Contact Info
Stuart Chalk, Ph.D.
Department of Chemistry
University of North Florida
Phone: 1-904-620-1938
Fax: 1-904-620-3535
Email: schalk@unf.edu
Website: @unf
Electrode
Citations 2
"Electrochemical Oxidation And Determination Of Heparin At Electrodes Modified With Ruthenium Oxide Or Copper Oxide"
Electroanalysis
1997 Volume 9, Issue 9 Pages 675-684
Notice (8): Undefined variable: uid [APP/View/Elements/citation.ctp, line 40]Krzysztof Lewinski, Yun Hu, Charles C. Griffin, James A. CoxCode Context?>
<?php
if($uid!='') {
$viewFile = '/home/stuchalk/public_html/fad/app/View/Elements/citation.ctp' $dataForView = array( 'data' => array( 'Technique' => array( 'id' => '0229', 'label' => 'Electrode', 'level1' => 'Electrode', 'level2' => 'vitreous carbon', 'level3' => 'copper oxide modified', 'level4' => '', 'level5' => '', 'synonyms' => '', 'champ' => '', 'total' => '2', 'updated' => '0000-00-00 00:00:00', 'name' => 'Electrode, vitreous carbon, copper oxide modified', 'nametotal' => 'Electrode, vitreous carbon, copper oxide modified**2', 'first' => 'E' ), 'Citation' => array( (int) 0 => array( [maximum depth reached] ), (int) 1 => array( [maximum depth reached] ) ) ), 'c' => array( 'id' => '009957', 'authors' => 'Lewinski, K.A.;Hu, Y.;Griffin, C.C.;Cox, J.A.', 'authorsweb' => 'Krzysztof Lewinski, Yun Hu, Charles C. Griffin, James A. Cox', 'title' => 'Electrochemical oxidation and determination of heparin at electrodes modified with ruthenium oxide or copper oxide', 'journal' => 'Electroanalysis', 'journal_id' => '1003', 'fadid' => 'ELAN1997V0009P00675', 'year' => '1997', 'volume' => '9', 'issue' => '9', 'startpage' => '675', 'endpage' => '684', 'type' => 'Journal Article', 'analytes' => ';1148;', 'matrices' => '', 'techniques' => ';0229;0080;0400;', 'keywords' => ';0043;0110;', 'abstract' => 'The electrochemical oxidation of full-size heparin (13-15 kDa) is demonstrated in 1 M H-3PO-4 at a glassy carbon electrode coated with a ruthenium oxide film. The pathway apparently is analogous to chemical oxidation by periodate. By comparison to currents from inorganic species. it is apparent that only about 2 electrons per mole are involved. Flow injection analysis (FIA) allowed determinations down to 2 µM heparin, but the calibration plot was nonlinear. Low molecular weight heparin (5-6 kDa) was not electroactive with this system. In basic solution at a glassy carbon electrode that is modified with a film of Cu-2O, both full-size and low molecular weight heparin are oxidized. The pathways involved oxidative desulfation and attack on saccharide units with evolution of CO-2. Linear calibration plots which extended into the sub µM level were obtained by FIA. The detection limits, which were based on a value of 3 for the ratio of the signal to the standard deviation of replicates, were 9 nM for full-size and 20-30 nM for various low molecular weight heparin samples.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '12', 'urlcheck' => '2014-10-11 14:11:58', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '00096', 'pauthor' => '!Cox, J.A.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1002/elan.1140090903', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Electrochemical oxidation and determination of heparin at electrodes modified with ruthenium oxide or copper oxide', Electroanalysis, 1997 9(9) 675-684', 'firstchar' => 'E', 'twochars' => 'El', 'CitationsTechnique' => array( 'id' => '008695', 'citation_id' => '009957', 'technique_id' => '0229' ), 'Analyte' => array( (int) 0 => array( [maximum depth reached] ) ), 'Matrix' => array(), 'Keyword' => array( (int) 0 => array( [maximum depth reached] ), (int) 1 => array( [maximum depth reached] ) ) ), 'i' => (int) 0 ) $data = array( 'Technique' => array( 'id' => '0229', 'label' => 'Electrode', 'level1' => 'Electrode', 'level2' => 'vitreous carbon', 'level3' => 'copper oxide modified', 'level4' => '', 'level5' => '', 'synonyms' => '', 'champ' => '', 'total' => '2', 'updated' => '0000-00-00 00:00:00', 'name' => 'Electrode, vitreous carbon, copper oxide modified', 'nametotal' => 'Electrode, vitreous carbon, copper oxide modified**2', 'first' => 'E' ), 'Citation' => array( (int) 0 => array( 'id' => '009957', 'authors' => 'Lewinski, K.A.;Hu, Y.;Griffin, C.C.;Cox, J.A.', 'authorsweb' => 'Krzysztof Lewinski, Yun Hu, Charles C. Griffin, James A. Cox', 'title' => 'Electrochemical oxidation and determination of heparin at electrodes modified with ruthenium oxide or copper oxide', 'journal' => 'Electroanalysis', 'journal_id' => '1003', 'fadid' => 'ELAN1997V0009P00675', 'year' => '1997', 'volume' => '9', 'issue' => '9', 'startpage' => '675', 'endpage' => '684', 'type' => 'Journal Article', 'analytes' => ';1148;', 'matrices' => '', 'techniques' => ';0229;0080;0400;', 'keywords' => ';0043;0110;', 'abstract' => 'The electrochemical oxidation of full-size heparin (13-15 kDa) is demonstrated in 1 M H-3PO-4 at a glassy carbon electrode coated with a ruthenium oxide film. The pathway apparently is analogous to chemical oxidation by periodate. By comparison to currents from inorganic species. it is apparent that only about 2 electrons per mole are involved. Flow injection analysis (FIA) allowed determinations down to 2 µM heparin, but the calibration plot was nonlinear. Low molecular weight heparin (5-6 kDa) was not electroactive with this system. In basic solution at a glassy carbon electrode that is modified with a film of Cu-2O, both full-size and low molecular weight heparin are oxidized. The pathways involved oxidative desulfation and attack on saccharide units with evolution of CO-2. Linear calibration plots which extended into the sub µM level were obtained by FIA. The detection limits, which were based on a value of 3 for the ratio of the signal to the standard deviation of replicates, were 9 nM for full-size and 20-30 nM for various low molecular weight heparin samples.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '12', 'urlcheck' => '2014-10-11 14:11:58', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '00096', 'pauthor' => '!Cox, J.A.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1002/elan.1140090903', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Electrochemical oxidation and determination of heparin at electrodes modified with ruthenium oxide or copper oxide', Electroanalysis, 1997 9(9) 675-684', 'firstchar' => 'E', 'twochars' => 'El', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 1 => array( 'id' => '010217', 'authors' => 'Cataldi, T.R.I.;Centonze, D.;Casella, I.G.;Desimoni, E.', 'authorsweb' => 'Tommaso R. I. Cataldia,*, Diego Centonzea, Innocenzo G. Casellaa and Elio Desimonib', 'title' => 'Anion-exchange chromatography with electrochemical detection of alditols and sugars at a cu2o-carbon composite electrode', 'journal' => 'J. Chromatogr. A', 'journal_id' => '0619', 'fadid' => 'JCRA1997V0773P00115', 'year' => '1997', 'volume' => '773', 'issue' => '1-2', 'startpage' => '115', 'endpage' => '121', 'type' => 'Journal Article', 'analytes' => ';0113;2217;2184;1434;1064;', 'matrices' => ';0477;', 'techniques' => ';0001;0229;0080;0272;', 'keywords' => ';0302;', 'abstract' => 'An anion-exchange column coupled with an amperometric sensor was used for the quantitative analysis of alditols and simple sugars. The sensing electrode is composed of cuprous oxide dispersed in a graphite powder-polyethylene composite matrix. The resulting Cu2O-carbon composite electrode is stable in alkaline media and possesses good sensitivity, wide linear dynamic ranges and low detection limits for alditols, mono- and disaccharides. Alditols and carbohydrates are weakly ionizable compounds, so an anion-exchange column was employed for their chromatographic separation with an alkaline eluent. The separation problems due to the presence of low but uncontrolled amounts of carbonate in the alkaline mobile phase have been largely solved by the addition of Ca2+ or Ba2+ at a millimolar level and the consequent formation of carbonate insoluble salts. Using this strategy, the alkaline eluent provides improved separations without compromising the column's lifetime, electrode performance and chromatographic system. Under the optimal operating conditions, the detection limits of D-sorbitol, D-mannitol and D-glucose were 50, 40 and 80 pmol, respectively, with a linear concentration range up to 5 mM. Examples of applications, which include the separation and detection of D-sorbitol, D-mannitol and common sugars present in food samples, are illustrated. 35 References', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '20', 'urlcheck' => '2014-10-11 19:08:44', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '00909', 'pauthor' => '!Cataldi, T.R.I.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1016/S0021-9673(97)00192-1', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Anion-exchange chromatography with electrochemical detection of alditols and sugars at a cu2o-carbon composite electrode', J. Chromatogr. A, 1997 773(1-2) 115-121', 'firstchar' => 'A', 'twochars' => 'An', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array( [maximum depth reached] ), 'Keyword' => array( [maximum depth reached] ) ) ) ) $c = array( 'id' => '009957', 'authors' => 'Lewinski, K.A.;Hu, Y.;Griffin, C.C.;Cox, J.A.', 'authorsweb' => 'Krzysztof Lewinski, Yun Hu, Charles C. Griffin, James A. Cox', 'title' => 'Electrochemical oxidation and determination of heparin at electrodes modified with ruthenium oxide or copper oxide', 'journal' => 'Electroanalysis', 'journal_id' => '1003', 'fadid' => 'ELAN1997V0009P00675', 'year' => '1997', 'volume' => '9', 'issue' => '9', 'startpage' => '675', 'endpage' => '684', 'type' => 'Journal Article', 'analytes' => ';1148;', 'matrices' => '', 'techniques' => ';0229;0080;0400;', 'keywords' => ';0043;0110;', 'abstract' => 'The electrochemical oxidation of full-size heparin (13-15 kDa) is demonstrated in 1 M H-3PO-4 at a glassy carbon electrode coated with a ruthenium oxide film. The pathway apparently is analogous to chemical oxidation by periodate. By comparison to currents from inorganic species. it is apparent that only about 2 electrons per mole are involved. Flow injection analysis (FIA) allowed determinations down to 2 µM heparin, but the calibration plot was nonlinear. Low molecular weight heparin (5-6 kDa) was not electroactive with this system. In basic solution at a glassy carbon electrode that is modified with a film of Cu-2O, both full-size and low molecular weight heparin are oxidized. The pathways involved oxidative desulfation and attack on saccharide units with evolution of CO-2. Linear calibration plots which extended into the sub µM level were obtained by FIA. The detection limits, which were based on a value of 3 for the ratio of the signal to the standard deviation of replicates, were 9 nM for full-size and 20-30 nM for various low molecular weight heparin samples.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '12', 'urlcheck' => '2014-10-11 14:11:58', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '00096', 'pauthor' => '!Cox, J.A.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1002/elan.1140090903', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Electrochemical oxidation and determination of heparin at electrodes modified with ruthenium oxide or copper oxide', Electroanalysis, 1997 9(9) 675-684', 'firstchar' => 'E', 'twochars' => 'El', 'CitationsTechnique' => array( 'id' => '008695', 'citation_id' => '009957', 'technique_id' => '0229' ), 'Analyte' => array( (int) 0 => array( 'id' => '01148', 'name' => 'Heparin', 'iupac_name' => '6-[6-[6-[5-acetamido-4,6-dihydroxy-2-(sulfooxymethyl)oxan-3-yl]oxy-2-carboxy-4-hydroxy-5-sulfooxyoxan-3-yl]oxy-2-(hydroxymethyl)-5-(sulfoamino)-4-sulfooxyoxan-3-yl]oxy-3,4-dihydroxy-5-sulfooxyoxane-2-carboxylic acid', 'casrn' => '9005-49-6', 'synonyms' => 'LMWH', 'total' => '3', 'inchi' => 'InChI=1S/C26H42N2O37S5/c1-4(30)27-7-9(31)13(6(56-23(7)39)3-55-67(43,44)45)58-26-19(65-70(52,53)54)12(34)16(20(62-26)22(37)38)60-24-8(28-66(40,41)42)15(63-68(46,47)48)14(5(2-29)57-24)59-25-18(64-69(49,50)51)11(33)10(32)17(61-25)21(35)36/h5-20,23-26,28-29,31-34,39H,2-3H2,1H3,(H,27,30)(H,35,36)(H,37,38)(H,40,41,42)(H,43,44,45)(H,46,47,48)(H,49,50,51)(H,52,53,54)', 'inchikey' => 'HTTJABKRGRZYRN-UHFFFAOYSA-N', 'formula' => 'C26H42N2O37S5', 'oxstate' => null, 'url' => '', 'charge' => null, 'class1' => '', 'class2' => '', 'class3' => '', 'class4' => '', 'class5' => '', 'isgroup' => 'no', 'checked' => 'no', 'citation_count' => '0', 'updated' => '2015-10-24 10:53:31', 'first' => 'H', 'nametotal' => 'Heparin**3', 'AnalytesCitation' => array( [maximum depth reached] ) ) ), 'Matrix' => array(), 'Keyword' => array( (int) 0 => array( 'id' => '0043', 'type' => 'Manifold component', 'keyword' => 'Apparatus', 'newKeyword' => '', 'synonyms' => '', 'fao' => '', 'total' => '466', 'first' => 'A', 'keytotal' => 'Apparatus**466', 'CitationsKeyword' => array( [maximum depth reached] ) ), (int) 1 => array( 'id' => '0110', 'type' => 'Manifold component', 'keyword' => 'Detector', 'newKeyword' => '', 'synonyms' => '', 'fao' => '', 'total' => '354', 'first' => 'D', 'keytotal' => 'Detector**354', 'CitationsKeyword' => array( [maximum depth reached] ) ) ) ) $i = (int) 0 $path = '' $a = '' $url = 'http://dx.doi.org/10.1002/elan.1140090903' $aus = 'Krzysztof Lewinski, Yun Hu, Charles C. Griffin, James A. Cox'include - APP/View/Elements/citation.ctp, line 40 View::_evaluate() - CORE/Cake/View/View.php, line 971 View::_render() - CORE/Cake/View/View.php, line 933 View::_renderElement() - CORE/Cake/View/View.php, line 1224 View::element() - CORE/Cake/View/View.php, line 418 include - APP/View/Techniques/view.ctp, line 52 View::_evaluate() - CORE/Cake/View/View.php, line 971 View::_render() - CORE/Cake/View/View.php, line 933 View::render() - CORE/Cake/View/View.php, line 473 Controller::render() - CORE/Cake/Controller/Controller.php, line 968 Dispatcher::_invoke() - CORE/Cake/Routing/Dispatcher.php, line 200 Dispatcher::dispatch() - CORE/Cake/Routing/Dispatcher.php, line 167 [main] - APP/webroot/index.php, line 109
"Anion-exchange Chromatography With Electrochemical Detection Of Alditols And Sugars At A Cu2o-carbon Composite Electrode"
J. Chromatogr. A
1997 Volume 773, Issue 1-2 Pages 115-121
Notice (8): Undefined variable: uid [APP/View/Elements/citation.ctp, line 40]Tommaso R. I. Cataldia,*, Diego Centonzea, Innocenzo G. Casellaa and Elio DesimonibCode Context?>
<?php
if($uid!='') {
$viewFile = '/home/stuchalk/public_html/fad/app/View/Elements/citation.ctp' $dataForView = array( 'data' => array( 'Technique' => array( 'id' => '0229', 'label' => 'Electrode', 'level1' => 'Electrode', 'level2' => 'vitreous carbon', 'level3' => 'copper oxide modified', 'level4' => '', 'level5' => '', 'synonyms' => '', 'champ' => '', 'total' => '2', 'updated' => '0000-00-00 00:00:00', 'name' => 'Electrode, vitreous carbon, copper oxide modified', 'nametotal' => 'Electrode, vitreous carbon, copper oxide modified**2', 'first' => 'E' ), 'Citation' => array( (int) 0 => array( [maximum depth reached] ), (int) 1 => array( [maximum depth reached] ) ) ), 'c' => array( 'id' => '010217', 'authors' => 'Cataldi, T.R.I.;Centonze, D.;Casella, I.G.;Desimoni, E.', 'authorsweb' => 'Tommaso R. I. Cataldia,*, Diego Centonzea, Innocenzo G. Casellaa and Elio Desimonib', 'title' => 'Anion-exchange chromatography with electrochemical detection of alditols and sugars at a cu2o-carbon composite electrode', 'journal' => 'J. Chromatogr. A', 'journal_id' => '0619', 'fadid' => 'JCRA1997V0773P00115', 'year' => '1997', 'volume' => '773', 'issue' => '1-2', 'startpage' => '115', 'endpage' => '121', 'type' => 'Journal Article', 'analytes' => ';0113;2217;2184;1434;1064;', 'matrices' => ';0477;', 'techniques' => ';0001;0229;0080;0272;', 'keywords' => ';0302;', 'abstract' => 'An anion-exchange column coupled with an amperometric sensor was used for the quantitative analysis of alditols and simple sugars. The sensing electrode is composed of cuprous oxide dispersed in a graphite powder-polyethylene composite matrix. The resulting Cu2O-carbon composite electrode is stable in alkaline media and possesses good sensitivity, wide linear dynamic ranges and low detection limits for alditols, mono- and disaccharides. Alditols and carbohydrates are weakly ionizable compounds, so an anion-exchange column was employed for their chromatographic separation with an alkaline eluent. The separation problems due to the presence of low but uncontrolled amounts of carbonate in the alkaline mobile phase have been largely solved by the addition of Ca2+ or Ba2+ at a millimolar level and the consequent formation of carbonate insoluble salts. Using this strategy, the alkaline eluent provides improved separations without compromising the column's lifetime, electrode performance and chromatographic system. Under the optimal operating conditions, the detection limits of D-sorbitol, D-mannitol and D-glucose were 50, 40 and 80 pmol, respectively, with a linear concentration range up to 5 mM. Examples of applications, which include the separation and detection of D-sorbitol, D-mannitol and common sugars present in food samples, are illustrated. 35 References', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '20', 'urlcheck' => '2014-10-11 19:08:44', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '00909', 'pauthor' => '!Cataldi, T.R.I.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1016/S0021-9673(97)00192-1', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Anion-exchange chromatography with electrochemical detection of alditols and sugars at a cu2o-carbon composite electrode', J. Chromatogr. A, 1997 773(1-2) 115-121', 'firstchar' => 'A', 'twochars' => 'An', 'CitationsTechnique' => array( 'id' => '009261', 'citation_id' => '010217', 'technique_id' => '0229' ), 'Analyte' => array( (int) 0 => array( [maximum depth reached] ), (int) 1 => array( [maximum depth reached] ), (int) 2 => array( [maximum depth reached] ), (int) 3 => array( [maximum depth reached] ), (int) 4 => array( [maximum depth reached] ) ), 'Matrix' => array( (int) 0 => array( [maximum depth reached] ) ), 'Keyword' => array( (int) 0 => array( [maximum depth reached] ) ) ), 'i' => (int) 1 ) $data = array( 'Technique' => array( 'id' => '0229', 'label' => 'Electrode', 'level1' => 'Electrode', 'level2' => 'vitreous carbon', 'level3' => 'copper oxide modified', 'level4' => '', 'level5' => '', 'synonyms' => '', 'champ' => '', 'total' => '2', 'updated' => '0000-00-00 00:00:00', 'name' => 'Electrode, vitreous carbon, copper oxide modified', 'nametotal' => 'Electrode, vitreous carbon, copper oxide modified**2', 'first' => 'E' ), 'Citation' => array( (int) 0 => array( 'id' => '009957', 'authors' => 'Lewinski, K.A.;Hu, Y.;Griffin, C.C.;Cox, J.A.', 'authorsweb' => 'Krzysztof Lewinski, Yun Hu, Charles C. Griffin, James A. Cox', 'title' => 'Electrochemical oxidation and determination of heparin at electrodes modified with ruthenium oxide or copper oxide', 'journal' => 'Electroanalysis', 'journal_id' => '1003', 'fadid' => 'ELAN1997V0009P00675', 'year' => '1997', 'volume' => '9', 'issue' => '9', 'startpage' => '675', 'endpage' => '684', 'type' => 'Journal Article', 'analytes' => ';1148;', 'matrices' => '', 'techniques' => ';0229;0080;0400;', 'keywords' => ';0043;0110;', 'abstract' => 'The electrochemical oxidation of full-size heparin (13-15 kDa) is demonstrated in 1 M H-3PO-4 at a glassy carbon electrode coated with a ruthenium oxide film. The pathway apparently is analogous to chemical oxidation by periodate. By comparison to currents from inorganic species. it is apparent that only about 2 electrons per mole are involved. Flow injection analysis (FIA) allowed determinations down to 2 µM heparin, but the calibration plot was nonlinear. Low molecular weight heparin (5-6 kDa) was not electroactive with this system. In basic solution at a glassy carbon electrode that is modified with a film of Cu-2O, both full-size and low molecular weight heparin are oxidized. The pathways involved oxidative desulfation and attack on saccharide units with evolution of CO-2. Linear calibration plots which extended into the sub µM level were obtained by FIA. The detection limits, which were based on a value of 3 for the ratio of the signal to the standard deviation of replicates, were 9 nM for full-size and 20-30 nM for various low molecular weight heparin samples.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '12', 'urlcheck' => '2014-10-11 14:11:58', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '00096', 'pauthor' => '!Cox, J.A.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1002/elan.1140090903', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Electrochemical oxidation and determination of heparin at electrodes modified with ruthenium oxide or copper oxide', Electroanalysis, 1997 9(9) 675-684', 'firstchar' => 'E', 'twochars' => 'El', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 1 => array( 'id' => '010217', 'authors' => 'Cataldi, T.R.I.;Centonze, D.;Casella, I.G.;Desimoni, E.', 'authorsweb' => 'Tommaso R. I. Cataldia,*, Diego Centonzea, Innocenzo G. Casellaa and Elio Desimonib', 'title' => 'Anion-exchange chromatography with electrochemical detection of alditols and sugars at a cu2o-carbon composite electrode', 'journal' => 'J. Chromatogr. A', 'journal_id' => '0619', 'fadid' => 'JCRA1997V0773P00115', 'year' => '1997', 'volume' => '773', 'issue' => '1-2', 'startpage' => '115', 'endpage' => '121', 'type' => 'Journal Article', 'analytes' => ';0113;2217;2184;1434;1064;', 'matrices' => ';0477;', 'techniques' => ';0001;0229;0080;0272;', 'keywords' => ';0302;', 'abstract' => 'An anion-exchange column coupled with an amperometric sensor was used for the quantitative analysis of alditols and simple sugars. The sensing electrode is composed of cuprous oxide dispersed in a graphite powder-polyethylene composite matrix. The resulting Cu2O-carbon composite electrode is stable in alkaline media and possesses good sensitivity, wide linear dynamic ranges and low detection limits for alditols, mono- and disaccharides. Alditols and carbohydrates are weakly ionizable compounds, so an anion-exchange column was employed for their chromatographic separation with an alkaline eluent. The separation problems due to the presence of low but uncontrolled amounts of carbonate in the alkaline mobile phase have been largely solved by the addition of Ca2+ or Ba2+ at a millimolar level and the consequent formation of carbonate insoluble salts. Using this strategy, the alkaline eluent provides improved separations without compromising the column's lifetime, electrode performance and chromatographic system. Under the optimal operating conditions, the detection limits of D-sorbitol, D-mannitol and D-glucose were 50, 40 and 80 pmol, respectively, with a linear concentration range up to 5 mM. Examples of applications, which include the separation and detection of D-sorbitol, D-mannitol and common sugars present in food samples, are illustrated. 35 References', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '20', 'urlcheck' => '2014-10-11 19:08:44', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '00909', 'pauthor' => '!Cataldi, T.R.I.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1016/S0021-9673(97)00192-1', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Anion-exchange chromatography with electrochemical detection of alditols and sugars at a cu2o-carbon composite electrode', J. Chromatogr. A, 1997 773(1-2) 115-121', 'firstchar' => 'A', 'twochars' => 'An', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array( [maximum depth reached] ), 'Keyword' => array( [maximum depth reached] ) ) ) ) $c = array( 'id' => '010217', 'authors' => 'Cataldi, T.R.I.;Centonze, D.;Casella, I.G.;Desimoni, E.', 'authorsweb' => 'Tommaso R. I. Cataldia,*, Diego Centonzea, Innocenzo G. Casellaa and Elio Desimonib', 'title' => 'Anion-exchange chromatography with electrochemical detection of alditols and sugars at a cu2o-carbon composite electrode', 'journal' => 'J. Chromatogr. A', 'journal_id' => '0619', 'fadid' => 'JCRA1997V0773P00115', 'year' => '1997', 'volume' => '773', 'issue' => '1-2', 'startpage' => '115', 'endpage' => '121', 'type' => 'Journal Article', 'analytes' => ';0113;2217;2184;1434;1064;', 'matrices' => ';0477;', 'techniques' => ';0001;0229;0080;0272;', 'keywords' => ';0302;', 'abstract' => 'An anion-exchange column coupled with an amperometric sensor was used for the quantitative analysis of alditols and simple sugars. The sensing electrode is composed of cuprous oxide dispersed in a graphite powder-polyethylene composite matrix. The resulting Cu2O-carbon composite electrode is stable in alkaline media and possesses good sensitivity, wide linear dynamic ranges and low detection limits for alditols, mono- and disaccharides. Alditols and carbohydrates are weakly ionizable compounds, so an anion-exchange column was employed for their chromatographic separation with an alkaline eluent. The separation problems due to the presence of low but uncontrolled amounts of carbonate in the alkaline mobile phase have been largely solved by the addition of Ca2+ or Ba2+ at a millimolar level and the consequent formation of carbonate insoluble salts. Using this strategy, the alkaline eluent provides improved separations without compromising the column's lifetime, electrode performance and chromatographic system. Under the optimal operating conditions, the detection limits of D-sorbitol, D-mannitol and D-glucose were 50, 40 and 80 pmol, respectively, with a linear concentration range up to 5 mM. Examples of applications, which include the separation and detection of D-sorbitol, D-mannitol and common sugars present in food samples, are illustrated. 35 References', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '20', 'urlcheck' => '2014-10-11 19:08:44', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => '00909', 'pauthor' => '!Cataldi, T.R.I.', 'address' => 'pau', 'email' => 'pau', 'notes' => null, 'url' => '10.1016/S0021-9673(97)00192-1', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Anion-exchange chromatography with electrochemical detection of alditols and sugars at a cu2o-carbon composite electrode', J. Chromatogr. A, 1997 773(1-2) 115-121', 'firstchar' => 'A', 'twochars' => 'An', 'CitationsTechnique' => array( 'id' => '009261', 'citation_id' => '010217', 'technique_id' => '0229' ), 'Analyte' => array( (int) 0 => array( 'id' => '00113', 'name' => 'Alditols', 'iupac_name' => '', 'casrn' => '', 'synonyms' => '', 'total' => '3', 'inchi' => '', 'inchikey' => '', 'formula' => '', 'oxstate' => null, 'url' => '', 'charge' => null, 'class1' => '', 'class2' => '', 'class3' => '', 'class4' => '', 'class5' => '', 'isgroup' => 'no', 'checked' => 'no', 'citation_count' => '0', 'updated' => '2015-12-11 09:53:17', 'first' => 'A', 'nametotal' => 'Alditols**3', 'AnalytesCitation' => array( [maximum depth reached] ) ), (int) 1 => array( 'id' => '02217', 'name' => 'Sugars', 'iupac_name' => '', 'casrn' => '', 'synonyms' => '', 'total' => '21', 'inchi' => '', 'inchikey' => '', 'formula' => '', 'oxstate' => null, 'url' => '', 'charge' => null, 'class1' => '', 'class2' => '', 'class3' => '', 'class4' => '', 'class5' => '', 'isgroup' => 'no', 'checked' => 'no', 'citation_count' => '0', 'updated' => '2015-12-11 09:53:17', 'first' => 'S', 'nametotal' => 'Sugars**21', 'AnalytesCitation' => array( [maximum depth reached] ) ), (int) 2 => array( 'id' => '02184', 'name' => 'Sorbitol', 'iupac_name' => '(2R,3R,4R,5S)-hexane-1,2,3,4,5,6-hexol', 'casrn' => '50-70-4', 'synonyms' => 'D-glucitol; Diakarmon; Glucitol; L-gulitol; D-1,2,3,4,5,6-hexanehexol; Nivitin; Sionit; Sionon; Sorbicolan; Sorbite; D-sorbitol; Sorbo; Sorbol; component of Probilagol; Cholaxine; D-Sorbol; Esasorb; Glucitol, D-; Gulitol; Karion; Neosorb; Sionite; Siosan; Sorbex M; Sorbex R; Sorbex Rp; Sorbex S; Sorbex X; Sorbilande; Sorbit; Sorbitol syrup C; Sorbostyl; Sorvilande; Syn M.D.; Sorbitol, (d); A-625/641ABS 301K; A-625/641ABS 500FR-1; Cystosol; d-Galactitol; d-Sorbit; d-Sorbite; Hexahydric alcohol; Hydex 100 gran.206; Karion, sionit; Liponic 70-NC; Orbit; Resulax; Sorban; Sorbelite C; Sorbilax; Sorbitol (EGIC); Sorbitur; Sorbostryl; Hexitol', 'total' => '5', 'inchi' => 'InChI=1S/C6H14O6/c7-1-3(9)5(11)6(12)4(10)2-8/h3-12H,1-2H2', 'inchikey' => 'FBPFZTCFMRRESA-JGWLITMVSA-N', 'formula' => ' C6H14O6', 'oxstate' => 'Zero', 'url' => '', 'charge' => '0', 'class1' => 'Organic compound', 'class2' => 'NA', 'class3' => 'NA', 'class4' => 'Molecule', 'class5' => 'Sugars', 'isgroup' => '', 'checked' => 'yes', 'citation_count' => '0', 'updated' => '2015-12-11 16:18:02', 'first' => 'S', 'nametotal' => 'Sorbitol**5', 'AnalytesCitation' => array( [maximum depth reached] ) ), (int) 3 => array( 'id' => '01434', 'name' => 'd-Mannitol', 'iupac_name' => '(2R,3R,4R,5R)-hexane-1,2,3,4,5,6-hexol', 'casrn' => '69-65-8', 'synonyms' => 'D-mannitol, mannitol, Mannite, Osmitrol, Osmofundin, Manna sugar, 69-65-8, Resectisol, Diosmol, Mannigen, Osmosal, Isotol, Mannit, Cordycepic acid, Mannidex, Mannistol, Invenex, Marine Crystal, Mannitol, D-, Bronchitol, Aridol, Mannogem 2080, Mannitol (VAN), Mannazucker, SDM No. 35, Maniton-S, Mannitol [USAN], Hexahydroxyhexane, CHEBI:16899, Mannidex 16700, NCI-C50362, BRN 1721898, UNII-3OWL53L36A, CCRIS 369, HSDB 714, Mannitol 5%, Mannitol (USP), Mannitol [USP], NSC 9256, (2R,3R,4R,5R)-hexane-1,2,3,4,5,6-hexol, EINECS 200-711-8, EINECS 201-770-2, Mannitol 10%, Mannitol 15%, Mannitol 20%, D-(-)-Mannitol, NSC 407017, NCGC00164246-01, E421, Osmitrol 5% In Water, AI3-19511, Osmitrol 10% In Water, Osmitrol 15% In Water, Osmitrol 20% In Water, DSSTox_CID_3235, MANNITOL 25%, dulcite, manita, DSSTox_RID_76936, DSSTox_GSID_23235, Hexanhexol, Mannitolum, OSMITROL 5% IN WATER IN PLASTIC CONTAINER, OSMITROL 10% IN WATER IN PLASTIC CONTAINER, OSMITROL 15% IN WATER IN PLASTIC CONTAINER, OSMITROL 20% IN WATER IN PLASTIC CONTAINER, Mushroom sugar, D-mannite, Maniton s, Mannit p, Resectisol In Plastic Container, DL-Mannitol, MANNITOL 10% W/ DEXTROSE 5% IN DISTILLED WATER, 1,2,3,4,5,6-Hexanehexol, Mannitol 5% In Plastic Container, Mannitol 10% In Plastic Container, Mannitol 15% In Plastic Container, MANNITOL 15% W/ DEXTROSE 5% IN SODIUM CHLORIDE 0.45%, Mannitol 20% In Plastic Container, MANNITOL 5% W/ DEXTROSE 5% IN SODIUM CHLORIDE 0.12%, Osmitrol (TN), 87-78-5, CAS-69-65-8, 85085-15-0, MTL, D-Mannitol, Mannitol, Osmitrol, Osmofundin, bmse000099, CHEMBL689, Ambap69-65-8, MLS001335977, MLS001335978, 15719_ALDRICH, M1902_SIGMA, 15719_RIEDEL, 33440_RIEDEL, AC1L1M49, AC1Q28E5, M4125_SIAL, M8429_SIAL, M9546_SIAL, M9647_SIAL, 33440_SIGMA, 63559_FLUKA, 63559_SIGMA, 63560_FLUKA, 63565_FLUKA, 63565_SIGMA, C6H14O6, Cordycepate, Deltamannit, MolPort-003-927-039, Osmosteril, Demanitol, Diurecide, Fraxinine, Manitol, Maniton, Mannisol, Osmohale, Osmosol, Manit, D-mitobronitol, Manitol Mein, Mannit-Losung, AR-1J3861, Mannisol A, ZINC02041302, cpd without stereochemical designation, 1,2,3,4,5,6-Hexahexol, Mannite, Mannite Actipharm, LS-1588, (D)-mannitol, AC-12776, LS-89250, SMR000857324, TL806434, AB1002081, M0044, S2381_Selleck, C00392, D00062, D-Mannitol (JP16), 4-01-00-02841 (Beilstein Handbook Reference), ED1D1E61-FEFB-430A-AFDC-D1F4A957FC3D, SCHEMBL919, Epitope ID:114705, 3OWL53L36A, HMDB00765, FBPFZTCFMRRESA-KVTDHHQDSA-N, HMS2230N11, 123897-58-5, 133-43-7, 36413-61-3, 5149-40-6, 75398-80-0, HY-N0378, Tox21_112092, Tox21_201487, Tox21_300483, AKOS006280947, Tox21_112092_1, BCP9000575, CS-2494, DB00742, RP24311, D-Mannito-Supplied by Selleck Chemicals, NCGC00164246-03, NCGC00164246-04, NCGC00164246-05, NCGC00254277-01, NCGC00259038-01, AJ-33305, AK-48449, AN-23785, CJ-32570, K167, KB-53490, SC-18306, WURCS=1.0/1,0/[h1122h], AB0008020, KB-251717, E 421, E-421, FT-0625542, 1630-EP2269989A1, 1630-EP2269994A1, 1630-EP2269996A1, 1630-EP2269999A1, 1630-EP2270000A1, 1630-EP2270002A1, 1630-EP2270005A1, 1630-EP2270007A1, 1630-EP2270008A1, 1630-EP2270011A1, 1630-EP2270012A1, 1630-EP2270013A1, 1630-EP2270014A1, 1630-EP2272517A1, 1630-EP2272537A2, 1630-EP2272817A1, 1630-EP2272826A1, 1630-EP2272848A1, 1630-EP2275412A1, 1630-EP2275413A1, 1630-EP2275420A1, 1630-EP2275421A1, 1630-EP2277507A1, 1630-EP2277565A2, 1630-EP2277566A2, 1630-EP2277567A1, 1630-EP2277568A2, 1630-EP2277569A2, 1630-EP2277570A2, 1630-EP2277861A1, 1630-EP2277867A2, 1630-EP2277877A1, 1630-EP2277879A1, 1630-EP2280003A2, 1630-EP2280008A2, 1630-EP2280010A2, 1630-EP2281559A1, 1630-EP2281818A1, 1630-EP2281823A2, 1630-EP2283811A1, 1630-EP2284149A1, 1630-EP2284159A1, 1630-EP2284166A1, 1630-EP2286795A1, 1630-EP2287147A2, 1630-EP2287156A1, 1630-EP2287160A1, 1630-EP2287165A2, 1630-EP2287166A2, 1630-EP2289509A2, 1630-EP2289518A1, 1630-EP2289893A1, 1630-EP2289894A2, 1630-EP2292222A1, 1630-EP2292227A2, 1630-EP2292231A1, 1630-EP2292234A1, 1630-EP2292280A1, 1630-EP2292593A2, 1630-EP2292597A1, 1630-EP2292611A1, 1630-EP2292612A2, 1630-EP2292613A1, 1630-EP2292616A1, 1630-EP2292617A1, 1630-EP2292620A2, 1630-EP2292622A1, 1630-EP2292624A1, 1630-EP2292630A1, 1630-EP2295053A1, 1630-EP2295055A2, 1630-EP2295402A2, 1630-EP2295408A1, 1630-EP2295416A2, 1630-EP2295424A1, 1630-EP2295426A1, 1630-EP2295427A1, 1630-EP2295430A2, 1630-EP2295431A2, 1630-EP2295432A1, 1630-EP2295433A2, 1630-EP2295437A1, 1630-EP2295439A1, 1630-EP2298734A2, 1630-EP2298743A1, 1630-EP2298744A2, 1630-EP2298747A1, 1630-EP2298748A2, 1630-EP2298752A1, 1630-EP2298758A1, 1630-EP2298759A1, 1630-EP2298764A1, 1630-EP2298765A1, 1630-EP2298770A1, 1630-EP2298773A1, 1630-EP2298775A1, 1630-EP2298779A1, 1630-EP2298783A1, 1630-EP2301533A1, 1630-EP2301540A1, 1630-EP2301922A1, 1630-EP2301923A1, 1630-EP2301931A1, 1630-EP2301937A1, 1630-EP2301938A1, 1630-EP2305243A1, 1630-EP2305248A1, 1630-EP2305250A1, 1630-EP2305254A1, 1630-EP2305636A1, 1630-EP2305641A1, 1630-EP2305653A1, 1630-EP2305663A1, 1630-EP2305664A1, 1630-EP2305665A1, 1630-EP2305668A1, 1630-EP2305675A1, 1630-EP2305680A2, 1630-EP2305681A1, 1630-EP2305695A2, 1630-EP2305696A2, 1630-EP2305697A2, 1630-EP2305698A2, 1630-EP2308492A1, 1630-EP2308510A1, 1630-EP2308562A2, 1630-EP2308812A2, 1630-EP2308828A2, 1630-EP2308833A2, 1630-EP2308852A1, 1630-EP2308861A1, 1630-EP2308869A1, 1630-EP2308872A1, 1630-EP2308873A1, 1630-EP2308875A1, 1630-EP2308877A1, 1630-EP2311453A1, 1630-EP2311464A1, 1630-EP2311494A1, 1630-EP2311806A2, 1630-EP2311807A1, 1630-EP2311809A1, 1630-EP2311821A1, 1630-EP2311825A1, 1630-EP2311829A1, 1630-EP2311831A1, 1630-EP2311836A1, 1630-EP2311837A1, 1630-EP2311838A1, 1630-EP2311840A1, 1630-EP2311842A2, 1630-EP2314295A1, 1630-EP2314575A1, 1630-EP2314584A1, 1630-EP2314586A1, 1630-EP2314590A1, 1630-EP2314591A1, 1630-EP2314593A1, 1630-EP2316470A2, 1630-EP2316829A1, 1630-EP2316831A1, 1630-EP2316832A1, 1630-EP2316833A1, 1630-EP2316834A1, 1630-EP2316836A1, 1630-EP2371811A2, 1630-EP2374454A1, 1630-EP2374790A1, 1630-EP2374792A1, 1630-EP2377849A2, X-3269, 27808-EP2269993A1, 27808-EP2270505A1, 27808-EP2277874A1, 27808-EP2277880A1, 27808-EP2281823A2, 27808-EP2284160A1, 27808-EP2287155A1, 27808-EP2292610A1, 27808-EP2292612A2, 27808-EP2295406A1, 27808-EP2295414A1, 27808-EP2295432A1, 27808-EP2298731A1, 27808-EP2298767A1, 27808-EP2298772A1, 27808-EP2301938A1, 27808-EP2305219A1, 27808-EP2308839A1, 27808-EP2311822A1, 27808-EP2314587A1, (2R,3R,4R,5R)-Hexane-1,2,3,4,5,6-hexaol', 'total' => '4', 'inchi' => 'InChI=1S/C6H14O6/c7-1-3(9)5(11)6(12)4(10)2-8/h3-12H,1-2H2', 'inchikey' => 'FBPFZTCFMRRESA-KVTDHHQDSA-N', 'formula' => 'C6H14O6', 'oxstate' => 'Zero', 'url' => '', 'charge' => '0', 'class1' => '', 'class2' => '', 'class3' => '', 'class4' => '', 'class5' => '', 'isgroup' => 'no', 'checked' => 'no', 'citation_count' => '0', 'updated' => '2015-10-23 21:31:15', 'first' => 'D', 'nametotal' => 'd-Mannitol**4', 'AnalytesCitation' => array( [maximum depth reached] ) ), (int) 4 => array( 'id' => '01064', 'name' => 'd-Glucose', 'iupac_name' => '(3R,4S,5S,6R)-6-(hydroxymethyl)oxane-2,3,4,5-tetrol', 'casrn' => '50-99-7', 'synonyms' => 'D-Glucose; Anhydrous dextrose; Cartose; Cerelose; Corn sugar; D-(+)-Glucose; Dextropur; Dextrose; Dextrosol; Glucolin; Grape sugar; Sugar, grape; α-d-glucose; component of Kadalex; D-Glucose, anhydrous; Dextrose, anhydrous; GLUCOSE (D); Glucose, anhydrous; Glucose liquid; Blood sugar; Candex; Dextrose monohydrate; Emdex; Flolys; Roferose; Hexose', 'total' => '11', 'inchi' => 'InChI=1S/C6H12O6/c7-1-3(9)5(11)6(12)4(10)2-8/h1,3-6,8-12H,2H2/t3-,4+,5+,6+/m0/s1', 'inchikey' => 'WQZGKKKJIJFFOK-GASJEMHNSA-N', 'formula' => 'C6H12O6', 'oxstate' => 'Zero', 'url' => '', 'charge' => '0', 'class1' => 'Biological', 'class2' => 'NA', 'class3' => 'NA', 'class4' => 'Molecule', 'class5' => 'Sugars', 'isgroup' => '', 'checked' => 'yes', 'citation_count' => '0', 'updated' => '2015-12-11 16:39:45', 'first' => 'D', 'nametotal' => 'd-Glucose**11', 'AnalytesCitation' => array( [maximum depth reached] ) ) ), 'Matrix' => array( (int) 0 => array( 'id' => '0477', 'label' => 'Food', 'level1' => 'Food', 'level2' => '', 'level3' => '', 'level4' => '', 'level5' => '', 'synonyms' => '', 'total' => '141', 'url' => '', 'updated' => '2015-12-09 21:04:43', 'name' => 'Food', 'nametotal' => 'Food**141', 'first' => 'F', 'CitationsMatrix' => array( [maximum depth reached] ) ) ), 'Keyword' => array( (int) 0 => array( 'id' => '0302', 'type' => 'Feature', 'keyword' => 'Optimization', 'newKeyword' => '', 'synonyms' => '', 'fao' => '', 'total' => '1069', 'first' => 'O', 'keytotal' => 'Optimization**1069', 'CitationsKeyword' => array( [maximum depth reached] ) ) ) ) $i = (int) 1 $path = '' $a = '' $url = 'http://dx.doi.org/10.1016/S0021-9673(97)00192-1' $aus = 'Tommaso R. I. Cataldia,*, Diego Centonzea, Innocenzo G. Casellaa and Elio Desimonib'include - APP/View/Elements/citation.ctp, line 40 View::_evaluate() - CORE/Cake/View/View.php, line 971 View::_render() - CORE/Cake/View/View.php, line 933 View::_renderElement() - CORE/Cake/View/View.php, line 1224 View::element() - CORE/Cake/View/View.php, line 418 include - APP/View/Techniques/view.ctp, line 52 View::_evaluate() - CORE/Cake/View/View.php, line 971 View::_render() - CORE/Cake/View/View.php, line 933 View::render() - CORE/Cake/View/View.php, line 473 Controller::render() - CORE/Cake/Controller/Controller.php, line 968 Dispatcher::_invoke() - CORE/Cake/Routing/Dispatcher.php, line 200 Dispatcher::dispatch() - CORE/Cake/Routing/Dispatcher.php, line 167 [main] - APP/webroot/index.php, line 109