', 'volume' => '1', 'issue' => '2', 'startpage' => '105', 'endpage' => '116', 'type' => 'Journal Article', 'analytes' => ';0466;0021;0009;0931;', 'matrices' => ';0405;', 'techniques' => ';0353;0359;', 'keywords' => ';0253;', 'abstract' => 'Plugs (250 µL) of the fermentation broth were injected into a stream (1 mL min-1) of water, followed after 2 min by a plug of standard solution The flow injection system delivered the sample and standard to a special membrane probe (described with diagram) to introduce analytes into an ion-trap mass spectrometer. The major liquid phase products (e.g., butane-2,3-diol, acetoin, acetic acid and ethanol) were monitored by scanning from m/e 45 to 95 by water CI at 20 µTorr. The monitoring sequence was consecutive plugs of fermentation broth, standard, broth acidified with 0.1 M HCl (1:1) and acidified standard and monitoring at m/e 47, 61, 73 and 89. Acidification was required for acetic acid to permeate the membrane.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '2007-07-10 10:15:43', 'hits' => '0', 'urlcheck' => '2006-05-20 19:24:38', 'urlcheckcode' => '', 'pauthor_id' => '01454', 'pauthor' => '!Cooks, R.G.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => 'NA', 'urltype' => 'NA', 'gotpdf' => 'no', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Bioreactor monitoring using flow injection - membrane-introduction mass spectrometry with an ion-trap detector', Process Control Qual., 1991 1(2) 105-116', 'firstchar' => 'B', 'twochars' => 'Bi', 'CitationsTechnique' => array( 'id' => '014837', 'citation_id' => '014174', 'technique_id' => '0353' ), 'Analyte' => array( (int) 0 => array( [maximum depth reached] ), (int) 1 => array( [maximum depth reached] ), (int) 2 => array( [maximum depth reached] ), (int) 3 => array( [maximum depth reached] ) ), 'Matrix' => array( (int) 0 => array( [maximum depth reached] ) ), 'Keyword' => array( (int) 0 => array( [maximum depth reached] ) ) ), 'i' => (int) 3 ) $data = array( 'Technique' => array( 'id' => '0353', 'label' => 'Mass spectrometry', 'level1' => 'Mass spectrometry', 'level2' => 'ion trap', 'level3' => '', 'level4' => '', 'level5' => '', 'synonyms' => 'Ion trap mass spectrometry,ITMS', 'champ' => '', 'total' => '5', 'updated' => '0000-00-00 00:00:00', 'name' => 'Mass spectrometry, ion trap', 'nametotal' => 'Mass spectrometry, ion trap**5', 'first' => 'M' ), 'Citation' => array( (int) 0 => array( 'id' => '006091', 'authors' => 'Soni, M.H.;Wong, P.S.H.;Cooks, R.G.', 'authorsweb' => 'Manish H. Soni, Philip S. H. Wong and R. Graham Cooks*', 'title' => 'Notched broad-band excitation of ions in a bench-top ion-trap mass spectrometer', 'journal' => 'Anal. Chim. Acta', 'journal_id' => '0584', 'fadid' => 'ANCA1995V0303P00149', 'year' => '1995', 'volume' => '303', 'issue' => '2-3', 'startpage' => '149', 'endpage' => '162', 'type' => 'Journal Article', 'analytes' => ';1664;', 'matrices' => '', 'techniques' => ';0359;0353;', 'keywords' => ';0216;0343;', 'abstract' => 'Selected ion-monitoring, tandem MS and mass-selective ion-molecule collisional applications of the title technique were demonstrated over the mass range 0-650 Da, with a 600 kHz pulse width and a He reverse-flow (2 ml/min) dual membrane sample introduction system with 70 eV EI. A variety of model volatile organic molecules in aqueous and aqueous 1% methanol were introduced using a flow injection system as described by Bauer and Cooks (Am. Lab., Oct 1993) and detected to parts per quadrillion levels.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '0', 'urlcheck' => '2014-10-11 16:14:36', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '01454', 'pauthor' => '!Cooks, R.G.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1016/0003-2670(94)00521-M', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Notched broad-band excitation of ions in a bench-top ion-trap mass spectrometer', Anal. Chim. Acta, 1995 303(2-3) 149-162', 'firstchar' => 'N', 'twochars' => 'No', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 1 => array( 'id' => '007036', 'authors' => 'Bauer, S.J.;Cooks, R.G.', 'authorsweb' => 'Scott J. Bauer and R. Graham Cooks', 'title' => 'Performance of an ion trap mass spectrometer modified to accept a direct insertion membrane probe in analysis of low level pollutants in water', 'journal' => 'Talanta', 'journal_id' => '0569', 'fadid' => 'TALT1993V0040P01031', 'year' => '1993', 'volume' => '40', 'issue' => '7', 'startpage' => '1031', 'endpage' => '1039', 'type' => 'Journal Article', 'analytes' => ';0379;0381;0936;', 'matrices' => ';1079;', 'techniques' => ';0353;', 'keywords' => ';0253;0216;0344;0415;0444;', 'abstract' => 'Modifications to a Finnigan ITS40 ion trap mass spectrometer are described which allow its use with a direct insertion probe. Details are given of the fabrication of a membrane probe for such an instrument. The membrane probe, which includes facilities for heating the fluid, employs a tubular membrane which is located just outside the electrode structure of the ion trap. Direct analysis of organic compounds in aqueous solution is demonstrated using a silicone membrane, with compounds such as benzene, chlorobenzene and dichloroethene being studied below the 1 ppb level. The effects of operating parameters including probe temperature, ion trap temperature, solution flow rate, mass spectrometer scan speed, and instrument tune procedures are explored in detail. Optimum performance characteristics are identified and trace level detection of eight organic compounds in the parts per trillion range is demonstrated. In seven of the eight cases studied, detection limits are below the EPA practical limit of quantitation levels. It is shown that the most sensitive mode of operation is when steady state passage of the analyte across the membrane is achieved, however, the time required for this is long in the case of some samples, and a dynamic flow injection analysis procedure is then favored. Use of the modified inlet system for solid sample introduction via a standard solids probe is also demonstrated. [References: 19]', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '15', 'urlcheck' => '2014-10-11 15:00:38', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '01454', 'pauthor' => '!Cooks, R.G.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1016/0039-9140(93)80163-L', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Performance of an ion trap mass spectrometer modified to accept a direct insertion membrane probe in analysis of low level pollutants in water', Talanta, 1993 40(7) 1031-1039', 'firstchar' => 'P', 'twochars' => 'Pe', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array( [maximum depth reached] ), 'Keyword' => array( [maximum depth reached] ) ), (int) 2 => array( 'id' => '007146', 'authors' => 'Kasthurikrishnan, N.;Cooks, R.G.', 'authorsweb' => 'N. Kasthurikrishnan and R. G. Cooks*, ', 'title' => 'Online flow injection analysis of volatile organic compounds in seawater by membrane introduction mass spectrometry', 'journal' => 'Talanta', 'journal_id' => '0569', 'fadid' => 'TALT1995V0042P01325', 'year' => '1995', 'volume' => '42', 'issue' => '9', 'startpage' => '1325', 'endpage' => '1334', 'type' => 'Journal Article', 'analytes' => ';1665;', 'matrices' => ';0397;', 'techniques' => ';0353;0359;', 'keywords' => ';0462;0344;', 'abstract' => 'FIA with membrane introduction MS for the determination of volatile organic compounds (VOC) in seawater was examined and was compared to measurements made in water. MS was performed using a benchtop ion-trap mass spectrometer and characterization of various aspects of the flow injection and ion-trap combination was carried out. The analyte responses were linear over several orders of magnitude (e.g. for methylene chloride), independent of seawater pH (e.g. for chlorobenzene) and independent of matrix effects for the VOC studied. A comparison of the performance of a microporous (Teflon) membrane was made, and the former provided lower detection limits which were in the parts-per-trillion range. The microporous membrane provided faster response times by a factor of four to five for relatively more polar compounds.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '2007-07-11 02:34:54', 'hits' => '16', 'urlcheck' => '2014-10-11 15:03:44', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '01454', 'pauthor' => '!Cooks, R.G.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1016/0039-9140(95)01588-3', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Online flow injection analysis of volatile organic compounds in seawater by membrane introduction mass spectrometry', Talanta, 1995 42(9) 1325-1334', 'firstchar' => 'O', 'twochars' => 'On', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array( [maximum depth reached] ), 'Keyword' => array( [maximum depth reached] ) ), (int) 3 => array( 'id' => '014174', 'authors' => 'Hayward, M.J.;Riederer, D.E.;Kotiaho, T.;Cooks, R.G.;Austin, G.D.;Syu, M.J.;Tsao, G.T.', 'authorsweb' => 'M.J. Hayward, D.E. Riederer, T. Kotiaho, R.G. Cooks, G.D. Austin, M.-J. Syu and G.T. Tsao', 'title' => 'Bioreactor monitoring using flow injection - membrane-introduction mass spectrometry with an ion-trap detector', 'journal' => 'Process Control Qual.', 'journal_id' => '0987', 'fadid' => 'PCQU1991V0001P00105', 'year' => '1991', 'volume' => '1', 'issue' => '2', 'startpage' => '105', 'endpage' => '116', 'type' => 'Journal Article', 'analytes' => ';0466;0021;0009;0931;', 'matrices' => ';0405;', 'techniques' => ';0353;0359;', 'keywords' => ';0253;', 'abstract' => 'Plugs (250 µL) of the fermentation broth were injected into a stream (1 mL min-1) of water, followed after 2 min by a plug of standard solution The flow injection system delivered the sample and standard to a special membrane probe (described with diagram) to introduce analytes into an ion-trap mass spectrometer. The major liquid phase products (e.g., butane-2,3-diol, acetoin, acetic acid and ethanol) were monitored by scanning from m/e 45 to 95 by water CI at 20 µTorr. The monitoring sequence was consecutive plugs of fermentation broth, standard, broth acidified with 0.1 M HCl (1:1) and acidified standard and monitoring at m/e 47, 61, 73 and 89. Acidification was required for acetic acid to permeate the membrane.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '2007-07-10 10:15:43', 'hits' => '0', 'urlcheck' => '2006-05-20 19:24:38', 'urlcheckcode' => '', 'pauthor_id' => '01454', 'pauthor' => '!Cooks, R.G.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => 'NA', 'urltype' => 'NA', 'gotpdf' => 'no', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Bioreactor monitoring using flow injection - membrane-introduction mass spectrometry with an ion-trap detector', Process Control Qual., 1991 1(2) 105-116', 'firstchar' => 'B', 'twochars' => 'Bi', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array( [maximum depth reached] ), 'Keyword' => array( [maximum depth reached] ) ), (int) 4 => array( 'id' => '014275', 'authors' => 'Dejarme, L.E.;Bauer, S.J.;Cooks, R.G.;Lauritsen, F.R.;Kotiaho, T.;Graf, T.', 'authorsweb' => 'L. E. Dejarme, S. J. Bauer, R. G. Cooks, F. R. Lauritsen, T. Kotiaho, T. Graf', 'title' => 'Jet separator membrane introduction mass spectrometry for online quantitation of volatile organic compounds in aqueous solutions', 'journal' => 'Rapid Commun. Mass Spectrom.', 'journal_id' => '0783', 'fadid' => 'RCMS1993V0007P00935', 'year' => '1993', 'volume' => '7', 'issue' => '10', 'startpage' => '935', 'endpage' => '942', 'type' => 'Journal Article', 'analytes' => ';1665;', 'matrices' => ';1079;', 'techniques' => ';0353;0363;0359;', 'keywords' => ';0253;', 'abstract' => 'A new technique is described for the direct detection of volatile organic compounds present in aqueous solutions at levels in the parts per trillion range. The sample is enriched in analyte in two consecutive stages; one utilizes a semi-permeable membrane interface and the other a jet separator. The analyte solution is sampled as it flows coaxially over a semi-permeable capillary membrane, the interior of which is continuously purged by helium. The permeate is pneumatically transported to the mass spectrometer via a jet separator, which is used to remove excess helium and water from the analyte vapor stream. Data are reported for two instruments; in one the membrane/jet separator system is interfaced to a single quadrupole mass spectrometer via a custom-built metal jet separator with a variable capillary gap. In the second, an ion-trap mass spectrometer is used in conjunction with a conventional fixed-gap quartz jet separator. Typical analyte response times are 2-5 min at ambient temperature, and flow injection methods are used for sample delivery. Direct comparisons, made under identical instrumental conditions, show that the jet separator system displays even lower detection limits than a conventional direct-insertion membrane probe. Detection limits in the range 30 parts per trillion to a few parts per billion are observed for selected volatile organic compounds and the response is linear over 3 orders of magnitude. [References: 31]', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'No', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '8', 'urlcheck' => '2014-10-12 08:55:07', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '01454', 'pauthor' => '!Cooks, R.G.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1002/rcm.1290071015', 'urltype' => 'doi', 'gotpdf' => 'no', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Jet separator membrane introduction mass spectrometry for online quantitation of volatile organic compounds in aqueous solutions', Rapid Commun. Mass Spectrom., 1993 7(10) 935-942', 'firstchar' => 'J', 'twochars' => 'Je', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array( [maximum depth reached] ), 'Keyword' => array( [maximum depth reached] ) ) ) ) $c = array( 'id' => '014174', 'authors' => 'Hayward, M.J.;Riederer, D.E.;Kotiaho, T.;Cooks, R.G.;Austin, G.D.;Syu, M.J.;Tsao, G.T.', 'authorsweb' => 'M.J. Hayward, D.E. Riederer, T. Kotiaho, R.G. Cooks, G.D. Austin, M.-J. Syu and G.T. Tsao', 'title' => 'Bioreactor monitoring using flow injection - membrane-introduction mass spectrometry with an ion-trap detector', 'journal' => 'Process Control Qual.', 'journal_id' => '0987', 'fadid' => 'PCQU1991V0001P00105', 'year' => '1991', 'volume' => '1', 'issue' => '2', 'startpage' => '105', 'endpage' => '116', 'type' => 'Journal Article', 'analytes' => ';0466;0021;0009;0931;', 'matrices' => ';0405;', 'techniques' => ';0353;0359;', 'keywords' => ';0253;', 'abstract' => 'Plugs (250 µL) of the fermentation broth were injected into a stream (1 mL min-1) of water, followed after 2 min by a plug of standard solution The flow injection system delivered the sample and standard to a special membrane probe (described with diagram) to introduce analytes into an ion-trap mass spectrometer. The major liquid phase products (e.g., butane-2,3-diol, acetoin, acetic acid and ethanol) were monitored by scanning from m/e 45 to 95 by water CI at 20 µTorr. The monitoring sequence was consecutive plugs of fermentation broth, standard, broth acidified with 0.1 M HCl (1:1) and acidified standard and monitoring at m/e 47, 61, 73 and 89. Acidification was required for acetic acid to permeate the membrane.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '2007-07-10 10:15:43', 'hits' => '0', 'urlcheck' => '2006-05-20 19:24:38', 'urlcheckcode' => '', 'pauthor_id' => '01454', 'pauthor' => '!Cooks, R.G.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => 'NA', 'urltype' => 'NA', 'gotpdf' => 'no', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Bioreactor monitoring using flow injection - membrane-introduction mass spectrometry with an ion-trap detector', Process Control Qual., 1991 1(2) 105-116', 'firstchar' => 'B', 'twochars' => 'Bi', 'CitationsTechnique' => array( 'id' => '014837', 'citation_id' => '014174', 'technique_id' => '0353' ), 'Analyte' => array( (int) 0 => array( 'id' => '00466', 'name' => '2,3-dihydroxybutane', 'iupac_name' => 'butane-2,3-diol', 'casrn' => '513-85-9', 'synonyms' => '2,3-butanediol, 2,3-butylene glycol, Butane-2,3-diol, 2,3-Dihydroxybutane, 513-85-9, Dimethylene glycol, Dimethylethylene glycol, Pseudobutylene glycol, DL-2,3-Butanediol, Sym-dimethylethylene glycol, CCRIS 5501, CHEBI:62064, HSDB 1505, OWBTYPJTUOEWEK-UHFFFAOYSA-N, EINECS 208-173-6, BRN 0969165, 2,3-Butanediol, (R*,R*)-(±)-, 2,3-Butanediol, (S-(R*,R*))-, 2,3-Butanediol, [S-(R*,R*)]-, 6982-25-8, (2R,3R)-(-)2,3-Butanediol, (2S,3S)-(+)2,3-Butanediol, (R,R)-(-)-Butane-2,3-diol, NSC 2164, 2,3-Butanediol, [R-(R*,R*)]-, 2,3-butanodiol, 123513-85-9, 2,3-butane diol, 2,3-Butanediol, (R*,R*)-(+-)-, 2,3-Butandiol, Butan-2,3-diol, 2,3-dihydroxy butane, 2,3-dihydroxy-butane, D-2,3-Butane diol, levo-butane-2,3-diol, ACMC-209euy, AC1Q2BQD, 2,3-Butanediol (DL), ACMC-1BUD7, ACMC-209gb6, D-2,3-BUTANEDIOL, DL-2,3-BUTANDIOL, AC1L18UG, DSSTox_CID_21321, DSSTox_RID_79687, DSSTox_GSID_41321, B84904_ALDRICH, KSC270E6J, CHEMBL2312529, 18970_FLUKA, 18980_FLUKA, CTK1H0264, HMDB03156, 2,3-Butanediol, meso- (8CI), MolPort-003-927-421, 2,3-BUTANEDIOL, 96%, EINECS 246-186-9, Tox21_300789, 7110AF, ANW-41590, AR-1D2318, NSC249246, AKOS009031391, NSC-249246, RL03891, RTR-032024, NCGC00248169-01, NCGC00254693-01, 2,3-Butanediol, (R*,S*)- (9CI), AN-23501, CAS-513-85-9, KB-67232, LS-45795, SC-08971, SC-08972, AI3-00959, DB-027533, TR-032024, B0681, A18844, 4-01-00-02524 (Beilstein Handbook Reference), I14-19052, InChI=1/C4H10O2/c1-3(5)4(2)6/h3-6H,1-2H, 35007-63-7, 98923-25-2', 'total' => '1', 'inchi' => 'InChI=1S/C4H10O2/c1-3(5)4(2)6/h3-6H,1-2H3', 'inchikey' => 'OWBTYPJTUOEWEK-UHFFFAOYSA-N', 'formula' => 'C4H10O2', 'oxstate' => 'Zero', 'url' => '', 'charge' => '0', 'class1' => '', 'class2' => '', 'class3' => '', 'class4' => '', 'class5' => '', 'isgroup' => 'no', 'checked' => 'no', 'citation_count' => '0', 'updated' => '2015-12-11 16:32:05', 'first' => '2', 'nametotal' => '2,3-dihydroxybutane**1', 'AnalytesCitation' => array( [maximum depth reached] ) ), (int) 1 => array( 'id' => '00021', 'name' => 'Acetoin', 'iupac_name' => '3-hydroxybutan-2-one', 'casrn' => '513-86-0', 'synonyms' => 'acetoin, 3-hydroxy-2-butanone, 3-hydroxybutan-2-one, Dimethylketol, acetylmethylcarbinol, 513-86-0, Acetyl methyl carbinol, 2,3-Butanolone, 2-Butanone, 3-hydroxy-, 2-Hydroxy-3-butanone, 1-Hydroxyethyl methyl ketone, Methanol, acetylmethyl-, Acetoin (natural), γ-Hydroxy-β-oxobutane, 3-hydroxyl-2-butanone, Acethoin, 2-Acetoin, 2-Butanol-3-one, CCRIS 2918, HSDB 974, Butan-2-ol-3-one, γ-Hydroxy-β-oxobutane, 2-hydroxy-3-oxobutane, NSC 7609, AI3-03314, FEMA No. 2008, ROWKJAVDOGWPAT-UHFFFAOYSA-N, (R)-dimethylketol, 2-Butanone, 3-hydroxy-, (R)-, EINECS 208-174-1, UN2621, (R)-2-acetoin, BRN 0385636, (R)-3-hydroxy-2-butanone, (R)-3-hydroxybutan-2-one, 51555-24-9, acetoine, acetylmethyl-, β-oxobutane, b-oxobutane, DL-Acetoin, 3-Hydroxybutanone, 3-Oxo-2-butanol, Methanol, acetylmethyl, (+/-)-Acetoin, 3-hydroxy-2-oxobutane, 2-butanone, 3-hydroxy, 3-hydroxy-butan-2-one, DSSTox_CID_4399, 1-Hydroxethyl methyl ketone, AC1L18NL, AC1Q1JA8, Butan-2-one, 3-hydroxy-, DSSTox_RID_77389, DSSTox_GSID_24399, A17951_ALDRICH, KSC490C7N, W200808_ALDRICH, W200832_ALDRICH, (+/-)-3-Hydroxybutan-2-one, CHEBI:15688, CTK3J0176, HMDB03243, NSC7609, MolPort-001-785-644, LTBB004792, 53584-56-8, NSC-7609, NSC89727, Tox21_302518, ANW-31250, AR-1H6422, LMFA12000020, LS-164, NSC-89727, AKOS000121293, AKOS017278202, RP18489, RTR-018308, UN 2621, 2-Butanone, 3-hydroxy- (8CI,9CI), NCGC00256914-01, 2-Butanone, 3-hydroxy-, (±)-, AK128843, AN-45468, CAS-513-86-0, KB-32104, 3-Hydroxy-2-butanone; Acetylmethylcarbinol, AB1002764, DB-003392, TR-018308, FT-0621797, FT-0695713, ST24042214, C00466, 2-01-00-00870 (Beilstein Handbook Reference), I09-0138, Acetyl methyl carbinol [UN2621] [Flammable liquid], Acetyl methyl carbinol [UN2621] [Flammable liquid], 52217-02-4', 'total' => '1', 'inchi' => 'InChI=1S/C4H8O2/c1-3(5)4(2)6/h3,5H,1-2H3', 'inchikey' => 'ROWKJAVDOGWPAT-UHFFFAOYSA-N', 'formula' => 'C4H8O2', 'oxstate' => 'Zero', 'url' => '', 'charge' => '0', 'class1' => '', 'class2' => '', 'class3' => '', 'class4' => '', 'class5' => '', 'isgroup' => 'no', 'checked' => 'no', 'citation_count' => '0', 'updated' => '2015-12-11 16:36:07', 'first' => 'A', 'nametotal' => 'Acetoin**1', 'AnalytesCitation' => array( [maximum depth reached] ) ), (int) 2 => array( 'id' => '00009', 'name' => 'Acetic acid', 'iupac_name' => 'acetic acid', 'casrn' => '64-19-7', 'synonyms' => 'Ethanoic acid; Ethylic acid; Glacial acetic acid; Methanecarboxylic acid; Vinegar acid; CH3COOH; component of Aci-Jel; Acetasol; Acide acetique; Acido acetico; Azijnzuur; Essigsaeure; Octowy kwas; Acetic acid, glacial; Kyselina octova; UN 2789; UN 2790; Aci-jel; Shotgun; TCLP extraction fluid 2; Vinegar', 'total' => '19', 'inchi' => 'InChI=1S/C2H4O2/c1-2(3)4/h1H3,(H,3,4)', 'inchikey' => 'QTBSBXVTEAMEQO-UHFFFAOYSA-N', 'formula' => 'C2H4O2', 'oxstate' => 'Zero', 'url' => '', 'charge' => '0', 'class1' => 'Organic compound', 'class2' => 'NA', 'class3' => 'NA', 'class4' => 'Molecule', 'class5' => 'Acids', 'isgroup' => '', 'checked' => 'yes', 'citation_count' => '0', 'updated' => '2015-12-11 16:15:42', 'first' => 'A', 'nametotal' => 'Acetic acid**19', 'AnalytesCitation' => array( [maximum depth reached] ) ), (int) 3 => array( 'id' => '00931', 'name' => 'Ethanol', 'iupac_name' => 'ethanol', 'casrn' => '64-17-5', 'synonyms' => 'alcohol; alcohol dehydrated; algrain; Anhydrol; cologne spirit; cologne spirits (alcohol); Denatured alcohol; Ethyl alcohol; Ethanol; ethanol 200 proof; Ethanol absolute; ethyl hydrate; ethyl hydroxide; fermentation alcohol; grain alcohol; jaysol; jaysol s; methylcarbinol; molasses alcohol; potato alcohol; sd alcohol 23-hydrogen; spirit; spirits of wine; Synasol; tecsol', 'total' => '115', 'inchi' => 'InChI=1S/C2H6O/c1-2-3/h3H,2H2,1H3', 'inchikey' => 'LFQSCWFLJHTTHZ-UHFFFAOYSA-N', 'formula' => 'C2H6O', 'oxstate' => 'Zero', 'url' => '', 'charge' => '0', 'class1' => 'Organic compound', 'class2' => 'NA', 'class3' => 'NA', 'class4' => 'Molecule', 'class5' => '', 'isgroup' => '', 'checked' => 'yes', 'citation_count' => '0', 'updated' => '2015-10-23 09:57:39', 'first' => 'E', 'nametotal' => 'Ethanol**115', 'AnalytesCitation' => array( [maximum depth reached] ) ) ), 'Matrix' => array( (int) 0 => array( 'id' => '0405', 'label' => 'Fermentation broth', 'level1' => 'Fermentation broth', 'level2' => '', 'level3' => '', 'level4' => '', 'level5' => '', 'synonyms' => '', 'total' => '207', 'url' => '', 'updated' => '2015-12-09 21:04:43', 'name' => 'Fermentation broth', 'nametotal' => 'Fermentation broth**207', 'first' => 'F', 'CitationsMatrix' => array( [maximum depth reached] ) ) ), 'Keyword' => array( (int) 0 => array( 'id' => '0253', 'type' => 'Membrane', 'keyword' => 'Membrane', 'newKeyword' => '', 'synonyms' => '', 'fao' => '', 'total' => '215', 'first' => 'M', 'keytotal' => 'Membrane**215', 'CitationsKeyword' => array( [maximum depth reached] ) ) ) ) $i = (int) 3 $path = '' $a = '' $url = 'http://NA' $aus = 'M.J. Hayward, D.E. Riederer, T. Kotiaho, R.G. Cooks, G.D. Austin, M.-J. Syu and G.T. Tsao'include - APP/View/Elements/citation.ctp, line 40 View::_evaluate() - CORE/Cake/View/View.php, line 971 View::_render() - CORE/Cake/View/View.php, line 933 View::_renderElement() - CORE/Cake/View/View.php, line 1224 View::element() - CORE/Cake/View/View.php, line 418 include - APP/View/Techniques/view.ctp, line 52 View::_evaluate() - CORE/Cake/View/View.php, line 971 View::_render() - CORE/Cake/View/View.php, line 933 View::render() - CORE/Cake/View/View.php, line 473 Controller::render() - CORE/Cake/Controller/Controller.php, line 968 Dispatcher::_invoke() - CORE/Cake/Routing/Dispatcher.php, line 200 Dispatcher::dispatch() - CORE/Cake/Routing/Dispatcher.php, line 167 [main] - APP/webroot/index.php, line 109
"Jet Separator Membrane Introduction Mass Spectrometry For Online Quantitation Of Volatile Organic Compounds In Aqueous Solutions"
Rapid Commun. Mass Spectrom.
1993 Volume 7, Issue 10 Pages 935-942
Notice (8): Undefined variable: uid [APP/View/Elements/citation.ctp, line 40]L. E. Dejarme, S. J. Bauer, R. G. Cooks, F. R. Lauritsen, T. Kotiaho, T. GrafCode Context?>
<?php
if($uid!='') {
$viewFile = '/home/stuchalk/public_html/fad/app/View/Elements/citation.ctp' $dataForView = array( 'data' => array( 'Technique' => array( 'id' => '0353', 'label' => 'Mass spectrometry', 'level1' => 'Mass spectrometry', 'level2' => 'ion trap', 'level3' => '', 'level4' => '', 'level5' => '', 'synonyms' => 'Ion trap mass spectrometry,ITMS', 'champ' => '', 'total' => '5', 'updated' => '0000-00-00 00:00:00', 'name' => 'Mass spectrometry, ion trap', 'nametotal' => 'Mass spectrometry, ion trap**5', 'first' => 'M' ), 'Citation' => array( (int) 0 => array( [maximum depth reached] ), (int) 1 => array( [maximum depth reached] ), (int) 2 => array( [maximum depth reached] ), (int) 3 => array( [maximum depth reached] ), (int) 4 => array( [maximum depth reached] ) ) ), 'c' => array( 'id' => '014275', 'authors' => 'Dejarme, L.E.;Bauer, S.J.;Cooks, R.G.;Lauritsen, F.R.;Kotiaho, T.;Graf, T.', 'authorsweb' => 'L. E. Dejarme, S. J. Bauer, R. G. Cooks, F. R. Lauritsen, T. Kotiaho, T. Graf', 'title' => 'Jet separator membrane introduction mass spectrometry for online quantitation of volatile organic compounds in aqueous solutions', 'journal' => 'Rapid Commun. Mass Spectrom.', 'journal_id' => '0783', 'fadid' => 'RCMS1993V0007P00935', 'year' => '1993', 'volume' => '7', 'issue' => '10', 'startpage' => '935', 'endpage' => '942', 'type' => 'Journal Article', 'analytes' => ';1665;', 'matrices' => ';1079;', 'techniques' => ';0353;0363;0359;', 'keywords' => ';0253;', 'abstract' => 'A new technique is described for the direct detection of volatile organic compounds present in aqueous solutions at levels in the parts per trillion range. The sample is enriched in analyte in two consecutive stages; one utilizes a semi-permeable membrane interface and the other a jet separator. The analyte solution is sampled as it flows coaxially over a semi-permeable capillary membrane, the interior of which is continuously purged by helium. The permeate is pneumatically transported to the mass spectrometer via a jet separator, which is used to remove excess helium and water from the analyte vapor stream. Data are reported for two instruments; in one the membrane/jet separator system is interfaced to a single quadrupole mass spectrometer via a custom-built metal jet separator with a variable capillary gap. In the second, an ion-trap mass spectrometer is used in conjunction with a conventional fixed-gap quartz jet separator. Typical analyte response times are 2-5 min at ambient temperature, and flow injection methods are used for sample delivery. Direct comparisons, made under identical instrumental conditions, show that the jet separator system displays even lower detection limits than a conventional direct-insertion membrane probe. Detection limits in the range 30 parts per trillion to a few parts per billion are observed for selected volatile organic compounds and the response is linear over 3 orders of magnitude. [References: 31]', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'No', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '8', 'urlcheck' => '2014-10-12 08:55:07', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '01454', 'pauthor' => '!Cooks, R.G.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1002/rcm.1290071015', 'urltype' => 'doi', 'gotpdf' => 'no', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Jet separator membrane introduction mass spectrometry for online quantitation of volatile organic compounds in aqueous solutions', Rapid Commun. Mass Spectrom., 1993 7(10) 935-942', 'firstchar' => 'J', 'twochars' => 'Je', 'CitationsTechnique' => array( 'id' => '014978', 'citation_id' => '014275', 'technique_id' => '0353' ), 'Analyte' => array( (int) 0 => array( [maximum depth reached] ) ), 'Matrix' => array( (int) 0 => array( [maximum depth reached] ) ), 'Keyword' => array( (int) 0 => array( [maximum depth reached] ) ) ), 'i' => (int) 4 ) $data = array( 'Technique' => array( 'id' => '0353', 'label' => 'Mass spectrometry', 'level1' => 'Mass spectrometry', 'level2' => 'ion trap', 'level3' => '', 'level4' => '', 'level5' => '', 'synonyms' => 'Ion trap mass spectrometry,ITMS', 'champ' => '', 'total' => '5', 'updated' => '0000-00-00 00:00:00', 'name' => 'Mass spectrometry, ion trap', 'nametotal' => 'Mass spectrometry, ion trap**5', 'first' => 'M' ), 'Citation' => array( (int) 0 => array( 'id' => '006091', 'authors' => 'Soni, M.H.;Wong, P.S.H.;Cooks, R.G.', 'authorsweb' => 'Manish H. Soni, Philip S. H. Wong and R. Graham Cooks*', 'title' => 'Notched broad-band excitation of ions in a bench-top ion-trap mass spectrometer', 'journal' => 'Anal. Chim. Acta', 'journal_id' => '0584', 'fadid' => 'ANCA1995V0303P00149', 'year' => '1995', 'volume' => '303', 'issue' => '2-3', 'startpage' => '149', 'endpage' => '162', 'type' => 'Journal Article', 'analytes' => ';1664;', 'matrices' => '', 'techniques' => ';0359;0353;', 'keywords' => ';0216;0343;', 'abstract' => 'Selected ion-monitoring, tandem MS and mass-selective ion-molecule collisional applications of the title technique were demonstrated over the mass range 0-650 Da, with a 600 kHz pulse width and a He reverse-flow (2 ml/min) dual membrane sample introduction system with 70 eV EI. A variety of model volatile organic molecules in aqueous and aqueous 1% methanol were introduced using a flow injection system as described by Bauer and Cooks (Am. Lab., Oct 1993) and detected to parts per quadrillion levels.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '0', 'urlcheck' => '2014-10-11 16:14:36', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '01454', 'pauthor' => '!Cooks, R.G.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1016/0003-2670(94)00521-M', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Notched broad-band excitation of ions in a bench-top ion-trap mass spectrometer', Anal. Chim. Acta, 1995 303(2-3) 149-162', 'firstchar' => 'N', 'twochars' => 'No', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 1 => array( 'id' => '007036', 'authors' => 'Bauer, S.J.;Cooks, R.G.', 'authorsweb' => 'Scott J. Bauer and R. Graham Cooks', 'title' => 'Performance of an ion trap mass spectrometer modified to accept a direct insertion membrane probe in analysis of low level pollutants in water', 'journal' => 'Talanta', 'journal_id' => '0569', 'fadid' => 'TALT1993V0040P01031', 'year' => '1993', 'volume' => '40', 'issue' => '7', 'startpage' => '1031', 'endpage' => '1039', 'type' => 'Journal Article', 'analytes' => ';0379;0381;0936;', 'matrices' => ';1079;', 'techniques' => ';0353;', 'keywords' => ';0253;0216;0344;0415;0444;', 'abstract' => 'Modifications to a Finnigan ITS40 ion trap mass spectrometer are described which allow its use with a direct insertion probe. Details are given of the fabrication of a membrane probe for such an instrument. The membrane probe, which includes facilities for heating the fluid, employs a tubular membrane which is located just outside the electrode structure of the ion trap. Direct analysis of organic compounds in aqueous solution is demonstrated using a silicone membrane, with compounds such as benzene, chlorobenzene and dichloroethene being studied below the 1 ppb level. The effects of operating parameters including probe temperature, ion trap temperature, solution flow rate, mass spectrometer scan speed, and instrument tune procedures are explored in detail. Optimum performance characteristics are identified and trace level detection of eight organic compounds in the parts per trillion range is demonstrated. In seven of the eight cases studied, detection limits are below the EPA practical limit of quantitation levels. It is shown that the most sensitive mode of operation is when steady state passage of the analyte across the membrane is achieved, however, the time required for this is long in the case of some samples, and a dynamic flow injection analysis procedure is then favored. Use of the modified inlet system for solid sample introduction via a standard solids probe is also demonstrated. [References: 19]', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '15', 'urlcheck' => '2014-10-11 15:00:38', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '01454', 'pauthor' => '!Cooks, R.G.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1016/0039-9140(93)80163-L', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Performance of an ion trap mass spectrometer modified to accept a direct insertion membrane probe in analysis of low level pollutants in water', Talanta, 1993 40(7) 1031-1039', 'firstchar' => 'P', 'twochars' => 'Pe', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array( [maximum depth reached] ), 'Keyword' => array( [maximum depth reached] ) ), (int) 2 => array( 'id' => '007146', 'authors' => 'Kasthurikrishnan, N.;Cooks, R.G.', 'authorsweb' => 'N. Kasthurikrishnan and R. G. Cooks*, ', 'title' => 'Online flow injection analysis of volatile organic compounds in seawater by membrane introduction mass spectrometry', 'journal' => 'Talanta', 'journal_id' => '0569', 'fadid' => 'TALT1995V0042P01325', 'year' => '1995', 'volume' => '42', 'issue' => '9', 'startpage' => '1325', 'endpage' => '1334', 'type' => 'Journal Article', 'analytes' => ';1665;', 'matrices' => ';0397;', 'techniques' => ';0353;0359;', 'keywords' => ';0462;0344;', 'abstract' => 'FIA with membrane introduction MS for the determination of volatile organic compounds (VOC) in seawater was examined and was compared to measurements made in water. MS was performed using a benchtop ion-trap mass spectrometer and characterization of various aspects of the flow injection and ion-trap combination was carried out. The analyte responses were linear over several orders of magnitude (e.g. for methylene chloride), independent of seawater pH (e.g. for chlorobenzene) and independent of matrix effects for the VOC studied. A comparison of the performance of a microporous (Teflon) membrane was made, and the former provided lower detection limits which were in the parts-per-trillion range. The microporous membrane provided faster response times by a factor of four to five for relatively more polar compounds.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '2007-07-11 02:34:54', 'hits' => '16', 'urlcheck' => '2014-10-11 15:03:44', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '01454', 'pauthor' => '!Cooks, R.G.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1016/0039-9140(95)01588-3', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Online flow injection analysis of volatile organic compounds in seawater by membrane introduction mass spectrometry', Talanta, 1995 42(9) 1325-1334', 'firstchar' => 'O', 'twochars' => 'On', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array( [maximum depth reached] ), 'Keyword' => array( [maximum depth reached] ) ), (int) 3 => array( 'id' => '014174', 'authors' => 'Hayward, M.J.;Riederer, D.E.;Kotiaho, T.;Cooks, R.G.;Austin, G.D.;Syu, M.J.;Tsao, G.T.', 'authorsweb' => 'M.J. Hayward, D.E. Riederer, T. Kotiaho, R.G. Cooks, G.D. Austin, M.-J. Syu and G.T. Tsao', 'title' => 'Bioreactor monitoring using flow injection - membrane-introduction mass spectrometry with an ion-trap detector', 'journal' => 'Process Control Qual.', 'journal_id' => '0987', 'fadid' => 'PCQU1991V0001P00105', 'year' => '1991', 'volume' => '1', 'issue' => '2', 'startpage' => '105', 'endpage' => '116', 'type' => 'Journal Article', 'analytes' => ';0466;0021;0009;0931;', 'matrices' => ';0405;', 'techniques' => ';0353;0359;', 'keywords' => ';0253;', 'abstract' => 'Plugs (250 µL) of the fermentation broth were injected into a stream (1 mL min-1) of water, followed after 2 min by a plug of standard solution The flow injection system delivered the sample and standard to a special membrane probe (described with diagram) to introduce analytes into an ion-trap mass spectrometer. The major liquid phase products (e.g., butane-2,3-diol, acetoin, acetic acid and ethanol) were monitored by scanning from m/e 45 to 95 by water CI at 20 µTorr. The monitoring sequence was consecutive plugs of fermentation broth, standard, broth acidified with 0.1 M HCl (1:1) and acidified standard and monitoring at m/e 47, 61, 73 and 89. Acidification was required for acetic acid to permeate the membrane.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '2007-07-10 10:15:43', 'hits' => '0', 'urlcheck' => '2006-05-20 19:24:38', 'urlcheckcode' => '', 'pauthor_id' => '01454', 'pauthor' => '!Cooks, R.G.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => 'NA', 'urltype' => 'NA', 'gotpdf' => 'no', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Bioreactor monitoring using flow injection - membrane-introduction mass spectrometry with an ion-trap detector', Process Control Qual., 1991 1(2) 105-116', 'firstchar' => 'B', 'twochars' => 'Bi', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array( [maximum depth reached] ), 'Keyword' => array( [maximum depth reached] ) ), (int) 4 => array( 'id' => '014275', 'authors' => 'Dejarme, L.E.;Bauer, S.J.;Cooks, R.G.;Lauritsen, F.R.;Kotiaho, T.;Graf, T.', 'authorsweb' => 'L. E. Dejarme, S. J. Bauer, R. G. Cooks, F. R. Lauritsen, T. Kotiaho, T. Graf', 'title' => 'Jet separator membrane introduction mass spectrometry for online quantitation of volatile organic compounds in aqueous solutions', 'journal' => 'Rapid Commun. Mass Spectrom.', 'journal_id' => '0783', 'fadid' => 'RCMS1993V0007P00935', 'year' => '1993', 'volume' => '7', 'issue' => '10', 'startpage' => '935', 'endpage' => '942', 'type' => 'Journal Article', 'analytes' => ';1665;', 'matrices' => ';1079;', 'techniques' => ';0353;0363;0359;', 'keywords' => ';0253;', 'abstract' => 'A new technique is described for the direct detection of volatile organic compounds present in aqueous solutions at levels in the parts per trillion range. The sample is enriched in analyte in two consecutive stages; one utilizes a semi-permeable membrane interface and the other a jet separator. The analyte solution is sampled as it flows coaxially over a semi-permeable capillary membrane, the interior of which is continuously purged by helium. The permeate is pneumatically transported to the mass spectrometer via a jet separator, which is used to remove excess helium and water from the analyte vapor stream. Data are reported for two instruments; in one the membrane/jet separator system is interfaced to a single quadrupole mass spectrometer via a custom-built metal jet separator with a variable capillary gap. In the second, an ion-trap mass spectrometer is used in conjunction with a conventional fixed-gap quartz jet separator. Typical analyte response times are 2-5 min at ambient temperature, and flow injection methods are used for sample delivery. Direct comparisons, made under identical instrumental conditions, show that the jet separator system displays even lower detection limits than a conventional direct-insertion membrane probe. Detection limits in the range 30 parts per trillion to a few parts per billion are observed for selected volatile organic compounds and the response is linear over 3 orders of magnitude. [References: 31]', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'No', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '8', 'urlcheck' => '2014-10-12 08:55:07', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '01454', 'pauthor' => '!Cooks, R.G.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1002/rcm.1290071015', 'urltype' => 'doi', 'gotpdf' => 'no', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Jet separator membrane introduction mass spectrometry for online quantitation of volatile organic compounds in aqueous solutions', Rapid Commun. Mass Spectrom., 1993 7(10) 935-942', 'firstchar' => 'J', 'twochars' => 'Je', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array( [maximum depth reached] ), 'Keyword' => array( [maximum depth reached] ) ) ) ) $c = array( 'id' => '014275', 'authors' => 'Dejarme, L.E.;Bauer, S.J.;Cooks, R.G.;Lauritsen, F.R.;Kotiaho, T.;Graf, T.', 'authorsweb' => 'L. E. Dejarme, S. J. Bauer, R. G. Cooks, F. R. Lauritsen, T. Kotiaho, T. Graf', 'title' => 'Jet separator membrane introduction mass spectrometry for online quantitation of volatile organic compounds in aqueous solutions', 'journal' => 'Rapid Commun. Mass Spectrom.', 'journal_id' => '0783', 'fadid' => 'RCMS1993V0007P00935', 'year' => '1993', 'volume' => '7', 'issue' => '10', 'startpage' => '935', 'endpage' => '942', 'type' => 'Journal Article', 'analytes' => ';1665;', 'matrices' => ';1079;', 'techniques' => ';0353;0363;0359;', 'keywords' => ';0253;', 'abstract' => 'A new technique is described for the direct detection of volatile organic compounds present in aqueous solutions at levels in the parts per trillion range. The sample is enriched in analyte in two consecutive stages; one utilizes a semi-permeable membrane interface and the other a jet separator. The analyte solution is sampled as it flows coaxially over a semi-permeable capillary membrane, the interior of which is continuously purged by helium. The permeate is pneumatically transported to the mass spectrometer via a jet separator, which is used to remove excess helium and water from the analyte vapor stream. Data are reported for two instruments; in one the membrane/jet separator system is interfaced to a single quadrupole mass spectrometer via a custom-built metal jet separator with a variable capillary gap. In the second, an ion-trap mass spectrometer is used in conjunction with a conventional fixed-gap quartz jet separator. Typical analyte response times are 2-5 min at ambient temperature, and flow injection methods are used for sample delivery. Direct comparisons, made under identical instrumental conditions, show that the jet separator system displays even lower detection limits than a conventional direct-insertion membrane probe. Detection limits in the range 30 parts per trillion to a few parts per billion are observed for selected volatile organic compounds and the response is linear over 3 orders of magnitude. [References: 31]', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'No', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '8', 'urlcheck' => '2014-10-12 08:55:07', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '01454', 'pauthor' => '!Cooks, R.G.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1002/rcm.1290071015', 'urltype' => 'doi', 'gotpdf' => 'no', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Jet separator membrane introduction mass spectrometry for online quantitation of volatile organic compounds in aqueous solutions', Rapid Commun. Mass Spectrom., 1993 7(10) 935-942', 'firstchar' => 'J', 'twochars' => 'Je', 'CitationsTechnique' => array( 'id' => '014978', 'citation_id' => '014275', 'technique_id' => '0353' ), 'Analyte' => array( (int) 0 => array( 'id' => '01665', 'name' => 'Organic compounds, volatile', 'iupac_name' => '', 'casrn' => '', 'synonyms' => '', 'total' => '2', 'inchi' => '', 'inchikey' => '', 'formula' => '', 'oxstate' => null, 'url' => '', 'charge' => null, 'class1' => '', 'class2' => '', 'class3' => '', 'class4' => '', 'class5' => '', 'isgroup' => 'no', 'checked' => 'no', 'citation_count' => '0', 'updated' => '2015-12-11 09:53:17', 'first' => 'O', 'nametotal' => 'Organic compounds, volatile**2', 'AnalytesCitation' => array( [maximum depth reached] ) ) ), 'Matrix' => array( (int) 0 => array( 'id' => '1079', 'label' => 'Water', 'level1' => 'Water', 'level2' => '', 'level3' => '', 'level4' => '', 'level5' => '', 'synonyms' => '', 'total' => '308', 'url' => '', 'updated' => '2015-12-09 21:04:43', 'name' => 'Water', 'nametotal' => 'Water**308', 'first' => 'W', 'CitationsMatrix' => array( [maximum depth reached] ) ) ), 'Keyword' => array( (int) 0 => array( 'id' => '0253', 'type' => 'Membrane', 'keyword' => 'Membrane', 'newKeyword' => '', 'synonyms' => '', 'fao' => '', 'total' => '215', 'first' => 'M', 'keytotal' => 'Membrane**215', 'CitationsKeyword' => array( [maximum depth reached] ) ) ) ) $i = (int) 4 $path = '' $a = '' $url = 'http://dx.doi.org/10.1002/rcm.1290071015' $aus = 'L. E. Dejarme, S. J. Bauer, R. G. Cooks, F. R. Lauritsen, T. Kotiaho, T. Graf'include - APP/View/Elements/citation.ctp, line 40 View::_evaluate() - CORE/Cake/View/View.php, line 971 View::_render() - CORE/Cake/View/View.php, line 933 View::_renderElement() - CORE/Cake/View/View.php, line 1224 View::element() - CORE/Cake/View/View.php, line 418 include - APP/View/Techniques/view.ctp, line 52 View::_evaluate() - CORE/Cake/View/View.php, line 971 View::_render() - CORE/Cake/View/View.php, line 933 View::render() - CORE/Cake/View/View.php, line 473 Controller::render() - CORE/Cake/Controller/Controller.php, line 968 Dispatcher::_invoke() - CORE/Cake/Routing/Dispatcher.php, line 200 Dispatcher::dispatch() - CORE/Cake/Routing/Dispatcher.php, line 167 [main] - APP/webroot/index.php, line 109