Contact Info
Stuart Chalk, Ph.D.
Department of Chemistry
University of North Florida
Phone: 1-904-620-1938
Fax: 1-904-620-3535
Email: schalk@unf.edu
Website: @unf
Electrode
Citations 4
"Postchromatographic Electrochemical Detection Of Carbohydrates At A Silver Oxide Electrode"
Electroanalysis
1993 Volume 5, Issue 8 Pages 669-675
Notice (8): Undefined variable: uid [APP/View/Elements/citation.ctp, line 40]Terrence P. Tougas, Mark J. Debenedetto, James M. Demott Jr.Code Context?>
<?php
if($uid!='') {
$viewFile = '/home/stuchalk/public_html/fad/app/View/Elements/citation.ctp' $dataForView = array( 'data' => array( 'Technique' => array( 'id' => '0212', 'label' => 'Electrode', 'level1' => 'Electrode', 'level2' => 'silver oxide', 'level3' => '', 'level4' => '', 'level5' => '', 'synonyms' => '', 'champ' => '', 'total' => '4', 'updated' => '0000-00-00 00:00:00', 'name' => 'Electrode, silver oxide', 'nametotal' => 'Electrode, silver oxide**4', 'first' => 'E' ), 'Citation' => array( (int) 0 => array( [maximum depth reached] ), (int) 1 => array( [maximum depth reached] ), (int) 2 => array( [maximum depth reached] ), (int) 3 => array( [maximum depth reached] ) ) ), 'c' => array( 'id' => '009870', 'authors' => 'Tougas, T.P.;De Benedetto, M.J.;Demott, J.M.', 'authorsweb' => 'Terrence P. Tougas, Mark J. Debenedetto, James M. Demott Jr.', 'title' => 'Postchromatographic electrochemical detection of carbohydrates at a silver oxide electrode', 'journal' => 'Electroanalysis', 'journal_id' => '1003', 'fadid' => 'ELAN1993V0005P00669', 'year' => '1993', 'volume' => '5', 'issue' => '8', 'startpage' => '669', 'endpage' => '675', 'type' => 'Journal Article', 'analytes' => ';0508;1057;2102;1020;2519;', 'matrices' => '', 'techniques' => ';0212;0054;0038;', 'keywords' => ';0339;', 'abstract' => 'An oxide surface was formed on a 2-mm Ag-wire electrode by conditioning in 0.1 M NaOH at +0.7 V for 30 min and then at 0.45 V vs. the SCE. The properties of the electrode were studied and it was applied to the electrochemical detection of simple sugars separated by HPLC on a Waters carbohydrate analysis column (30 cm x 3.9 mm) with mobile phase (1 ml/min) of acetonitrile/phosphate buffer of pH 8 (36:11) and by FIA. Calibration graphs were rectilinear for 1-100 µM-galactose, glucose, ribose and xylose.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '2007-07-10 10:39:47', 'hits' => '8', 'urlcheck' => '2014-10-11 14:09:28', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => null, 'pauthor' => 'DeMott, J.M.', 'address' => 'Department of Chemistry and Physics, Massachusetts College of Pharmacy and Allied Health Sciences, 179 Longwood Avenue, Boston, MA 02115, USA', 'email' => 'NA', 'notes' => null, 'url' => '10.1002/elan.1140050808', 'urltype' => 'doi', 'gotpdf' => 'no', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Postchromatographic electrochemical detection of carbohydrates at a silver oxide electrode', Electroanalysis, 1993 5(8) 669-675', 'firstchar' => 'P', 'twochars' => 'Po', 'CitationsTechnique' => array( 'id' => '008468', 'citation_id' => '009870', 'technique_id' => '0212' ), 'Analyte' => array( (int) 0 => array( [maximum depth reached] ), (int) 1 => array( [maximum depth reached] ), (int) 2 => array( [maximum depth reached] ), (int) 3 => array( [maximum depth reached] ), (int) 4 => array( [maximum depth reached] ) ), 'Matrix' => array(), 'Keyword' => array( (int) 0 => array( [maximum depth reached] ) ) ), 'i' => (int) 0 ) $data = array( 'Technique' => array( 'id' => '0212', 'label' => 'Electrode', 'level1' => 'Electrode', 'level2' => 'silver oxide', 'level3' => '', 'level4' => '', 'level5' => '', 'synonyms' => '', 'champ' => '', 'total' => '4', 'updated' => '0000-00-00 00:00:00', 'name' => 'Electrode, silver oxide', 'nametotal' => 'Electrode, silver oxide**4', 'first' => 'E' ), 'Citation' => array( (int) 0 => array( 'id' => '009870', 'authors' => 'Tougas, T.P.;De Benedetto, M.J.;Demott, J.M.', 'authorsweb' => 'Terrence P. Tougas, Mark J. Debenedetto, James M. Demott Jr.', 'title' => 'Postchromatographic electrochemical detection of carbohydrates at a silver oxide electrode', 'journal' => 'Electroanalysis', 'journal_id' => '1003', 'fadid' => 'ELAN1993V0005P00669', 'year' => '1993', 'volume' => '5', 'issue' => '8', 'startpage' => '669', 'endpage' => '675', 'type' => 'Journal Article', 'analytes' => ';0508;1057;2102;1020;2519;', 'matrices' => '', 'techniques' => ';0212;0054;0038;', 'keywords' => ';0339;', 'abstract' => 'An oxide surface was formed on a 2-mm Ag-wire electrode by conditioning in 0.1 M NaOH at +0.7 V for 30 min and then at 0.45 V vs. the SCE. The properties of the electrode were studied and it was applied to the electrochemical detection of simple sugars separated by HPLC on a Waters carbohydrate analysis column (30 cm x 3.9 mm) with mobile phase (1 ml/min) of acetonitrile/phosphate buffer of pH 8 (36:11) and by FIA. Calibration graphs were rectilinear for 1-100 µM-galactose, glucose, ribose and xylose.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '2007-07-10 10:39:47', 'hits' => '8', 'urlcheck' => '2014-10-11 14:09:28', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => null, 'pauthor' => 'DeMott, J.M.', 'address' => 'Department of Chemistry and Physics, Massachusetts College of Pharmacy and Allied Health Sciences, 179 Longwood Avenue, Boston, MA 02115, USA', 'email' => 'NA', 'notes' => null, 'url' => '10.1002/elan.1140050808', 'urltype' => 'doi', 'gotpdf' => 'no', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Postchromatographic electrochemical detection of carbohydrates at a silver oxide electrode', Electroanalysis, 1993 5(8) 669-675', 'firstchar' => 'P', 'twochars' => 'Po', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 1 => array( 'id' => '012147', 'authors' => 'Tougas, T.P.;Jahngen, G.E.;Swartz, M.', 'authorsweb' => 'Terrence P. Tougas, Edwin G. E. Jahngen, Michael Swartz ', 'title' => 'Flow stream detectors based on electrocatalytic oxidation of polyhydroxy compounds at silver oxide electrodes', 'journal' => 'Contemp. Electroanal. Chem.', 'journal_id' => '1139', 'fadid' => 'CTEA1990V0001P00275', 'year' => '1990', 'volume' => '1', 'issue' => '1', 'startpage' => '275', 'endpage' => '296', 'type' => 'Journal Article', 'analytes' => ';2102;1057;0071;1103;1002;2215;0066;0068;2519;2620;1020;0069;2621;2622;2623;2625;1134;2425;2624;1034;1266;', 'matrices' => 'NA', 'techniques' => ';0212;0001;', 'keywords' => ';0110;', 'abstract' => 'Many simple carbohydrates and other polyhydroxy compounds can be oxidized at a silver oxide surface. The oxidation is via an electrocatalytic mechanism involving a Ag(I) oxide. This forms the basis of a flow stream detector operated in an amperometric mode which may be used for either flow injection or high performance liquid chromatography (HPLC) applications. The title electrode has been applied to the detection of simple carbohydrates, triglycerides and nucleic acid components.', 'language' => 'English', 'updated' => '2020-12-28 11:11:09', 'sjccheck' => 'No', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '6', 'urlcheck' => '2014-10-24 19:39:00', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => null, 'pauthor' => 'Tougas, T.P.', 'address' => 'Department of Chemistry, University of Lowell, Lowell, Massachusetts, 01854, USA', 'email' => 'NA', 'notes' => 'Book chapter', 'url' => '10.1007/978-1-4899-3704-9_29', 'urltype' => 'doi', 'gotpdf' => 'no', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Flow stream detectors based on electrocatalytic oxidation of polyhydroxy compounds at silver oxide electrodes', Contemp. Electroanal. Chem., 1990 1(1) 275-296', 'firstchar' => 'F', 'twochars' => 'Fl', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 2 => array( 'id' => '016474', 'authors' => 'DeMott Jr., J.M.;Tougas, T.P.;Jahngen, E.G.E.', 'authorsweb' => 'James M. DeMott Jr., Terrence P. Tougas, Edwin G. E. Jahngen', 'title' => 'Optimization of Response of the Silver Oxide Electrode for the Detection of Carbohydrates and Related Compounds', 'journal' => 'Electroanalysis', 'journal_id' => '1003', 'fadid' => 'ELAN1998V0010P00836', 'year' => '1998', 'volume' => '10', 'issue' => '12', 'startpage' => '836', 'endpage' => '841', 'type' => 'Journal Article', 'analytes' => ';1057;', 'matrices' => 'NA', 'techniques' => ';0212;', 'keywords' => ';0110;', 'abstract' => 'The response of the silver oxide electrode to carbohydrates, polyhydroxy compounds and amines is dependent on several factors. These include the number of oxidizable groups on the substrate and the way in which the electrode surface is prepared, including the potential program, the thickness of the oxide layer, the surface area and the presence of other species in the solution during electrode conditioning. Studies of these factors led to a pulsed potential program for the conditioning and maintenance of electrode stability, with the incorporation of phosphate during the initial conditioning process. This method led to a response to 10^-4 M glucose, which was reproducible for at least forty repeated injections and stable for at least four hours with a relative standard deviation of 5.2 %. This response was also reproducible on successive days when the electrode was prepared in the same manner.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '2007-07-10 10:39:54', 'hits' => '8', 'urlcheck' => '2014-10-11 14:12:39', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => null, 'pauthor' => 'DeMott, J.M.', 'address' => 'Division of Arts and Sciences, Massachusetts College of Pharmacy and Allied Health Sciences, 179 Longwood Avenue, Boston, Massachusetts 02115, USA', 'email' => 'NA', 'notes' => null, 'url' => '10.1002/(SICI)1521-4109(199809)10:12<836::AID-ELAN836>3.0.CO;2-G', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Optimization of Response of the Silver Oxide Electrode for the Detection of Carbohydrates and Related Compounds', Electroanalysis, 1998 10(12) 836-841', 'firstchar' => 'O', 'twochars' => 'Op', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 3 => array( 'id' => '016475', 'authors' => 'DeMott Jr., J.M.;Jahngen, E.G.E.', 'authorsweb' => 'James M. DeMott Jr., Edwin G. E. Jahngen', 'title' => 'Determination of Amino Acids at a Silver Oxide/Silver Phosphate Electrode and the Analysis of Structure-Response Relationships', 'journal' => 'Electroanalysis', 'journal_id' => '1003', 'fadid' => 'ELAN2005V0017P00599', 'year' => '2005', 'volume' => '17', 'issue' => '7', 'startpage' => '599', 'endpage' => '606', 'type' => 'Journal Article', 'analytes' => ';0160;', 'matrices' => 'NA', 'techniques' => ';0212;', 'keywords' => ';0110;', 'abstract' => 'When a silver electrode is conditioned in a solution of 0.5 M sodium hydroxide with added sodium phosphate and using a dual pulse (500 mV/750 mV vs. Ag/AgCl), a stable silver(I)/silver(II) oxide surface is formed. It has been previously shown that various moieties react with the silver(II) oxide in a chemical oxidation at the outer surface of the oxide layer. This is then followed by re-oxidation of the silver with the generation of current at approximately 500 mV relative to the silver/silver chloride electrode. Previously we found the need to remove carbon dioxide from the base and condition the electrode in a solution containing phosphate ion in order to provide mechanical stability to the oxide layer. We have previously shown this electrode to be applicable to the detection of a variety of carbohydrates. The applicability of the silver oxide/silver phosphate electrode to the post-chromatographic amperometric detection of amino acids was investigated. Calibration studies of amino acids representative of the various classes demonstrated good sensitivity and linearity in the 1-100 M range. Responses of amino acids were measured using glucose as an external standard, in order to correct for variability of the oxide layer. Relative responses of the amino acids ranged from 3 down to 0.1. Correlation with structure suggested the importance of absorption in determining the rate of oxidation. Comparison of arginine with n-benzoyl-L-arginine ethyl ester indicated that side chains as well as the backbone amino group can be oxidized. A Levitch plot of alanine was shown to be linear from approximately 30 to 300 radians per second spin rate at a scan rate of 50 mV per second. Application to post-chromatographic detection was demonstrated.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '2006-07-18 21:19:50', 'hits' => '11', 'urlcheck' => '2014-10-11 14:15:55', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => null, 'pauthor' => 'Jahngen, E.G.E.', 'address' => 'Department of Chemistry, University of Massachusetts-Lowell, 1 University Avenue, Lowell, Massachusetts 01854, USA', 'email' => 'Edwin_Jahngen@unl.edu', 'notes' => null, 'url' => '10.1002/elan.200303128', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Determination of Amino Acids at a Silver Oxide/Silver Phosphate Electrode and the Analysis of Structure-Response Relationships', Electroanalysis, 2005 17(7) 599-606', 'firstchar' => 'D', 'twochars' => 'De', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ) ) ) $c = array( 'id' => '009870', 'authors' => 'Tougas, T.P.;De Benedetto, M.J.;Demott, J.M.', 'authorsweb' => 'Terrence P. Tougas, Mark J. Debenedetto, James M. Demott Jr.', 'title' => 'Postchromatographic electrochemical detection of carbohydrates at a silver oxide electrode', 'journal' => 'Electroanalysis', 'journal_id' => '1003', 'fadid' => 'ELAN1993V0005P00669', 'year' => '1993', 'volume' => '5', 'issue' => '8', 'startpage' => '669', 'endpage' => '675', 'type' => 'Journal Article', 'analytes' => ';0508;1057;2102;1020;2519;', 'matrices' => '', 'techniques' => ';0212;0054;0038;', 'keywords' => ';0339;', 'abstract' => 'An oxide surface was formed on a 2-mm Ag-wire electrode by conditioning in 0.1 M NaOH at +0.7 V for 30 min and then at 0.45 V vs. the SCE. The properties of the electrode were studied and it was applied to the electrochemical detection of simple sugars separated by HPLC on a Waters carbohydrate analysis column (30 cm x 3.9 mm) with mobile phase (1 ml/min) of acetonitrile/phosphate buffer of pH 8 (36:11) and by FIA. Calibration graphs were rectilinear for 1-100 µM-galactose, glucose, ribose and xylose.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '2007-07-10 10:39:47', 'hits' => '8', 'urlcheck' => '2014-10-11 14:09:28', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => null, 'pauthor' => 'DeMott, J.M.', 'address' => 'Department of Chemistry and Physics, Massachusetts College of Pharmacy and Allied Health Sciences, 179 Longwood Avenue, Boston, MA 02115, USA', 'email' => 'NA', 'notes' => null, 'url' => '10.1002/elan.1140050808', 'urltype' => 'doi', 'gotpdf' => 'no', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Postchromatographic electrochemical detection of carbohydrates at a silver oxide electrode', Electroanalysis, 1993 5(8) 669-675', 'firstchar' => 'P', 'twochars' => 'Po', 'CitationsTechnique' => array( 'id' => '008468', 'citation_id' => '009870', 'technique_id' => '0212' ), 'Analyte' => array( (int) 0 => array( 'id' => '00508', 'name' => 'Carbohydrates', 'iupac_name' => '', 'casrn' => 'NA', 'synonyms' => 'NA', 'total' => '46', 'inchi' => '', 'inchikey' => '', 'formula' => '', 'oxstate' => null, 'url' => '', 'charge' => null, 'class1' => 'Organic compound', 'class2' => 'NA', 'class3' => 'NA', 'class4' => 'Molecule', 'class5' => 'NA', 'isgroup' => 'yes', 'checked' => 'yes', 'citation_count' => '0', 'updated' => '2015-12-11 09:54:00', 'first' => 'C', 'nametotal' => 'Carbohydrates**46', 'AnalytesCitation' => array( [maximum depth reached] ) ), (int) 1 => array( 'id' => '01057', 'name' => 'Glucose', 'iupac_name' => '(3R,4S,5S,6R)-6-(hydroxymethyl)oxane-2,3,4,5-tetrol', 'casrn' => '50-99-7', 'synonyms' => 'Corn sugar; D(+)-Glucopyranose; D-Glucose; D-(+)-Glucose; Dextrose; Glu; Glucose; Grape sugar;', 'total' => '540', 'inchi' => 'InChI=1S/C6H12O6/c7-1-3(9)5(11)6(12)4(10)2-8/h1,3-6,8-12H,2H2/t3-,4+,5+,6+/m0/s1', 'inchikey' => 'WQZGKKKJIJFFOK-GASJEMHNSA-N', 'formula' => 'C6H12O6', 'oxstate' => 'Zero', 'url' => '', 'charge' => '0', 'class1' => 'Organic compound', 'class2' => 'NA', 'class3' => 'NA', 'class4' => 'Molecule', 'class5' => 'Sugars', 'isgroup' => '', 'checked' => 'yes', 'citation_count' => '0', 'updated' => '2015-10-23 09:58:51', 'first' => 'G', 'nametotal' => 'Glucose**540', 'AnalytesCitation' => array( [maximum depth reached] ) ), (int) 2 => array( 'id' => '02102', 'name' => 'Ribose', 'iupac_name' => '(3R,4R,5R)-oxane-2,3,4,5-tetrol', 'casrn' => '50-69-1', 'synonyms' => 'Ribose, D-; Ribose; Pentose', 'total' => '4', 'inchi' => 'InChI=1S/C5H10O5/c6-1-3(8)5(10)4(9)2-7/h1,3-5,7-10H,2H2/t3-,4+,5-/m0/s1', 'inchikey' => 'SRBFZHDQGSBBOR-SOOFDHNKSA-N', 'formula' => 'C5H10O5', 'oxstate' => 'Zero', 'url' => '', 'charge' => '0', 'class1' => 'Biological', 'class2' => 'NA', 'class3' => 'NA', 'class4' => 'Molecule', 'class5' => 'Sugars', 'isgroup' => '', 'checked' => 'yes', 'citation_count' => '0', 'updated' => '2015-12-11 16:18:02', 'first' => 'R', 'nametotal' => 'Ribose**4', 'AnalytesCitation' => array( [maximum depth reached] ) ), (int) 3 => array( 'id' => '01020', 'name' => 'Galactose', 'iupac_name' => '(3R,4S,5R,6R)-6-(hydroxymethyl)oxane-2,3,4,5-tetrol', 'casrn' => '26566-61-0', 'synonyms' => 'NA', 'total' => '19', 'inchi' => 'InChI=1S/C6H12O6/c7-1-3(9)5(11)6(12)4(10)2-8/h1,3-6,8-12H,2H2/t3-,4+,5+,6-/m0/s1', 'inchikey' => 'WQZGKKKJIJFFOK-SVZMEOIVSA-N', 'formula' => ' C6H12O6', 'oxstate' => 'Zero', 'url' => '', 'charge' => '0', 'class1' => 'Organic compound', 'class2' => 'NA', 'class3' => 'NA', 'class4' => 'Molecule', 'class5' => 'Sugars', 'isgroup' => '', 'checked' => 'yes', 'citation_count' => '0', 'updated' => '2015-10-23 09:58:34', 'first' => 'G', 'nametotal' => 'Galactose**19', 'AnalytesCitation' => array( [maximum depth reached] ) ), (int) 4 => array( 'id' => '02519', 'name' => 'Xylose', 'iupac_name' => '(3R,4S,5R)-oxane-2,3,4,5-tetrol', 'casrn' => '25990-60-7', 'synonyms' => ' α-D-Xylopyranose; α-D-Xylose; Xylose', 'total' => '9', 'inchi' => 'InChI=1S/C5H10O5/c6-1-3(8)5(10)4(9)2-7/h1,3-5,7-10H,2H2/t3-,4+,5+/m0/s1', 'inchikey' => 'SRBFZHDQGSBBOR-IOVATXLUSA-N', 'formula' => 'C5H10O5', 'oxstate' => 'Zero', 'url' => '', 'charge' => '0', 'class1' => 'Biological', 'class2' => 'NA', 'class3' => 'NA', 'class4' => 'Molecule', 'class5' => 'Sugars', 'isgroup' => '', 'checked' => 'yes', 'citation_count' => '0', 'updated' => '2015-12-11 16:11:47', 'first' => 'X', 'nametotal' => 'Xylose**9', 'AnalytesCitation' => array( [maximum depth reached] ) ) ), 'Matrix' => array(), 'Keyword' => array( (int) 0 => array( 'id' => '0339', 'type' => 'Manifold process', 'keyword' => 'Post-column derivatization', 'newKeyword' => '', 'synonyms' => '', 'fao' => '', 'total' => '646', 'first' => 'P', 'keytotal' => 'Post-column derivatization**646', 'CitationsKeyword' => array( [maximum depth reached] ) ) ) ) $i = (int) 0 $path = '' $a = '' $url = 'http://dx.doi.org/10.1002/elan.1140050808' $aus = 'Terrence P. Tougas, Mark J. Debenedetto, James M. Demott Jr.'include - APP/View/Elements/citation.ctp, line 40 View::_evaluate() - CORE/Cake/View/View.php, line 971 View::_render() - CORE/Cake/View/View.php, line 933 View::_renderElement() - CORE/Cake/View/View.php, line 1224 View::element() - CORE/Cake/View/View.php, line 418 include - APP/View/Techniques/view.ctp, line 52 View::_evaluate() - CORE/Cake/View/View.php, line 971 View::_render() - CORE/Cake/View/View.php, line 933 View::render() - CORE/Cake/View/View.php, line 473 Controller::render() - CORE/Cake/Controller/Controller.php, line 968 Dispatcher::_invoke() - CORE/Cake/Routing/Dispatcher.php, line 200 Dispatcher::dispatch() - CORE/Cake/Routing/Dispatcher.php, line 167 [main] - APP/webroot/index.php, line 109
"Flow Stream Detectors Based On Electrocatalytic Oxidation Of Polyhydroxy Compounds At Silver Oxide Electrodes"
Contemp. Electroanal. Chem.
1990 Volume 1, Issue 1 Pages 275-296
Notice (8): Undefined variable: uid [APP/View/Elements/citation.ctp, line 40]Terrence P. Tougas, Edwin G. E. Jahngen, Michael SwartzCode Context?>
<?php
if($uid!='') {
$viewFile = '/home/stuchalk/public_html/fad/app/View/Elements/citation.ctp' $dataForView = array( 'data' => array( 'Technique' => array( 'id' => '0212', 'label' => 'Electrode', 'level1' => 'Electrode', 'level2' => 'silver oxide', 'level3' => '', 'level4' => '', 'level5' => '', 'synonyms' => '', 'champ' => '', 'total' => '4', 'updated' => '0000-00-00 00:00:00', 'name' => 'Electrode, silver oxide', 'nametotal' => 'Electrode, silver oxide**4', 'first' => 'E' ), 'Citation' => array( (int) 0 => array( [maximum depth reached] ), (int) 1 => array( [maximum depth reached] ), (int) 2 => array( [maximum depth reached] ), (int) 3 => array( [maximum depth reached] ) ) ), 'c' => array( 'id' => '012147', 'authors' => 'Tougas, T.P.;Jahngen, G.E.;Swartz, M.', 'authorsweb' => 'Terrence P. Tougas, Edwin G. E. Jahngen, Michael Swartz ', 'title' => 'Flow stream detectors based on electrocatalytic oxidation of polyhydroxy compounds at silver oxide electrodes', 'journal' => 'Contemp. Electroanal. Chem.', 'journal_id' => '1139', 'fadid' => 'CTEA1990V0001P00275', 'year' => '1990', 'volume' => '1', 'issue' => '1', 'startpage' => '275', 'endpage' => '296', 'type' => 'Journal Article', 'analytes' => ';2102;1057;0071;1103;1002;2215;0066;0068;2519;2620;1020;0069;2621;2622;2623;2625;1134;2425;2624;1034;1266;', 'matrices' => 'NA', 'techniques' => ';0212;0001;', 'keywords' => ';0110;', 'abstract' => 'Many simple carbohydrates and other polyhydroxy compounds can be oxidized at a silver oxide surface. The oxidation is via an electrocatalytic mechanism involving a Ag(I) oxide. This forms the basis of a flow stream detector operated in an amperometric mode which may be used for either flow injection or high performance liquid chromatography (HPLC) applications. The title electrode has been applied to the detection of simple carbohydrates, triglycerides and nucleic acid components.', 'language' => 'English', 'updated' => '2020-12-28 11:11:09', 'sjccheck' => 'No', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '6', 'urlcheck' => '2014-10-24 19:39:00', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => null, 'pauthor' => 'Tougas, T.P.', 'address' => 'Department of Chemistry, University of Lowell, Lowell, Massachusetts, 01854, USA', 'email' => 'NA', 'notes' => 'Book chapter', 'url' => '10.1007/978-1-4899-3704-9_29', 'urltype' => 'doi', 'gotpdf' => 'no', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Flow stream detectors based on electrocatalytic oxidation of polyhydroxy compounds at silver oxide electrodes', Contemp. Electroanal. Chem., 1990 1(1) 275-296', 'firstchar' => 'F', 'twochars' => 'Fl', 'CitationsTechnique' => array( 'id' => '012241', 'citation_id' => '012147', 'technique_id' => '0212' ), 'Analyte' => array( (int) 0 => array( [maximum depth reached] ), (int) 1 => array( [maximum depth reached] ), (int) 2 => array( [maximum depth reached] ), (int) 3 => array( [maximum depth reached] ), (int) 4 => array( [maximum depth reached] ), (int) 5 => array( [maximum depth reached] ), (int) 6 => array( [maximum depth reached] ), (int) 7 => array( [maximum depth reached] ), (int) 8 => array( [maximum depth reached] ), (int) 9 => array( [maximum depth reached] ), (int) 10 => array( [maximum depth reached] ), (int) 11 => array( [maximum depth reached] ), (int) 12 => array( [maximum depth reached] ), (int) 13 => array( [maximum depth reached] ), (int) 14 => array( [maximum depth reached] ), (int) 15 => array( [maximum depth reached] ), (int) 16 => array( [maximum depth reached] ), (int) 17 => array( [maximum depth reached] ), (int) 18 => array( [maximum depth reached] ), (int) 19 => array( [maximum depth reached] ), (int) 20 => array( [maximum depth reached] ) ), 'Matrix' => array(), 'Keyword' => array( (int) 0 => array( [maximum depth reached] ) ) ), 'i' => (int) 1 ) $data = array( 'Technique' => array( 'id' => '0212', 'label' => 'Electrode', 'level1' => 'Electrode', 'level2' => 'silver oxide', 'level3' => '', 'level4' => '', 'level5' => '', 'synonyms' => '', 'champ' => '', 'total' => '4', 'updated' => '0000-00-00 00:00:00', 'name' => 'Electrode, silver oxide', 'nametotal' => 'Electrode, silver oxide**4', 'first' => 'E' ), 'Citation' => array( (int) 0 => array( 'id' => '009870', 'authors' => 'Tougas, T.P.;De Benedetto, M.J.;Demott, J.M.', 'authorsweb' => 'Terrence P. Tougas, Mark J. Debenedetto, James M. Demott Jr.', 'title' => 'Postchromatographic electrochemical detection of carbohydrates at a silver oxide electrode', 'journal' => 'Electroanalysis', 'journal_id' => '1003', 'fadid' => 'ELAN1993V0005P00669', 'year' => '1993', 'volume' => '5', 'issue' => '8', 'startpage' => '669', 'endpage' => '675', 'type' => 'Journal Article', 'analytes' => ';0508;1057;2102;1020;2519;', 'matrices' => '', 'techniques' => ';0212;0054;0038;', 'keywords' => ';0339;', 'abstract' => 'An oxide surface was formed on a 2-mm Ag-wire electrode by conditioning in 0.1 M NaOH at +0.7 V for 30 min and then at 0.45 V vs. the SCE. The properties of the electrode were studied and it was applied to the electrochemical detection of simple sugars separated by HPLC on a Waters carbohydrate analysis column (30 cm x 3.9 mm) with mobile phase (1 ml/min) of acetonitrile/phosphate buffer of pH 8 (36:11) and by FIA. Calibration graphs were rectilinear for 1-100 µM-galactose, glucose, ribose and xylose.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '2007-07-10 10:39:47', 'hits' => '8', 'urlcheck' => '2014-10-11 14:09:28', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => null, 'pauthor' => 'DeMott, J.M.', 'address' => 'Department of Chemistry and Physics, Massachusetts College of Pharmacy and Allied Health Sciences, 179 Longwood Avenue, Boston, MA 02115, USA', 'email' => 'NA', 'notes' => null, 'url' => '10.1002/elan.1140050808', 'urltype' => 'doi', 'gotpdf' => 'no', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Postchromatographic electrochemical detection of carbohydrates at a silver oxide electrode', Electroanalysis, 1993 5(8) 669-675', 'firstchar' => 'P', 'twochars' => 'Po', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 1 => array( 'id' => '012147', 'authors' => 'Tougas, T.P.;Jahngen, G.E.;Swartz, M.', 'authorsweb' => 'Terrence P. Tougas, Edwin G. E. Jahngen, Michael Swartz ', 'title' => 'Flow stream detectors based on electrocatalytic oxidation of polyhydroxy compounds at silver oxide electrodes', 'journal' => 'Contemp. Electroanal. Chem.', 'journal_id' => '1139', 'fadid' => 'CTEA1990V0001P00275', 'year' => '1990', 'volume' => '1', 'issue' => '1', 'startpage' => '275', 'endpage' => '296', 'type' => 'Journal Article', 'analytes' => ';2102;1057;0071;1103;1002;2215;0066;0068;2519;2620;1020;0069;2621;2622;2623;2625;1134;2425;2624;1034;1266;', 'matrices' => 'NA', 'techniques' => ';0212;0001;', 'keywords' => ';0110;', 'abstract' => 'Many simple carbohydrates and other polyhydroxy compounds can be oxidized at a silver oxide surface. The oxidation is via an electrocatalytic mechanism involving a Ag(I) oxide. This forms the basis of a flow stream detector operated in an amperometric mode which may be used for either flow injection or high performance liquid chromatography (HPLC) applications. The title electrode has been applied to the detection of simple carbohydrates, triglycerides and nucleic acid components.', 'language' => 'English', 'updated' => '2020-12-28 11:11:09', 'sjccheck' => 'No', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '6', 'urlcheck' => '2014-10-24 19:39:00', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => null, 'pauthor' => 'Tougas, T.P.', 'address' => 'Department of Chemistry, University of Lowell, Lowell, Massachusetts, 01854, USA', 'email' => 'NA', 'notes' => 'Book chapter', 'url' => '10.1007/978-1-4899-3704-9_29', 'urltype' => 'doi', 'gotpdf' => 'no', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Flow stream detectors based on electrocatalytic oxidation of polyhydroxy compounds at silver oxide electrodes', Contemp. Electroanal. Chem., 1990 1(1) 275-296', 'firstchar' => 'F', 'twochars' => 'Fl', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 2 => array( 'id' => '016474', 'authors' => 'DeMott Jr., J.M.;Tougas, T.P.;Jahngen, E.G.E.', 'authorsweb' => 'James M. DeMott Jr., Terrence P. Tougas, Edwin G. E. Jahngen', 'title' => 'Optimization of Response of the Silver Oxide Electrode for the Detection of Carbohydrates and Related Compounds', 'journal' => 'Electroanalysis', 'journal_id' => '1003', 'fadid' => 'ELAN1998V0010P00836', 'year' => '1998', 'volume' => '10', 'issue' => '12', 'startpage' => '836', 'endpage' => '841', 'type' => 'Journal Article', 'analytes' => ';1057;', 'matrices' => 'NA', 'techniques' => ';0212;', 'keywords' => ';0110;', 'abstract' => 'The response of the silver oxide electrode to carbohydrates, polyhydroxy compounds and amines is dependent on several factors. These include the number of oxidizable groups on the substrate and the way in which the electrode surface is prepared, including the potential program, the thickness of the oxide layer, the surface area and the presence of other species in the solution during electrode conditioning. Studies of these factors led to a pulsed potential program for the conditioning and maintenance of electrode stability, with the incorporation of phosphate during the initial conditioning process. This method led to a response to 10^-4 M glucose, which was reproducible for at least forty repeated injections and stable for at least four hours with a relative standard deviation of 5.2 %. This response was also reproducible on successive days when the electrode was prepared in the same manner.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '2007-07-10 10:39:54', 'hits' => '8', 'urlcheck' => '2014-10-11 14:12:39', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => null, 'pauthor' => 'DeMott, J.M.', 'address' => 'Division of Arts and Sciences, Massachusetts College of Pharmacy and Allied Health Sciences, 179 Longwood Avenue, Boston, Massachusetts 02115, USA', 'email' => 'NA', 'notes' => null, 'url' => '10.1002/(SICI)1521-4109(199809)10:12<836::AID-ELAN836>3.0.CO;2-G', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Optimization of Response of the Silver Oxide Electrode for the Detection of Carbohydrates and Related Compounds', Electroanalysis, 1998 10(12) 836-841', 'firstchar' => 'O', 'twochars' => 'Op', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 3 => array( 'id' => '016475', 'authors' => 'DeMott Jr., J.M.;Jahngen, E.G.E.', 'authorsweb' => 'James M. DeMott Jr., Edwin G. E. Jahngen', 'title' => 'Determination of Amino Acids at a Silver Oxide/Silver Phosphate Electrode and the Analysis of Structure-Response Relationships', 'journal' => 'Electroanalysis', 'journal_id' => '1003', 'fadid' => 'ELAN2005V0017P00599', 'year' => '2005', 'volume' => '17', 'issue' => '7', 'startpage' => '599', 'endpage' => '606', 'type' => 'Journal Article', 'analytes' => ';0160;', 'matrices' => 'NA', 'techniques' => ';0212;', 'keywords' => ';0110;', 'abstract' => 'When a silver electrode is conditioned in a solution of 0.5 M sodium hydroxide with added sodium phosphate and using a dual pulse (500 mV/750 mV vs. Ag/AgCl), a stable silver(I)/silver(II) oxide surface is formed. It has been previously shown that various moieties react with the silver(II) oxide in a chemical oxidation at the outer surface of the oxide layer. This is then followed by re-oxidation of the silver with the generation of current at approximately 500 mV relative to the silver/silver chloride electrode. Previously we found the need to remove carbon dioxide from the base and condition the electrode in a solution containing phosphate ion in order to provide mechanical stability to the oxide layer. We have previously shown this electrode to be applicable to the detection of a variety of carbohydrates. The applicability of the silver oxide/silver phosphate electrode to the post-chromatographic amperometric detection of amino acids was investigated. Calibration studies of amino acids representative of the various classes demonstrated good sensitivity and linearity in the 1-100 M range. Responses of amino acids were measured using glucose as an external standard, in order to correct for variability of the oxide layer. Relative responses of the amino acids ranged from 3 down to 0.1. Correlation with structure suggested the importance of absorption in determining the rate of oxidation. Comparison of arginine with n-benzoyl-L-arginine ethyl ester indicated that side chains as well as the backbone amino group can be oxidized. A Levitch plot of alanine was shown to be linear from approximately 30 to 300 radians per second spin rate at a scan rate of 50 mV per second. Application to post-chromatographic detection was demonstrated.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '2006-07-18 21:19:50', 'hits' => '11', 'urlcheck' => '2014-10-11 14:15:55', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => null, 'pauthor' => 'Jahngen, E.G.E.', 'address' => 'Department of Chemistry, University of Massachusetts-Lowell, 1 University Avenue, Lowell, Massachusetts 01854, USA', 'email' => 'Edwin_Jahngen@unl.edu', 'notes' => null, 'url' => '10.1002/elan.200303128', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Determination of Amino Acids at a Silver Oxide/Silver Phosphate Electrode and the Analysis of Structure-Response Relationships', Electroanalysis, 2005 17(7) 599-606', 'firstchar' => 'D', 'twochars' => 'De', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ) ) ) $c = array( 'id' => '012147', 'authors' => 'Tougas, T.P.;Jahngen, G.E.;Swartz, M.', 'authorsweb' => 'Terrence P. Tougas, Edwin G. E. Jahngen, Michael Swartz ', 'title' => 'Flow stream detectors based on electrocatalytic oxidation of polyhydroxy compounds at silver oxide electrodes', 'journal' => 'Contemp. Electroanal. Chem.', 'journal_id' => '1139', 'fadid' => 'CTEA1990V0001P00275', 'year' => '1990', 'volume' => '1', 'issue' => '1', 'startpage' => '275', 'endpage' => '296', 'type' => 'Journal Article', 'analytes' => ';2102;1057;0071;1103;1002;2215;0066;0068;2519;2620;1020;0069;2621;2622;2623;2625;1134;2425;2624;1034;1266;', 'matrices' => 'NA', 'techniques' => ';0212;0001;', 'keywords' => ';0110;', 'abstract' => 'Many simple carbohydrates and other polyhydroxy compounds can be oxidized at a silver oxide surface. The oxidation is via an electrocatalytic mechanism involving a Ag(I) oxide. This forms the basis of a flow stream detector operated in an amperometric mode which may be used for either flow injection or high performance liquid chromatography (HPLC) applications. The title electrode has been applied to the detection of simple carbohydrates, triglycerides and nucleic acid components.', 'language' => 'English', 'updated' => '2020-12-28 11:11:09', 'sjccheck' => 'No', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '6', 'urlcheck' => '2014-10-24 19:39:00', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => null, 'pauthor' => 'Tougas, T.P.', 'address' => 'Department of Chemistry, University of Lowell, Lowell, Massachusetts, 01854, USA', 'email' => 'NA', 'notes' => 'Book chapter', 'url' => '10.1007/978-1-4899-3704-9_29', 'urltype' => 'doi', 'gotpdf' => 'no', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Flow stream detectors based on electrocatalytic oxidation of polyhydroxy compounds at silver oxide electrodes', Contemp. Electroanal. Chem., 1990 1(1) 275-296', 'firstchar' => 'F', 'twochars' => 'Fl', 'CitationsTechnique' => array( 'id' => '012241', 'citation_id' => '012147', 'technique_id' => '0212' ), 'Analyte' => array( (int) 0 => array( 'id' => '02102', 'name' => 'Ribose', 'iupac_name' => '(3R,4R,5R)-oxane-2,3,4,5-tetrol', 'casrn' => '50-69-1', 'synonyms' => 'Ribose, D-; Ribose; Pentose', 'total' => '4', 'inchi' => 'InChI=1S/C5H10O5/c6-1-3(8)5(10)4(9)2-7/h1,3-5,7-10H,2H2/t3-,4+,5-/m0/s1', 'inchikey' => 'SRBFZHDQGSBBOR-SOOFDHNKSA-N', 'formula' => 'C5H10O5', 'oxstate' => 'Zero', 'url' => '', 'charge' => '0', 'class1' => 'Biological', 'class2' => 'NA', 'class3' => 'NA', 'class4' => 'Molecule', 'class5' => 'Sugars', 'isgroup' => '', 'checked' => 'yes', 'citation_count' => '0', 'updated' => '2015-12-11 16:18:02', 'first' => 'R', 'nametotal' => 'Ribose**4', 'AnalytesCitation' => array( [maximum depth reached] ) ), (int) 1 => array( 'id' => '01057', 'name' => 'Glucose', 'iupac_name' => '(3R,4S,5S,6R)-6-(hydroxymethyl)oxane-2,3,4,5-tetrol', 'casrn' => '50-99-7', 'synonyms' => 'Corn sugar; D(+)-Glucopyranose; D-Glucose; D-(+)-Glucose; Dextrose; Glu; Glucose; Grape sugar;', 'total' => '540', 'inchi' => 'InChI=1S/C6H12O6/c7-1-3(9)5(11)6(12)4(10)2-8/h1,3-6,8-12H,2H2/t3-,4+,5+,6+/m0/s1', 'inchikey' => 'WQZGKKKJIJFFOK-GASJEMHNSA-N', 'formula' => 'C6H12O6', 'oxstate' => 'Zero', 'url' => '', 'charge' => '0', 'class1' => 'Organic compound', 'class2' => 'NA', 'class3' => 'NA', 'class4' => 'Molecule', 'class5' => 'Sugars', 'isgroup' => '', 'checked' => 'yes', 'citation_count' => '0', 'updated' => '2015-10-23 09:58:51', 'first' => 'G', 'nametotal' => 'Glucose**540', 'AnalytesCitation' => array( [maximum depth reached] ) ), (int) 2 => array( 'id' => '00071', 'name' => 'Adenosine-5'-triphosphate', 'iupac_name' => '[[(2R,3S,4R,5R)-5-(6-aminopurin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl] phosphono hydrogen phosphate', 'casrn' => '56-65-5', 'synonyms' => 'Adenosine triphosphate, Adenosine 5'-triphosphate, Atriphos, Striadyne, Myotriphos, Triadenyl, Triphosphaden, Glucobasin, Adephos, Adetol, Adynol, Atipi, 56-65-5, 5'-Atp, adenosine-5'-triphosphate, Triphosaden, Adenylpyrophosphoric acid, ATP, Adenosine 5'-(tetrahydrogen triphosphate), Cardenosine, Fosfobion, Triphosphoric acid adenosine ester, ATP (nucleotide), Ara-ATP, Adenosine 5'-triphosphoric acid, Phosphobion, Adenosintriphosphorsaeure, adenylpyrophosphate, H4atp, Ado-5'-P-P-P, CHEBI:15422, Adenosine, 5'-(tetrahydrogen triphosphate), 1kxp, 1mau, 1maw, 1vjc, 1vjd, 1xsc, 1yid, 2cbz, 2fgh, CHEMBL14249, 9-β-D-Arabinofuranosyladenine 5'-triphosphate, Triphosadenine (DCF), 1gz3, 1gz4, 1r0x, 1y8p, AC1L1LHX, EINECS 200-283-2, bmse000006, adenosine-triphosphate, UNII-8L70Q75FXE, NCGC00163309-01, 1b38, 1b39, 1m83, 1r10, 1t44, ZKHQWZAMYRWXGA-KQYNXXCUSA-N, Bio1_000406, Bio1_000895, Bio1_001384, Triphosadenine, DB00171, 2hmu, 2hmw, LS-15176, Adenosinetriphosphate, ATP disodium hydrate, D08646, 2e5y, 2j9l, 2p0x, 2vt3, 3b2q, 3d2e, A9788C43-4BC5-46E2-8560-41C5FA7D3AA3, AC1NUU71, adenosine 5'-triphosphate(4-), 9H-purin-6-amine, 9-[5-O-[hydroxy[[hydroxy(phosphonooxy)phosphinyl]oxy]phosphinyl], CHEBI:30616, [[(2R,3S,4R,5R)-5-(6-aminopurin-9-yl)-3,4-dihydroxy-tetrahydrofuran-2-yl]methoxy-hydroxy-phosphoryl] phosphono hydrogen phosphate, [[(2R,3S,4R,5R)-5-(6-aminopurin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl] phosphono hydrogen phosphate, [[[(2R,3S,4R,5R)-5-(6-Aminopurin-9-yl)-3,4-dihydroxy-oxolan-2-yl]methoxy-hydroxy-phosphoryl]oxy-hydroxy-phosphoryl]oxyphosphonic acid, 10168-83-9, 16488-07-6, 2p09, 51569-41-6, 71800-44-7, 84412-18-0, 896506-78-8, 9H-Purin-6-amine, 9-[5-O-[hydroxy[[hydroxy(phosphonooxy)phosphinyl]oxy]phosphinyl]-β-D-ribofuranosyl]-, ZINC18456332, 34369-07-8, CID5957, Adenylpyrophosphorate, nchembio.135-comp2, nchembio.143-comp2, nchembio.199-comp4, nchembio.208-comp1, nchembio.265-comp8, nchembio.94-comp18, nchembio856-comp13, BDBM2, nchembio.266-comp10, [[[(2R,3S,4R,5R)-5-(6-aminopurin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy-oxidophosphoryl]oxy-oxidophosphoryl] phosphate, 5-(6-Aminopurin-9-yl)-3,4-dihydroxy-oxolan-2-ylmethoxy-hydroxy-phosphoryloxy-hydroxy-phosphoryl oxyphosphonic acid, adenosine 5' triphosphate, Adenosine triphosphic acid, DSSTox_CID_2559, bmse000854, bmse000993, Epitope ID:135612, Adenosine 5'-triphosphorate, SCHEMBL8979, DSSTox_RID_76629, DSSTox_GSID_22559, nchembio.2007.22-comp5, NChemBio.2007.9-comp27, 8L70Q75FXE, GTPL1713, adenosine-5'-triphosphoric acid, CTK3J3236, HMDB00538, MolPort-002-533-479, ACT02649, Tox21_112044, BDBM50366480, DAP000474, DNC000262, DNC008296, ZINC04261765, ZINC12402864, ZINC12402865, AKOS022179934, CID5461108, CAS-56-65-5, 5'-(tetrahydrogen triphosphate) Adenosine, AJ-70571, AK-54737, AN-41693, SC-20265, DB-022415, RT-001349, ST24045923, X5319, Adenosine 5 inverted exclamation marka-triphosphate (ATP) disodium salt hydrate, ((2R,3S,4R,5R)-5-(6-Amino-9H-purin-9-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl tetrahydrogen triphosphate, ({[({[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)phosphonic acid, [(2R,3S,4R,5R)-5-(6-aminopurin-9-yl)-3,4-dihydroxyoxolan-2-yl]methyl (hydroxy-phosphonooxyphosphoryl) hydrogen phosphate, [[[(2R,3R,4R,5R)-5-(6-aminopurin-9-yl)-3,4-dihydroxy-oxolan-2-yl]methoxy-hydroxy-phosphoryl]oxy-hydroxy-phosphoryl]oxyphosphonic acid, [[[(2R,3R,4R,5R)-5-(6-aminopurin-9-yl)-3,4-dihydroxy-tetrahydrofuran-2-yl]methoxy-hydroxy-phosphoryl]oxy-hydroxy-phosphoryl]oxyphosphonic acid, 1259312-93-0, 917074-14-7', 'total' => '2', 'inchi' => 'InChI=1S/C10H16N5O13P3/c11-8-5-9(13-2-12-8)15(3-14-5)10-7(17)6(16)4(26-10)1-25-30(21,22)28-31(23,24)27-29(18,19)20/h2-4,6-7,10,16-17H,1H2,(H,21,22)(H,23,24)(H2,11,12,13)(H2,18,19,20)/t4-,6-,7-,10-/m1/s1', 'inchikey' => 'ZKHQWZAMYRWXGA-KQYNXXCUSA-N', 'formula' => 'C10H16N5O13P3', 'oxstate' => 'Zero', 'url' => '', 'charge' => '0', 'class1' => '', 'class2' => '', 'class3' => '', 'class4' => '', 'class5' => '', 'isgroup' => 'no', 'checked' => 'no', 'citation_count' => '0', 'updated' => '2015-12-11 16:36:07', 'first' => 'A', 'nametotal' => 'Adenosine-5'-triphosphate**2', 'AnalytesCitation' => array( [maximum depth reached] ) ), (int) 3 => array( 'id' => '01103', 'name' => 'Glycerol', 'iupac_name' => 'propane-1,2,3-triol', 'casrn' => '56-81-5', 'synonyms' => '1,2,3-propanetriol; 1,2,3-Trihydroxypropane; D-glycerol; glycyl alcohol; Glycerin; Glycerin mist; glyceritol; Glycerol; L-glycerol; Polyhydric alcohols; Propanetriol; trihydroxypropane', 'total' => '41', 'inchi' => 'InChI=1S/C3H8O3/c4-1-3(6)2-5/h3-6H,1-2H2', 'inchikey' => 'PEDCQBHIVMGVHV-UHFFFAOYSA-N', 'formula' => 'C3H8O3', 'oxstate' => '', 'url' => '', 'charge' => '0', 'class1' => 'Organic compound', 'class2' => 'NA', 'class3' => 'NA', 'class4' => 'Molecule', 'class5' => '', 'isgroup' => '', 'checked' => 'yes', 'citation_count' => '0', 'updated' => '2015-10-23 09:59:11', 'first' => 'G', 'nametotal' => 'Glycerol**41', 'AnalytesCitation' => array( [maximum depth reached] ) ), (int) 4 => array( 'id' => '01002', 'name' => 'd-Fructose', 'iupac_name' => '(3S,4R,5R)-2-(hydroxymethyl)oxane-2,3,4,5-tetrol', 'casrn' => '6347-01-9', 'synonyms' => 'D-Fructopyranose, Fructose, Fructopyranose, Fructopyranoside, D-Fructose, D-Fructopyranoside, CHEBI:37714, D-Fru, D-Arabino-Hex-2-ulo-Pyranose, D-(-)-Fructose, Fru, [14C]-Fructose, AC1MC3S9, F0127_SIGMA, F2543_SIGMA, F2793_FLUKA, F2793_SIGMA, F3510_SIGMA, F9048_SIGMA, SCHEMBL239448, 15760_RIEDEL, CHEMBL2325229, 47739_FLUKA, 47739_SIGMA, 47740_FLUKA, CTK2F9011, 15760_SIAL, 6347-01-9, AKOS004910390, F0317, (3S,4R,5R)-2-(hydroxymethyl)oxane-2,3,4,5-tetrol, EB37038E-44A6-4AF7-B0D8-47A315AD2F74', 'total' => '3', 'inchi' => 'InChI=1S/C6H12O6/c7-1-3(9)5(11)6(12)4(10)2-8/h3,5-9,11-12H,1-2H2/t3-,5-,6-/m1/s1', 'inchikey' => 'LKDRXBCSQODPBY-VRPWFDPXSA-N', 'formula' => 'C6H12O6', 'oxstate' => 'Zero', 'url' => '', 'charge' => '0', 'class1' => '', 'class2' => '', 'class3' => '', 'class4' => '', 'class5' => '', 'isgroup' => 'no', 'checked' => 'no', 'citation_count' => '0', 'updated' => '2015-12-11 16:50:57', 'first' => 'D', 'nametotal' => 'd-Fructose**3', 'AnalytesCitation' => array( [maximum depth reached] ) ), (int) 5 => array( 'id' => '02215', 'name' => 'Sucrose', 'iupac_name' => '(2R,3R,4S,5S,6R)-2-[(2S,3S,4S,5R)-3,4-dihydroxy-2,5-bis(hydroxymethyl)oxolan-2-yl]oxy-6-(hydroxymethyl)oxane-3,4,5-triol', 'casrn' => '57-50-1', 'synonyms' => '1-α-D-glucopyranosyl-2-β-D-fructofranoside; α-D-glucopyranosyl β-D-fructofuranoside; (α-D-glucosido)-β-D-fructofuranoside; β-D-fructofuranose-(2-1)-α-D-glucopyranoside; β-D-fructofuranosyl-α-D-Glucopyranoside; Beet sugar; Cane sugar; confectioner\'s sugar; D(+)-Sucrose; Saccharose; saccharum; Sucrose; Sugar', 'total' => '60', 'inchi' => 'InChI=1S/C12H22O11/c13-1-4-6(16)8(18)9(19)11(21-4)23-12(3-15)10(20)7(17)5(2-14)22-12/h4-11,13-20H,1-3H2/t4-,5-,6-,7-,8+,9-,10+,11-,12+/m1/s1', 'inchikey' => 'CZMRCDWAGMRECN-UGDNZRGBSA-N', 'formula' => 'C12H22O11', 'oxstate' => '', 'url' => '', 'charge' => '0', 'class1' => 'Organic compound', 'class2' => 'NA', 'class3' => 'NA', 'class4' => 'Molecule', 'class5' => 'Sugars', 'isgroup' => '', 'checked' => 'yes', 'citation_count' => '0', 'updated' => '2015-12-11 16:21:31', 'first' => 'S', 'nametotal' => 'Sucrose**60', 'AnalytesCitation' => array( [maximum depth reached] ) ), (int) 6 => array( 'id' => '00066', 'name' => 'Adenosine', 'iupac_name' => '(2R,3R,4S,5R)-2-(6-aminopurin-9-yl)-5-(hydroxymethyl)oxolane-3,4-diol', 'casrn' => '58-61-7', 'synonyms' => 'β-Adenosine;β-d-Adenosine;β-d-Ribofuranose, 1-(6-amino-9H-purin-9-yl)-1-deoxy-;β-d-Ribofuranoside, adenine-9;Adenine riboside;Boniton;Myocol;Nucleocardyl;Sandesin;9-β-d-Ribofuranosyladenine;9H-Purin-6-amine, 9-β-d-ribofuranosyl-;9-β-D-Arabinofuranosyladenine;Adenine nucleoside;Adenosin;USAF cb-10;6-Amino-9β-D-ribofuranosyl-9H-purine;9-β-D-Ribofuranosidoadenine;9-β-D-Ribofuranosyl-9H-purin-6-amine;Adenocard;Adenoscan;Adenocor', 'total' => '3', 'inchi' => 'InChI=1S/C10H13N5O4/c11-8-5-9(13-2-12-8)15(3-14-5)10-7(18)6(17)4(1-16)19-10/h2-4,6-7,10,16-18H,1H2,(H2,11,12,13)/t4-,6-,7-,10-/m1/s1', 'inchikey' => 'OIRDTQYFTABQOQ-KQYNXXCUSA-N', 'formula' => 'C10H13N5O4', 'oxstate' => 'Zero', 'url' => '', 'charge' => '0', 'class1' => 'Biological', 'class2' => 'NA', 'class3' => 'NA', 'class4' => 'Molecule', 'class5' => '', 'isgroup' => '', 'checked' => 'yes', 'citation_count' => '0', 'updated' => '2015-12-11 16:19:50', 'first' => 'A', 'nametotal' => 'Adenosine**3', 'AnalytesCitation' => array( [maximum depth reached] ) ), (int) 7 => array( 'id' => '00068', 'name' => 'Adenosine-5-diphosphate', 'iupac_name' => '[(2R,3S,4R,5R)-5-(6-aminopurin-9-yl)-3,4-dihydroxyoxolan-2-yl]methyl phosphono hydrogen phosphate', 'casrn' => '58-64-0', 'synonyms' => 'Adenosine 5'-diphosphate, Adenosine diphosphate, ADP, adenosine-5'-diphosphate, adenosine pyrophosphate, 58-64-0, adenosine-diphosphate, adenosine 5'-pyrophosphate, ADP (nucleotide), 5'-Adenylphosphoric acid, 5'-Adp, Adenosine 5'-(trihydrogen diphosphate), Adenosindiphosphorsaeure, Adenosine 5'-pyrophosphoric acid, Adenosine 5'-diphosphoric acid, Adenosine-5'-diphosphat, Adenosine diphosphoric acid, Ado-5'-P-P, H3adp, CHEBI:16761, UNII-61D2G4IYVH, BRN 0067722, CHEMBL14830, XTWYTFMLZFPYCI-KQYNXXCUSA-N, ADENOSINE, 5'-(TRIHYDROGEN PYROPHOSPHATE), EINECS 200-392-5, adenosine-5-diphosphate, [(2R,3S,4R,5R)-5-(6-aminopurin-9-yl)-3,4-dihydroxyoxolan-2-yl]methyl phosphono hydrogen phosphate, 84412-16-8, 20398-34-9, 1amw, 1lkx, 1ucn, 1xxi, 1yrs, 2bfr, Formycin diphosphate, a-ADP, 1ao0, 1e8h, 1hi5, 1o0h, 1oz4, 1t3t, 1y8o, AC1L1LMR, bmse000004, bmse000935, bmse000991, Epitope ID:137351, AC1Q1ID4, 61D2G4IYVH, Adenosine Diphosphate (ADP), SCHEMBL24103, Adenosine diphosphate (6CI), GTPL1712, 01905_FLUKA, 01905_SIGMA, BDBM31995, CTK5F2281, HMDB01341, 1m74, 2c02, MolPort-003-925-185, AR-1H6612, BDBM50368125, PDSP1_001088, PDSP2_001072, AKOS022179933, Adenosine, 5'-(trihydrogen diphosphate), Adenosine-5'-diphosphate, MonodiuM salt, NCGC00163322-01, AJ-61691, AK-54732, LS-15185, DB-022410, KB-200370, FT-0082295, FT-0621907, ST24045919, Adenosine 5'-(trihydrogen diphosphate) (9CI), Adenosine 5'-(trihydrogen pyrophosphate) (8CI), 4-26-00-03629 (Beilstein Handbook Reference), Adenosine 5 inverted exclamation mark -diphosphate, adenosine 5 inverted exclamation marka-diphosphate, 3B3-017222, 9-{5-O-[hydroxy(phosphonooxy)phosphoryl]-b-D-glycero-pentofuranosyl}-9H-purin-6-amine, 9H-Purin-6-amine, 9-[5-O-[hydroxy(phosphonooxy)phosphinyl]-β-D-ribofuranosyl]-, 9H-purin-6-amine, 9-[5-O-[hydroxy(phosphonooxy)phosphinyl]-β-D-glycero-pentofuranosyl]-, ((2R,3S,4R,5R)-5-(6-Amino-9H-purin-9-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl trihydrogen diphosphate, (S)-1-C-(7-Amino-1H-pyrazolo(4,3-d)pyrimidin-3-yl)-1,4-anhydro-D-ribitol, 5-(trihydrogen diphosphate), [({[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy]phosphonic acid, [(2R,3S,4R,5R)-5-(6-aminopurin-9-yl)-3,4-dihydroxy-tetrahydrofuran-2-yl]methyl phosphono hydrogen phosphate, [[(2R,3R,4R,5R)-5-(6-aminopurin-9-yl)-3,4-dihydroxy-oxolan-2-yl]methoxy-hydroxy-phosphoryl]oxyphosphonic acid, [[(2R,3R,4R,5R)-5-(6-aminopurin-9-yl)-3,4-dihydroxy-tetrahydrofuran-2-yl]methoxy-hydroxy-phosphoryl]oxyphosphonic acid, 18389-49-6, 896506-82-4, 905904-58-7', 'total' => '1', 'inchi' => 'InChI=1S/C10H15N5O10P2/c11-8-5-9(13-2-12-8)15(3-14-5)10-7(17)6(16)4(24-10)1-23-27(21,22)25-26(18,19)20/h2-4,6-7,10,16-17H,1H2,(H,21,22)(H2,11,12,13)(H2,18,19,20)', 'inchikey' => 'XTWYTFMLZFPYCI-KQYNXXCUSA-N', 'formula' => 'C10H15N5O10P2', 'oxstate' => 'Zero', 'url' => '', 'charge' => '0', 'class1' => '', 'class2' => '', 'class3' => '', 'class4' => '', 'class5' => '', 'isgroup' => 'no', 'checked' => 'no', 'citation_count' => '0', 'updated' => '2015-12-11 16:36:07', 'first' => 'A', 'nametotal' => 'Adenosine-5-diphosphate**1', 'AnalytesCitation' => array( [maximum depth reached] ) ), (int) 8 => array( 'id' => '02519', 'name' => 'Xylose', 'iupac_name' => '(3R,4S,5R)-oxane-2,3,4,5-tetrol', 'casrn' => '25990-60-7', 'synonyms' => ' α-D-Xylopyranose; α-D-Xylose; Xylose', 'total' => '9', 'inchi' => 'InChI=1S/C5H10O5/c6-1-3(8)5(10)4(9)2-7/h1,3-5,7-10H,2H2/t3-,4+,5+/m0/s1', 'inchikey' => 'SRBFZHDQGSBBOR-IOVATXLUSA-N', 'formula' => 'C5H10O5', 'oxstate' => 'Zero', 'url' => '', 'charge' => '0', 'class1' => 'Biological', 'class2' => 'NA', 'class3' => 'NA', 'class4' => 'Molecule', 'class5' => 'Sugars', 'isgroup' => '', 'checked' => 'yes', 'citation_count' => '0', 'updated' => '2015-12-11 16:11:47', 'first' => 'X', 'nametotal' => 'Xylose**9', 'AnalytesCitation' => array( [maximum depth reached] ) ), (int) 9 => array( 'id' => '02620', 'name' => 'Uridylic acid', 'iupac_name' => '[(2R,3S,4R,5R)-5-(2,4-dioxopyrimidin-1-yl)-3,4-dihydroxyoxolan-2-yl]methyl dihydrogen phosphate', 'casrn' => '58-97-9', 'synonyms' => 'Uridylic acid, Uridine 5'-monophosphate, Uridine monophosphate, 5'-URIDYLIC ACID, Uridine 5'-phosphate, Uridine phosphate, 5'-UMP, Uridine 5'-phosphoric acid, uridine-5'-monophosphate, UMP (nucleic acid), Uridine 5'-(dihydrogen phosphate), 5'Uridylic acid, uridylate, UMP, CHEBI:16695, 58-97-9, UNII-E2OU15WN0N, BRN 0047486, CHEMBL214393, EINECS 200-408-0, 2,4(1H,3H)-pyrimidinedione, 1-(5-O-phosphono-β-D-ribofuranosyl)-, U 5'-P, 27416-86-0, U5P, 5'-uridylic acid (8CI)(9CI), uridine-phosphate, Polyuridylic acids, 1loq, Uracil polynucleotides, Uridylic acid (6CI), 1xz8, Uridine 5'-phosphorate, AC1L1LNC, bmse000280, Epitope ID:196258, AC1Q1I4H, E2OU15WN0N, 5'-Uridylic acid,homopolymer, Uridine 5'-monophosphic acid, SCHEMBL157644, GTPL5125, CTK1H0388, HMDB00288, DJJCXFVJDGTHFX-XVFCMESISA-N, MolPort-006-110-136, Uridine mono(dihydrogen phosphate), AR-1G9590, BDBM50398699, AKOS016009839, VA11551, NCGC00163325-01, AJ-33504, AK113761, SC-46903, U490, LS-160843, LS-187795, FT-0621292, Uridine, mono(dihydrogen phosphate) (ester), C00105, 5-24-06-00173 (Beilstein Handbook Reference), 954D2AA9-0360-4F63-A7BF-63254220F1F3, [(2R,3S,4R,5R)-5-(2,4-dioxopyrimidin-1-yl)-3,4-dihydroxy-tetrahydrofuran-2-yl]methyl dihydrogen phosphate, [(2R,3S,4R,5R)-5-(2,4-dioxopyrimidin-1-yl)-3,4-dihydroxyoxolan-2-yl]methyl dihydrogen phosphate, [(2S,3S,4R,5R)-5-(2,4-dioxopyrimidin-1-yl)-3,4-dihydroxy-oxolan-2-yl]methoxyphosphonic acid, [(2S,3S,4R,5R)-5-(2,4-dioxopyrimidin-1-yl)-3,4-dihydroxy-tetrahydrofuran-2-yl]methoxyphosphonic acid, {[(2R,3S,4R,5R)-5-(2,4-dioxo-1,2,3,4-tetrahydropyrimidin-1-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}phosphonic acid, 53624-79-6, 81795-92-8, U25', 'total' => '0', 'inchi' => 'InChI=1S/C9H13N2O9P/c12-5-1-2-11(9(15)10-5)8-7(14)6(13)4(20-8)3-19-21(16,17)18/h1-2,4,6-8,13-14H,3H2,(H,10,12,15)(H2,16,17,18)/t4-,6-,7-,8-/m1/s1', 'inchikey' => 'DJJCXFVJDGTHFX-XVFCMESISA-N', 'formula' => 'C9H13N2O9P', 'oxstate' => 'Zero', 'url' => '', 'charge' => '0', 'class1' => 'NA', 'class2' => 'NA', 'class3' => 'NA', 'class4' => 'NA', 'class5' => 'NA', 'isgroup' => 'no', 'checked' => 'no', 'citation_count' => '0', 'updated' => '2015-12-11 16:21:31', 'first' => 'U', 'nametotal' => 'Uridylic acid**0', 'AnalytesCitation' => array( [maximum depth reached] ) ), (int) 10 => array( 'id' => '01020', 'name' => 'Galactose', 'iupac_name' => '(3R,4S,5R,6R)-6-(hydroxymethyl)oxane-2,3,4,5-tetrol', 'casrn' => '26566-61-0', 'synonyms' => 'NA', 'total' => '19', 'inchi' => 'InChI=1S/C6H12O6/c7-1-3(9)5(11)6(12)4(10)2-8/h1,3-6,8-12H,2H2/t3-,4+,5+,6-/m0/s1', 'inchikey' => 'WQZGKKKJIJFFOK-SVZMEOIVSA-N', 'formula' => ' C6H12O6', 'oxstate' => 'Zero', 'url' => '', 'charge' => '0', 'class1' => 'Organic compound', 'class2' => 'NA', 'class3' => 'NA', 'class4' => 'Molecule', 'class5' => 'Sugars', 'isgroup' => '', 'checked' => 'yes', 'citation_count' => '0', 'updated' => '2015-10-23 09:58:34', 'first' => 'G', 'nametotal' => 'Galactose**19', 'AnalytesCitation' => array( [maximum depth reached] ) ), (int) 11 => array( 'id' => '00069', 'name' => 'Adenosine-5-phosphate', 'iupac_name' => '[(2R,3S,4R,5R)-5-(6-aminopurin-9-yl)-3,4-dihydroxyoxolan-2-yl]methyl dihydrogen phosphate', 'casrn' => '61-19-8', 'synonyms' => 'adenosine 5'-monophosphate, 5'-adenylic acid, Adenosine monophosphate, adenylic acid, adenosine phosphate, Phosphaden, adenylate, 5'-AMP, adenosine 5'-phosphate, Phosaden, Phosphentaside, 61-19-8, Adenovite, Cardiomone, Lycedan, My-B-Den, Vitamin B8, 5'-adenosine monophosphate, Myoston, Ergadenylic acid, Monophosphadenine, Muscle adenylic acid, Muskeladenylsaeure, Adenosine-5'-monophosphate, Adenosine 5'-(dihydrogen phosphate), AMP (nucleotide), Adenosine 5'-phosphoric acid, AMP, Adenosine-5-monophosphoric acid, Adenosine-5'-monophosphoric acid, Adenosini phosphas, Fosfato de adenosina, a-5mp, Phosphate d'adenosine, Adenyl, Muskeladenosin-phosphorsaeure, Adenylic acid (VAN), PAdo, adenosine-5'P, A5MP, adenosine-phosphate, AMP (VAN), Adenosine-5-phosphate, adenosine-monophosphate, Ado5'P, Formycin 5'-phosphate, 5'-O-phosphonoadenosine, Adenosini phosphas [INN-Latin], CHEBI:16027, Adenosine 5'-monophosphoric acid, HSDB 3281, CHEMBL752, 1pyg, 2gsu, 7gpb, 8gpb, Polyadenylic acids, Fosfato de adenosina [INN-Spanish], Phosphate d'adenosine [INN-French], Adenosine, mono(dihydrogen phosphate) (ester), Formycin 5'-phosphate hydrate, Adenyl (TN), ASMP, BRN 0054612, Adenine polynucleotides, Formycin 5'-monophosphate hydrate, 1ua4, 1z6s, POLY A, AC1L1LRL, Formycin A 5'-monophosphate hydrate, Prestwick0_000356, Prestwick1_000356, Prestwick2_000356, Prestwick3_000356, Adenosine 5-Monophosphate, EINECS 200-500-0, NSC 20264, NSC-20264, Adenosine phosphate [USAN:INN:BAN], Adenosine 5 -monophosphate, bmse000005, AC1Q1ID5, 5'-Thio-5'-adenylic acid, NCGC00163319-01, BSPBio_000451, SPBio_002372, UNII-415SHH325A, 5'-Adenylic acid, 8-amino-, 5'-Adenylic acid, homopolymer, ADENOSINE-5'-PHOSPHATE, BPBio1_000497, 5'-Adenylic acid, 5'-thio-, STOCK1N-70887, Adenosine phosphate (USAN/INN), 8-Aminoadenosine 5'-monophosphate, UDMBCSSLTHHNCD-KQYNXXCUSA-N, Adenosine phosphate [USAN:BAN:INN], AR-1H6048, DB00131, AMP dianion, NCGC00163319-02, NCGC00163319-03, 2gmk, 2qrk, 2vfk, 3dhv, LS-15192, LS-129209, 5'-Deoxy-5'-thioadenosine 5'-monophosphate, A0158, DSSTox_CID_2560, nchembio867-comp5, C00020, D02769, [(2R,3S,4R,5R)-5-(6-aminopurin-9-yl)-3,4-dihydroxyoxolan-2-yl]methyl dihydrogen phosphate, 7-Amino-3-β-D-ribofuranosyl-1H-pyrazolo(4,3-d)pyrimidine 5'-(dihydrogen phosphate) hydrate, DSSTox_RID_76630, DSSTox_GSID_22560, (S)-1-C-(7-Amino-1H-pyrazolo(4,3-d)pyrimidin-3-yl)-1,4-anhydro-D-ribitol, 5-(dihydrogen phosphate), 1H-Pyrazolo(4,3-d)pyrimidine, 7-amino-3-β-D-ribofuranosyl-, 5'-(dihydrogen phosphate)-, hydrate, 4-26-00-03615 (Beilstein Handbook Reference), 67583-85-1, 2q8m, 5'-O-phosphonatoadenosine, 9H-purin-6-amine, 9-(5-O-phosphono-β-D-ribofuranosyl)-, 7A8E6D15-9136-44C1-88C9-E1A224638E56, 9H-Purin-6-amine, 9-(5-O-phosphono-β-D-ribofuranosyl)-, 18422-05-4, A-5'-P, Adenosine-5-monophosphate(2-), CAS-61-19-8, Adenosine-5-monophosphate dianion, [(2R,3S,4R,5R)-5-(6-aminopurin-9-yl)-3,4-dihydroxy-tetrahydrofuran-2-yl]methyl dihydrogen phosphate, 13270-66-1, 162756-82-3, 24937-83-5, 34051-12-2, 47286-65-7, 47287-97-8, 53624-78-5, 55036-25-4, 697214-87-2, CHEBI:456215, ZINC03860156, A 5MP, TL8003885, Muscle adenylate, 5'-adenylate, My-β-Den, CID6083, ADENYLICACID, PubChem14179, nchembio.266-comp19, AMP;, Adenosine 5'-phosphorate, Adenosine5'-monophosphate, bmse000873, bmse000992, Epitope ID:137353, Adenosine-5-monophosphorate, SCHEMBL5588, Adenosine-5'-monophosphorate, adenosine-5'-phosphoric acid, KSC352Q5L, Adenosine Monophosphate (Amp), GTPL2455, BDBM18137, CTK2F2855, HMDB00045, MolPort-003-987-006, MolPort-004-946-768, 415SHH325A, Tox21_112046, ANW-33718, DAP001319, DNC009413, SBB001403, Adenosine 5'-monophosphate, free acid, AKOS015833068, AKOS015888563, Tox21_112046_1, Adenosine-5'-Monophosphate, Free acid, EBD2205244, RTR-030672, Adenosine 5'-Monophosphate, free acid, CID15938965, AJ-45954, AK-54726, AN-23642, KB-47163, SC-17764, AB0010740, DB-022416, TR-030672, Adenosine Monophosphate (Amp);Adenosine phosphate, ADENOSINE-3 -MONOPHOSPHORICACIDMONOHYDRATE*, Adenosine 5 inverted exclamation marka-monophosphate CAgarose, [(2R,3R,4R,5R)-5-(6-aminopurin-9-yl)-3,4-dihydroxy-oxolan-2-yl]methoxyphosphonic acid, ((2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl dihydrogen phosphate, [(2R,3R,4R,5R)-5-(6-aminopurin-9-yl)-3,4-dihydroxy-tetrahydrofuran-2-yl]methoxyphosphonic acid, [(2R,3S,4R,5R)-5-adenin-9-yl-3,4-dihydroxy-tetrahydrofuran-2-yl]methyl dihydrogen phosphate;hydrate, {[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}phosphonic acid', 'total' => '1', 'inchi' => 'InChI=1S/C10H14N5O7P/c11-8-5-9(13-2-12-8)15(3-14-5)10-7(17)6(16)4(22-10)1-21-23(18,19)20/h2-4,6-7,10,16-17H,1H2,(H2,11,12,13)(H2,18,19,20)/t4-,6-,7-,10-/m1/s1', 'inchikey' => 'UDMBCSSLTHHNCD-KQYNXXCUSA-N', 'formula' => 'C10H14N5O7P', 'oxstate' => 'Zero', 'url' => '', 'charge' => '0', 'class1' => '', 'class2' => '', 'class3' => '', 'class4' => '', 'class5' => '', 'isgroup' => 'no', 'checked' => 'no', 'citation_count' => '0', 'updated' => '2015-12-11 16:36:07', 'first' => 'A', 'nametotal' => 'Adenosine-5-phosphate**1', 'AnalytesCitation' => array( [maximum depth reached] ) ), (int) 12 => array( 'id' => '02621', 'name' => 'Cytidine', 'iupac_name' => '4-amino-1-[(2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]pyrimidin-2-one', 'casrn' => '65-46-3', 'synonyms' => 'cytidine, Cytosine riboside, 65-46-3, 1-β-D-Ribofuranosylcytosine, 1β-Ribofuranosylcytosine, Cytidin, Zytidin, β-D-Ribofuranoside, cytosine-1, 4-Amino-1-β-D-ribofuranosyl-2(1H)-pyrimidinone, 1-β-Ribofuranosylcytosine, 1β-D-Ribofuranosylcytosine, cytosine-1β-D-Ribofuranoside, 4-Amino-1β-D-ribofuranosyl-2(1H)-pyrimidinone, CHEBI:17562, Cytosine, 1-β-D-ribofuranosyl-, 1β-2'-Ribofuranosylcytosine, d-, NSC 20258, Cyd, UNII-5CSZ8459RP, 2(1H)-Pyrimidinone, 4-amino-1-β-D-ribofuranosyl-, Cytosine-1-|A-D-ribofuranoside, UHDGCWIWMRVCDJ-XVFCMESISA-N, EINECS 200-610-9, 2(1H)-Pyrimidinone, 4-amino-1β-D-ribofuranosyl-, 4-amino-1-β-D-ribofuranosylpyrimidin-2(1H)-one, 4-amino-1-[(2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl]pyrimidin-2-one, SMR000058243, 1β-Ribofuranosylcytosine, 1β-D-Ribofuranosylcytosine, Cytosine β-D-riboside, Cytosine-1-β-D-ribofuranoside, β-D-Ribofuranoside, cytosine-1, Cytosine, 1-β-D-ribofuranosyl-, Posilent (TN), CTN, beta.-D-Ribo-C, PubChem14146, 1-b-D-ribosyl-Cytosine, CP-C, 4-Amino-1β-D-ribofuranosyl-2(1H)-pyrimidinone, bmse000190, bmse000969, bmse001020, Epitope ID:141494, 2(1H)-Pyrimidinone, 4-amino-1-β-D-ribofuranosyl-, AC1L1LY9, AC1Q6C2P, SCHEMBL7179, 1-b-D-Ribofuranosylcytosine, cytosine-1b-D-Ribofuranoside, KSC353A2P, MLS000049947, MLS002207040, 1-β-D-ribosyl- (6CI), 1-β-δ-ribosyl-Cytosine, C122106_ALDRICH, C4654_SIGMA, CHEMBL95606, 5CSZ8459RP, CYT007, GTPL4728, 1-β-D-ribofuranosyl-Cytosine, cytosine-1b-δ-Ribofuranoside, 1β-δ-Ribofuranosylcytosine, CTK2F3027, HMDB00089, 4-amino-1-[(2R,3R,4R,5R)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]pyrimidin-2-one, MolPort-000-716-085, 1-β-δ-Ribofuranosylcytosine, BB_NC-0001, cytosine-1β-δ-Ribofuranoside, 1-β-δ-ribofuranosyl-Cytosine, HY-B0158, ANW-35046, AR-1I3421, KM0929, SBB003195, ZINC02583632, AKOS015888568, AM83932, CS-1989, MCULE-3044641322, RTR-022281, NCGC00093356-08, NCGC00142483-01, AJ-43263, AN-23747, BC679398, CJ-10310, KB-49502, SC-09086, ST056938, AB0012341, DB-029614, LS-135845, TL8004649, TR-022281, FT-0624315, ST24046405, C00475, D07769, 16501-EP2281563A1, 16501-EP2287165A2, 16501-EP2287166A2, 16501-EP2289892A1, 16501-EP2292088A1, 16501-EP2292620A2, 16501-EP2292630A1, 16501-EP2295407A1, 16501-EP2298736A1, 16501-EP2298783A1, 16501-EP2305808A1, 16501-EP2316459A1, 1-(β-D-ribofuranosyl)-4-aminopyrimidin-2-one, 4-Amino-1-b-D-ribofuranosyl-2(1H)-pyrimidinone, I14-8299, 4-Amino-1-β-D-ribofuranosyl-2-(1H)-pyrimidinone, 4-Amino-1-β-δ-ribofuranosyl-2(1H)-pyrimidinone, 1-(b-D-Ribofuranosyl)-2-oxo-4-amino-1,2-dihydro-1,3-diazine, 6D2DC474-DD76-4081-8B34-10605C218F49, 1-(b-δ-Ribofuranosyl)-2-oxo-4-amino-1,2-dihydro-1,3-diazine, 1-(β-D-Ribofuranosyl)-2-oxo-4-amino-1,2-dihydro-1,3-diazine, 4-amino-1-[(2R,3R,4R,5R)-3,4-dihydroxy-5-methylol-tetrahydrofuran-2-yl]pyrimidin-2-one, 4-amino-1-[(2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]pyrimidin-2-one, 4-amino-1-[(2R,3R,4R,5R)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl]pyrimidin-2-one, 4-amino-1-[(2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-1,2-dihydropyrimidin-2-one, 4395-95-3, 494210-74-1, 873077-03-3', 'total' => '0', 'inchi' => 'InChI=1S/C9H13N3O5/c10-5-1-2-12(9(16)11-5)8-7(15)6(14)4(3-13)17-8/h1-2,4,6-8,13-15H,3H2,(H2,10,11,16)/t4-,6-,7-,8-/m1/s1', 'inchikey' => 'UHDGCWIWMRVCDJ-XVFCMESISA-N', 'formula' => 'C9H13N3O5', 'oxstate' => 'Zero', 'url' => '', 'charge' => '0', 'class1' => 'NA', 'class2' => 'NA', 'class3' => 'NA', 'class4' => 'NA', 'class5' => 'NA', 'isgroup' => 'no', 'checked' => 'no', 'citation_count' => '0', 'updated' => '2015-12-11 16:36:07', 'first' => 'C', 'nametotal' => 'Cytidine**0', 'AnalytesCitation' => array( [maximum depth reached] ) ), (int) 13 => array( 'id' => '02622', 'name' => 'Guanosine monophosphate', 'iupac_name' => '[(2R,3S,4R,5R)-5-(2-amino-6-oxo-3H-purin-9-yl)-3,4-dihydroxyoxolan-2-yl]methyl dihydrogen phosphate', 'casrn' => '85-32-5', 'synonyms' => '5'-Guanylic acid, guanylic acid, guanosine monophosphate, Guanosine 5'-monophosphate, 5'-Gmp, guanosine-5'-monophosphate, Guanosine 5'-phosphate, Guanidine monophosphate, 85-32-5, CHEBI:17345, guanosine-phosphate, guanylate, guanosine-5'-phosphate, Guanosine 5'-phosphoric acid, AI3-28539, CHEMBL283807, Guanosine 5'-monophosphoric acid, UNII-16597955EP, EINECS 201-598-8, GMP, E 626, 5GP, Polyguanylic acids, Guanine polynucleotides, 5'-Guanylic acid, homopolymer, 5'-Guanylicacid, 1sgx, 2fxv, Xylo-GMP, 5'-Guanidylic acid, guanosine-monophosphate, E number E626, 1g9t, 1qk3, AC1L1NCA, AC1Q1IDI, Guanosine 5'-phosphorate, Epitope ID:190357, SCHEMBL5854, GTPL5123, GUA029, CTK3E8455, HMDB01397, 5'-Guanylic acid (8CI,9CI), 1w25, MolPort-023-221-375, RQFCJASXJCIDSX-UUOKFMHZSA-N, guanine riboside-5-phosphoric acid, AR-1G8256, BDBM50010318, Guanosine 5'-(dihydrogen phosphate), AKOS025311571, 25191-14-4, AJ-33697, H403, K524, LS-73964, 16597955EP, A-8421, C00144, 38CABC90-82D3-4544-9566-34C06A477068, [(2R,3S,4R,5R)-5-(2-amino-6-oxo-1,6-dihydro-9H-purin-9-yl)-3,4-dihydroxytetrahydrofuran-2-yl]methyl dihydrogen phosphate, [(2R,3S,4R,5R)-5-(2-amino-6-oxo-1H-purin-9-yl)-3,4-dihydroxy-tetrahydrofuran-2-yl]methyl dihydrogen phosphate, [(2R,3S,4R,5R)-5-(2-amino-6-oxo-3H-purin-9-yl)-3,4-dihydroxyoxolan-2-yl]methyl dihydrogen phosphate, {[(2R,3S,4R,5R)-5-(2-amino-6-oxo-6,9-dihydro-3H-purin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}phosphonic acid, 29593-02-0, 573-48-8, 642-41-1', 'total' => '0', 'inchi' => 'InChI=1S/C10H14N5O8P/c11-10-13-7-4(8(18)14-10)12-2-15(7)9-6(17)5(16)3(23-9)1-22-24(19,20)21/h2-3,5-6,9,16-17H,1H2,(H2,19,20,21)(H3,11,13,14,18)/t3-,5-,6-,9-/m1/s1', 'inchikey' => 'RQFCJASXJCIDSX-UUOKFMHZSA-N', 'formula' => 'C10H14N5O8P', 'oxstate' => 'Zero', 'url' => '', 'charge' => '0', 'class1' => 'NA', 'class2' => 'NA', 'class3' => 'NA', 'class4' => 'NA', 'class5' => 'NA', 'isgroup' => 'no', 'checked' => 'no', 'citation_count' => '0', 'updated' => '2015-10-23 21:40:57', 'first' => 'G', 'nametotal' => 'Guanosine monophosphate**0', 'AnalytesCitation' => array( [maximum depth reached] ) ), (int) 14 => array( 'id' => '02623', 'name' => 'Guanosine triphosphate', 'iupac_name' => '[[(2R,3S,4R,5R)-5-(2-amino-6-oxo-3H-purin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl] phosphono hydrogen phosphate', 'casrn' => '86-01-1', 'synonyms' => 'GUANOSINE TRIPHOSPHATE, guanosine 5'-triphosphate, 5'-GTP, Guanosine 5'-triphosphoric acid, GTP, Guanosine-5'-triphosphate, H4gtp, 86-01-1, Guanosine 5'-(tetrahydrogen triphosphate), EINECS 201-647-3, BRN 1201437, guanosine-5'-(tetrahydrogentriphosphate), 1jlr, guanosine5'-, 1j2j, AC1L1NEA, AC1Q1IDH, Guanosine 5'-triphosphorate, SCHEMBL44408, Guanosine triphosphate (6Cl), GTPL1742, SCHEMBL15900104, CHEBI:15996, CTK5A4465, HMDB01273, 1e96, AR-1J1438, NCGC00163327-01, LS-73963, 9-|A-D-ribofuranosylguanine-5'-triphosphate, 56001-37-7, C00044, Guanosine mono(tetrahydrogen triphosphate) (ester), Guanosine, mono(tetrahydrogen triphosphate) (ester), 6A1C76E9-BEFB-4684-B0C1-8C50AE53C506, 9-|A-D-ribofuranosyl-2-amino-6-oxo-purine-5'-triphosphate, Guanosine5'-(tetrahydrogen triphosphate), sodium salt (1:2), [(2R,3S,4R,5R)-5-(2-amino-6-oxo-3H-purin-9-yl)-3,4-dihydroxyoxolan-2-yl]methyl (hydroxy-phosphonooxyphosphoryl) hydrogen phosphate, [[(2R,3S,4R,5R)-5-(2-amino-6-oxo-1H-purin-9-yl)-3,4-dihydroxy-tetrahydrofuran-2-yl]methoxy-hydroxy-phosphoryl] phosphono hydrogen phosphate, [[(2R,3S,4R,5R)-5-(2-amino-6-oxo-3H-purin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl] phosphono hydrogen phosphate, 6H-purin-6-one, 2-amino-1,9-dihydro-9-[5-O-[hydroxy[[hydroxy(phosphonooxy)phosphinyl]oxy]phosphinyl]-β-D-ribofuranosyl]-', 'total' => '0', 'inchi' => 'InChI=1S/C10H16N5O14P3/c11-10-13-7-4(8(18)14-10)12-2-15(7)9-6(17)5(16)3(27-9)1-26-31(22,23)29-32(24,25)28-30(19,20)21/h2-3,5-6,9,16-17H,1H2,(H,22,23)(H,24,25)(H2,19,20,21)(H3,11,13,14,18)/t3-,5-,6-,9-/m1/s1', 'inchikey' => 'XKMLYUALXHKNFT-UUOKFMHZSA-N', 'formula' => 'C10H16N5O14P3', 'oxstate' => 'Zero', 'url' => '', 'charge' => '0', 'class1' => 'NA', 'class2' => 'NA', 'class3' => 'NA', 'class4' => 'NA', 'class5' => 'NA', 'isgroup' => 'no', 'checked' => 'no', 'citation_count' => '0', 'updated' => '2015-12-11 16:21:31', 'first' => 'G', 'nametotal' => 'Guanosine triphosphate**0', 'AnalytesCitation' => array( [maximum depth reached] ) ), (int) 15 => array( 'id' => '02625', 'name' => 'Inositol', 'iupac_name' => 'cyclohexane-1,2,3,4,5,6-hexol', 'casrn' => '87-89-8', 'synonyms' => 'myo-inositol, inositol, Scyllo-inositol, meso-Inositol, Muco-Inositol, i-Inositol, epi-Inositol, Allo-inositol, Myoinositol, Scyllitol, Dambose, Meat sugar, mesoinositol, Phaseomannite, Myoinosite, Quercinitol, Iso-inositol, Phaseomannitol, Inosital, Inositene, Inositina, Mesoinosit, Mesoinosite, Scyllite, Inosite, Mesovit, Nucite, Mesol, cyclohexane-1,2,3,4,5,6-hexol, Cyclohexitol, Cocositol, 1D-Chiro-inositol, 1L-Chiro-inositol, Cyclohexanehexol, D-(+)-chiro-Inositol, 87-89-8, D-myo-Inositol, Inositol, meso-, Inositol, myo-, 488-59-5, chiro-inositol, cis-Inositol, D-chiro-Inositol, cis-1,2,3,5-trans-4,6-Cyclohexanehexol, 643-12-9, 6917-35-7, Bios I, Cyclohexane-1,2,3,4,5,6-hexaol, Isoinositol, Insitolum, Neo-inositol, L-myo-Inositol, D-chiro Inositol, Inositol, muco-, L-chiro-Inositol, 1D-myo-Inositol, 1L-myo-Inositol, Inositol, i-, Inositol (VAN), L-Inositol, Inositol, allo-, Inositol, epi-, Inositol, scyllo-, Rat antispectacled eye factor, (-)-Inositol, Hexahydroxycyclohexane, CCRIS 6745, 551-72-4, CHEBI:17268, NSC8101, 1,2,3,4,5,6-cyclohexanhexol, L-(-)-chiro-Inositol, 1,2,3,5-trans-4,6-Cyclohexanehexol, cis-, Mouse antialopecia factor, NSC404118, Inositol, myo- (8CI), 488-58-4, 1,3,5/2,4,6-Hexahydroxycyclohexane, AI3-16111, (1r,2r,3r,4r,5r,6r)-cyclohexane-1,2,3,4,5,6-hexol, I5125_SIAL, (1R,2R,3S,4S,5S,6S)-cyclohexane-1,2,3,4,5,6-hexol, MI, myo -Inositol, CHEBI:10642, CHEBI:23927, CHEBI:27372, CHEBI:27987, AZD 103, 1,2,3,4,5,6-HEXAHYDROXY-CYCLOHEXANE, CDAISMWEOUEBRE-CDRYSYESSA-N, 1,2,3,4,5,6-Cyclohexanehexol, 1,2,3,5/4,6-Cyclohexanehexol, 1,3,5/2,4,6-cyclohexanehexol, UNII-4L6452S749, Inositol (VAN8C, NSC 8101, NSC45517, NSC55551, NSC55552, EINECS 201-781-2, 1,2,3,4,5,6-Hexahydroxycyclohexane, 1,2,3,5/4,6-Hexahydroxycyclohexane, 1,2,4/3,5,6-Hexahydroxycyclohexane, NSC 404118, 488-55-1, 643-10-7, INS, NCGC00159409-02, (1r,2R,3S,4s,5R,6S)-cyclohexane-1,2,3,4,5,6-hexol, myo-Inositol-(2-3H), ST50406013, DSSTox_CID_3146, DSSTox_RID_76890, DSSTox_GSID_23146, 41546-34-3, 1,3,4,5,6-Cyclohexanehexol, 1,3,5/4,6-Cyclohexanehexol, (1R,2R,3R,4R,5S,6S)-cyclohexane-1,2,3,4,5,6-hexol, (1r,2R,3R,4s,5S,6S)-cyclohexane-1,2,3,4,5,6-hexol, (1r,2R,3S,4r,5R,6S)-cyclohexane-1,2,3,4,5,6-hexol, 1,2,4/3,5,6-cyclohexanehexol, 1,2,3,4,5,6-Cyclohexanehexol #, CAS-87-89-8, cis-1,3,5-trans-4,6-Cyclohexanehexol, 173524-45-3, 38876-99-2, 576-63-6, SMR000857145, SMR000857319, SMR000857320, inositols, Muscle sugar, 4irx, Inositol, chiro-, Inosital (TN), Inositol (DCF), Inositol [NF], CBU, epi-Cyclohexanehexol, (+)-Inositol, 1-L-chiro-Inositol, EPIINOSITOL, (+)-Epi-Inositol, (-)-chiro-Inositol, AmbotzGBB1246, (+)-Chiro-Inositol, scyllo-Cyclohexanehexol, INOSITOL, MESO, Spectrum_001595, 2os9, Cyclohexanehexol;Inositol, AC1Q2AJJ, INOSITOL (D), INOSITOL (L), Spectrum3_001053, Spectrum4_001193, Spectrum5_000961, bmse000102, bmse000103, bmse000113, bmse000901, bmse000922, Epitope ID:144993, AC1L1A9E, D- -CHIRO-INOSITOL, SCHEMBL5831, SCHEMBL5832, SCHEMBL5969, NCIOpen2_008191, BSPBio_002606, KBioGR_001885, KBioSS_002075, KSC225S4P, MLS001332377, MLS001332378, MLS001335965, MLS001335966, MLS001335967, MLS001335968, Ambap6917-35-7, I0269_SIGMA, I0527_SIGMA, I3011_SIGMA, I5125_SIGMA, I7508_SIGMA, I8132_SIGMA, SCHEMBL187278, SCHEMBL187397, SCHEMBL187796, SCHEMBL188106, SCHEMBL188237, SCHEMBL491333, SCHEMBL959404, SCHEMBL959405, 468045_ALDRICH, 468053_ALDRICH, 468061_ALDRICH, 468088_ALDRICH, CHEMBL122705, CHEMBL278373, CHEMBL279736, CHEMBL468154, GTPL4495, GTPL4645, GTPL4648, GTPL4649, MEGxp0_001817, SCHEMBL1055883, SCHEMBL4748543, SCHEMBL6378921, SCHEMBL6468882, SCHEMBL6791918, CHEMBL1222251, CHEMBL1231671, CHEMBL1950780, SCHEMBL12371461, SCHEMBL12377889, SCHEMBL12411898, SCHEMBL12711208, SCHEMBL12735687, SCHEMBL13058696, SCHEMBL13114115, SCHEMBL13114116, SCHEMBL13114128, SCHEMBL13207905, SCHEMBL13580047, SCHEMBL14542470, UNII-1VS4X81277, 57569_FLUKA, 57569_SIGMA, 57570_FLUKA, ACon1_002457, CHEBI:22357, CHEBI:23311, CHEBI:24848, CHEBI:25492, CHEBI:27374, CTK1C5947, CTK8B3795, HMDB00211, HMDB06088, KBio2_002075, KBio2_004643, KBio2_007211, KBio3_001826, C6H12O6, CDAISMWEOUEBRE-GNIYUCBRSA-N, CDAISMWEOUEBRE-GPIVLXJGSA-N, CDAISMWEOUEBRE-LOLGQZEGSA-N, CDAISMWEOUEBRE-NIPYSYMMSA-N, CDAISMWEOUEBRE-OQYPVSDDSA-N, CDAISMWEOUEBRE-UHFFFAOYSA-N, MolPort-001-742-552, MolPort-001-785-905, MolPort-003-719-862, MolPort-003-848-190, MolPort-003-933-929, MolPort-008-267-886, 1,2,3,4,5/6-cyclohexanehexol, 1,2,3,4/5,6-cyclohexanehexol, 1,2,3/4,5,6-cyclohexanehexol, 1,2,4,5/3,6-cyclohexanehexol, HMS2091N13, HMS2230N03, HMS2235H05, HMS2235M23, HMS3369B06, HMS3369F20, HMS3373E05, KST-1B9360, Pharmakon1600-01500352, (1/4) inverted exclamation markIC, NSC-8101, NSC25142, NSC55558, EINECS 207-681-5, EINECS 207-682-0, EINECS 209-000-7, EINECS 211-393-5, EINECS 211-394-0, EINECS 230-024-9, Tox21_111642, Tox21_302035, 6643AB, ANW-43204, AR-1B5044, CC-093, CCG-36096, DNC000974, KM0846, NSC 25142, NSC-25142, NSC-45517, NSC-55551, NSC-55552, NSC-55558, NSC103959, NSC127230, NSC757076, ZINC01530357, 1,2,3,4,5,6/0-cyclohexanetetrol, AKOS006240678, AKOS006332036, AKOS015895894, AKOS015912905, AKOS015912934, AKOS015960429, AKOS015960633, AKOS015994742, AKOS024318869, Tox21_111642_1, 1VS4X81277, DB03106, KS-1284, KS-1420, LS-2350, MCULE-2727773046, NSC-103959, NSC-127230, NSC-404118, NSC-757076, RP24128, TRA0065469, VC30505, TRA-0204644, NCGC00159409-03, NCGC00159409-04, NCGC00169828-01, NCGC00178580-01, NCGC00178580-03, NCGC00255362-01, AC-11070, AJ-26654, AK102790, AK115152, AN-18118, AN-23658, AN-24133, CJ-05199, CJ-23964, K572, NCI60_041778, SC-18136, AB0014290, KB-251247, KB-296111, NP-010162, TL8004550, TL8004551, TR-016439, TR-017741, TR-019452, TR-022051, TR-022053, 4CH-024633, 4L6452S749, FT-0627237, FT-0632208, FT-0632209, FT-0632730, FT-0652045, FT-0670357, FT-0693444, FT-0693614, I0040, I0628, I0629, I0630, I0631, I0632, I0633, LT03328768, ST24024704, ST24049158, (1R)-Cyclohexane-1r,2c,3t,4c,5t,6t-hexaol, 3635-EP2275412A1, 3635-EP2280282A1, 3635-EP2289886A1, 3635-EP2292088A1, 3635-EP2295417A1, 3635-EP2295437A1, 3635-EP2298312A1, 3635-EP2298775A1, 3635-EP2305636A1, 3635-EP2305677A1, 3635-EP2305682A1, 3635-EP2308879A1, C00137, C06152, C06153, C19891, D08079, I-6500, K-9876, meso-(1/4) inverted exclamation mark (1/4), 12513-EP2277880A1, 12513-EP2277881A1, 12513-EP2292597A1, 12513-EP2292610A1, 12513-EP2298744A2, 12513-EP2298768A1, 12513-EP2305825A1, 12513-EP2316831A1, 12513-EP2374790A1, 13719-EP2269977A2, 13719-EP2280010A2, 13719-EP2289891A2, 13719-EP2295437A1, 13719-EP2298734A2, 13719-EP2298775A1, 13719-EP2308875A1, 13719-EP2311831A1, 13719-EP2316836A1, 40032-EP2298312A1, 40032-EP2311830A1, A834712, A836375, I06-1350, I14-2742, Scyllite (for the structural isomer scyllo-Inositol), 7B0CEF84-D9CE-4A88-AA7D-EC50C89387A5, I14-47229, I14-47230, I14-47231, I14-47232, I14-60538, 1D7A27BF-6060-4FA9-AC46-3BD18DBA406E, 220128F1-89BF-442D-AD6D-E6D1EA7BA625, 3B3-016478, 3B3-024034, 3B3-029086, 3B3-070415, 3B3-078032, I14-101844, (1R,2S,3S,4R,5S,6r)-cyclohexane-1,2,3,4,5,6-hexol, (1s,2R,3R,4s,5S,6S)-cyclohexane-1,2,3,4,5,6-hexol, (1s,2s,3s,4s,5s,6s)-cyclohexane-1,2,3,4,5,6-hexol, (1R,2R,3S,4R,5S,6S)-cyclohexane-1,2,3,4,5,6-hexol, 1,2,3,4,5,6-Cyclohexanehexol, (cis,cis,cis,trans,cis,trans)- #, 1,2,3,4,5,6-cyclohexanehexol, (1α,2α,3α,4beta,5α,6beta), 2H3, 488-54-0, 53319-35-0', 'total' => '1', 'inchi' => 'InChI=1S/C6H12O6/c7-1-2(8)4(10)6(12)5(11)3(1)9/h1-12H', 'inchikey' => 'CDAISMWEOUEBRE-UHFFFAOYSA-N', 'formula' => 'C6H12O6', 'oxstate' => 'Zero', 'url' => '', 'charge' => '0', 'class1' => 'NA', 'class2' => 'NA', 'class3' => 'NA', 'class4' => 'NA', 'class5' => 'NA', 'isgroup' => 'no', 'checked' => 'no', 'citation_count' => '0', 'updated' => '2015-12-11 16:11:47', 'first' => 'I', 'nametotal' => 'Inositol**1', 'AnalytesCitation' => array( [maximum depth reached] ) ), (int) 16 => array( 'id' => '01134', 'name' => 'Guanosine', 'iupac_name' => '2-amino-9-[(2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-3H-purin-6-one', 'casrn' => '118-00-3', 'synonyms' => 'guanosine, guanine riboside, 118-00-3, vernine, Guanozin, Inosine, 2-amino-, USAF CB-11, Vernine (VAN), 9-β-D-Ribofuranosylguanine, Guanosin, β-D-Ribofuranoside, guanine-9, Guanine, 9-β-D-ribofuranosyl-, Ribofuranoside, guanine-9, β-D-, Inosine, 2-amino- (VAN), 2(3H)-Imino-9-β-D-ribofuranosyl-9H-purin-6(1H)-one, GUANINE-9:BETA-D-RIBOFURANOSIDE, 2-Amino-1,9-dihydro-9-β-D-ribofuranosyl-6H-purin-6-one, Guo, CHEBI:16750, AI3-52065, 2-Amino-9-((2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-1H-purin-6(9H)-one, NSC 19994, L-GUANOSINE, Guanine-9-β-D-ribofuranoside, ST057098, Guanine, 9-β-D-ribofuranosyl- (VAN), 9-β-D-ribofuranosyl-guanine, UNII-12133JR80S, NYHBQMYGNKIUIF-UUOKFMHZSA-N, EINECS 204-227-8, GR, 6H-Purin-6-one, 2-amino-1,9-dihydro-9-β-D-ribofuranosyl-, DL-Guanosine, 2-amino-9-β-D-ribofuranosyl-1,9-dihydro-6H-purin-6-one, 9-(β-D-Ribofuranosyl)guanine, 26578-09-6, 9-β-D-ribofuranosylguanine, Ribonucleoside, Guanine, 9β-d-ribofuranosyl-, β-D-Ribofuranoside, guanine-9, 2-amino-Inosine, 1odj, 2fqx, 9-[(4S,2R,3R,5R)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-2-aminohydropurin -6-one, [3H]-guanosine, Inosine, 2-amino, PubChem9300, AC1Q1IDF, bmse000091, bmse001018, Epitope ID:141493, AC1L1NC7, AC1Q52ZQ, 9-b-D-ribofuranosyl-Guanine, SCHEMBL21217, 2(3H)-Imino-9-β-D-ribofuranosyl-9H-purin-6(1H)-one, b-D-Ribofuranoside guanine-9, KSC175I9F, 9-β-D-ribofuranosyl guanine, CHEMBL375655, GTPL4567, SGCUT00093, SCHEMBL12212184, CTK0H5492, HMDB00133, MolPort-001-792-491, MolPort-002-507-342, 9-B-D-RIBOFURANOSYLGUANINE, 9-β-δ-ribofuranosyl-Guanine, BB_NC-1240, Guanine-9-β-D-ribofuranoside, 2-AMINO-9-[(2R,3R,4S,5R)-3,4-DIHYDROXY-5-(HYDROXYMETHYL)OXOLAN-2-YL]-6,9-DIHYDRO-1H-PURIN-6-ONE, β-δ-Ribofuranoside guanine-9, STR04471, to_000053, ANW-17077, AR-1J1430, BBL033925, BDBM50366814, SBB003009, STK801927, ZINC01550030, AKOS005622500, AKOS007930368, AKOS015896931, 12133JR80S, AM83933, MCULE-2959607047, Ribofuranoside, guanine-9, β-D-, NCGC00142496-01, AJ-26890, AK-54659, AN-22779, CJ-05293, I890, LS-73951, SC-00504, AB0013923, DB-029875, TL8000496, G0171, C00387, M-6019, 2-Amino-9-β-D-ribofuranosyl-9H-purine-6-1H-one, 2-Amino-1,9-dihydro-9-b-D-ribofuranosyl-6H-purin-6-one, 2-Amino-9-β-D-ribofuranosyl-9-H-purine-6(1H)-one, 2-Amino-1,9-dihydro-9β-d-ribofuranosyl-6H-purin-6-one, 6H-Purin-6-one, 2-amino-1,9-dihydro-9-β-D-ribofuranosyl, 2-Amino-1,9-dihydro-9-β-δ-ribofuranosyl-6H-purin-6-one, 6H-Purin-6-one, 2-amino-1,9-dihydro-9-β-D-ribofuranosyl-, 2-amino-9-[(2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-3H-purin-6-one, 2-amino-9-[(2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl]-1H-purin-6-one, 2-amino-9-[(2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl]-3H-purin-6-one, 484-80-0, 685891-87-6, 9-((2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-2-imino-2,3-dihydro-1H-purin-6(9H)-one', 'total' => '2', 'inchi' => 'InChI=1S/C10H13N5O5/c11-10-13-7-4(8(19)14-10)12-2-15(7)9-6(18)5(17)3(1-16)20-9/h2-3,5-6,9,16-18H,1H2,(H3,11,13,14,19)/t3-,5-,6-,9-/m1/s1', 'inchikey' => 'NYHBQMYGNKIUIF-UUOKFMHZSA-N', 'formula' => 'C10H13N5O5', 'oxstate' => 'Zero', 'url' => '', 'charge' => '0', 'class1' => '', 'class2' => '', 'class3' => '', 'class4' => '', 'class5' => '', 'isgroup' => 'no', 'checked' => 'no', 'citation_count' => '0', 'updated' => '2015-12-11 16:36:07', 'first' => 'G', 'nametotal' => 'Guanosine**2', 'AnalytesCitation' => array( [maximum depth reached] ) ), (int) 17 => array( 'id' => '02425', 'name' => 'Triolein', 'iupac_name' => '2,3-bis[[(Z)-octadec-9-enoyl]oxy]propyl (Z)-octadec-9-enoate', 'casrn' => '122-32-7', 'synonyms' => 'Glycerol trioleate; 9-Octadecenoic acid (Z)-, 1,2,3-propanetriyl ester; 9-Octadecenoic acid 1,2,3-propanetriyl ester; Emerest 2423; Glyceryl trioleate; Kemester 1000; Olein; Priolube 1435; Radia 7363; Triolein glyceryl trioleate; 2,3-Bis[(9E)-9-octadecenoyloxy]propyl (9E)-9-octadecenoate', 'total' => '2', 'inchi' => 'InChI=1S/C57H104O6/c1-4-7-10-13-16-19-22-25-28-31-34-37-40-43-46-49-55(58)61-52-54(63-57(60)51-48-45-42-39-36-33-30-27-24-21-18-15-12-9-6-3)53-62-56(59)50-47-44-41-38-35-32-29-26-23-20-17-14-11-8-5-2/h25-30,54H,4-24,31-53H2,1-3H3/b28-25-,29-26-,30-27-', 'inchikey' => 'PHYFQTYBJUILEZ-IUPFWZBJSA-N', 'formula' => 'C57H104O6', 'oxstate' => 'Zero', 'url' => '', 'charge' => '0', 'class1' => 'Organic compound', 'class2' => 'NA', 'class3' => 'NA', 'class4' => 'Molecule', 'class5' => '', 'isgroup' => '', 'checked' => 'yes', 'citation_count' => '0', 'updated' => '2015-10-23 21:39:04', 'first' => 'T', 'nametotal' => 'Triolein**2', 'AnalytesCitation' => array( [maximum depth reached] ) ), (int) 18 => array( 'id' => '02624', 'name' => 'Guanosine diphosphate', 'iupac_name' => '[(2R,3S,4R,5R)-5-(2-amino-6-oxo-3H-purin-9-yl)-3,4-dihydroxyoxolan-2-yl]methyl phosphono hydrogen phosphate', 'casrn' => '146-91-8', 'synonyms' => 'Guanosine 5'-diphosphate, GUANOSINE DIPHOSPHATE, Guanosine 5'-(trihydrogen diphosphate), Guanosine pyrophosphate, GDP, GRPP, guanosine-5'-diphosphate, 146-91-8, CHEBI:17552, Guanosine 5'-pyrophosphate, 5'-GDP, CHEMBL384759, guanosine-5'-(trihydrogendiphosphate), guanosine-diphosphate, GDP-8-3H, 1dar, [(2R,3S,4R,5R)-5-(2-amino-6-oxo-3H-purin-9-yl)-3,4-dihydroxyoxolan-2-yl]methyl phosphono hydrogen phosphate, Guanosine-8-t 5'-(trihydrogen diphosphate) (9CI), 1fzq, 1ryf, 1tpz, 1vjj, 1d2e, 1i4d, 1r5n, 1tq4, 1u2r, 1vg1, [α-32P] GDP, [α-32P]-GDP, bmse000270, Epitope ID:158624, SCHEMBL37405, [3H]-GDP, AC1L1S21, AC1Q6S12, GTPL2410, BDBM92459, CTK0H7750, HMDB01201, 2g83, QGWNDRXFNXRZMB-UUOKFMHZSA-N, ACT03294, Guanosine pyrophosphate (6CI,7CI), AR-1J1439, Guanosine mono(trihydrogen diphosphate), Guanosine 5'-(trihydrogen pyrophosphate), NCGC00163328-01, AJ-57363, AN-43977, DB-007540, FT-0601270, C00035, Guanosine 5'-(trihydrogen diphosphate) (9CI), Guanosine 5'-(trihydrogen pyrophosphate) (8CI), Guanosine, mono(trihydrogen diphosphate) (ester), Guanosine 5'-(trihydrogen diphosphate-P-32P) (9CI), 6ED53C34-D136-4635-9569-18E4E3D5B866, [(2R,3S,4R,5R)-5-(2-amino-6-oxo-1H-purin-9-yl)-3,4-dihydroxy-tetrahydrofuran-2-yl]methyl phosphono hydrogen phosphate, [(2R,3S,4R,5R)-5-(2-amino-6-oxo-3H-purin-9-yl)-3,4-dihydroxy-tetrahydrofuran-2-yl]methyl phosphono hydrogen phosphate, [[(2S,3S,4R,5R)-5-(2-amino-6-oxo-3H-purin-9-yl)-3,4-dihydroxy-oxolan-2-yl]methoxy-hydroxy-phosphoryl]oxyphosphonic acid, [[(2S,3S,4R,5R)-5-(2-amino-6-oxo-3H-purin-9-yl)-3,4-dihydroxy-tetrahydrofuran-2-yl]methoxy-hydroxy-phosphoryl]oxyphosphonic acid, 6H-Purin-6-one, 2-amino-1,9-dihydro-9-[5-O-[hydroxy(phosphonooxy)phosphinyl]-β-D-ribofuranosyl]-', 'total' => '0', 'inchi' => 'InChI=1S/C10H15N5O11P2/c11-10-13-7-4(8(18)14-10)12-2-15(7)9-6(17)5(16)3(25-9)1-24-28(22,23)26-27(19,20)21/h2-3,5-6,9,16-17H,1H2,(H,22,23)(H2,19,20,21)(H3,11,13,14,18)/t3-,5-,6-,9-/m1/s1', 'inchikey' => 'QGWNDRXFNXRZMB-UUOKFMHZSA-N', 'formula' => 'C10H15N5O11P2', 'oxstate' => 'Zero', 'url' => '', 'charge' => '0', 'class1' => 'NA', 'class2' => 'NA', 'class3' => 'NA', 'class4' => 'NA', 'class5' => 'NA', 'isgroup' => 'no', 'checked' => 'no', 'citation_count' => '0', 'updated' => '2015-12-11 16:21:31', 'first' => 'G', 'nametotal' => 'Guanosine diphosphate**0', 'AnalytesCitation' => array( [maximum depth reached] ) ), (int) 19 => array( 'id' => '01034', 'name' => 'Gentamicin', 'iupac_name' => '2-[4,6-diamino-3-[3-amino-6-[1-(methylamino)ethyl]oxan-2-yl]oxy-2-hydroxycyclohexyl]oxy-5-methyl-4-(methylamino)oxane-3,5-diol', 'casrn' => '1403-66-3', 'synonyms' => 'Garamycin, gentamicin, Gentacycol, Gentamycinum, Cidomycin, Gentamicins, Gentavet, Refobacin, Uromycine, Garasol, Gentamicina, Gentamicine, Gentamicinum, Alcomicin, Bristagen, Gentacidin, Gentafair, Gentamar, Gentocin, Jenamicin, Gentak, Spectro-Genta, Gentamycin-creme, Refobacin TM, G-Myticin, Ocu-Mycin, U-Gencin, G-Mycin, Apogen, Gentamycin-creme [German], Gentamcin Sulfate, Gentamicin sulphate sterile, Gentamicine [INN-French], Gentamicinum [INN-Latin], Genoptic Liquifilm, Gentamicina [INN-Spanish], Gentamicin (TN), Gentamicin (BAN), Genoptic S.O.P., 1403-66-3, Gentamicin C1, HSDB 3087, Garamycin Otic Solution, EINECS 215-765-8, UNII-T6Z9V48IKG, AC1Q57VC, AC1L1G02, C21H43N5O7, Genoptic, AR-1F8593, 4,6-diamino-3-{[3-deoxy-4-c-methyl-3-(methylamino)pentopyranosyl]oxy}-2-hydroxycyclohexyl 2-amino-2,3,4,6,7-pentadeoxy-6-(methylamino)heptopyranoside, DB00798, AC-13386, LS-71146, D08013, 2-[4,6-diamino-3-[3-amino-6-[1-(methylamino)ethyl]oxan-2-yl]oxy-2-hydroxycyclohexyl]oxy-5-methyl-4-(methylamino)oxane-3,5-diol, AC1L9AXS, CHEMBL195892, CID3467, nchembio.274-comp5, Gentamicin antibiotic complex, SCHEMBL537630, CHEMBL329592, GTPL2427, CEAZRRDELHUEMR-UHFFFAOYSA-N, MolPort-005-934-296, (1R,2S,3S,4R,6S)-4,6-diamino-3-[3-deoxy-4-C-methyl-3-(methylamino)-β-L-arabinopyranosyloxy]-2-hydroxycyclohexyl 2-amino-2,3,4,6,7-pentadeoxy-6-(methylamino)-β-L-lyxo-heptopyranoside, (1R,2S,3S,4R,6S)-4,6-diamino-3-{[3-deoxy-4-C-methyl-3-(methylamino)-β-L-arabinopyranosyl]oxy}-2-hydroxycyclohexyl (6x)-2-amino-2,3,4,6,7-pentadeoxy-6-(methylamino)-α-D-erythro-heptopyranoside, (2R,3R,4R,5R)-2-[(1S,2S,3R,4S,6R)-4,6-diamino-3-[(2R,3R,6S)-3-amino-6-[1-(methylamino)ethyl]oxan-2-yl]oxy-2-hydroxycyclohexyl]oxy-5-methyl-4-(methylamino)oxane-3,5-diol, 25876-10-2, O-2-amino-2,3,4,6,7-pentadeoxy-6-(methylamino)-α-D-ribo-heptopyranosyl-(1-4)-O-(3-deoxy-4-C-methyl-3-(methylamino)-β-L-arabinopyranosyl-(1-6))-2-deoxy-D-streptamine, CID441305, DAP000116, AKOS015961211, AN-49150, BC657258, 123871-EP2292088A1, 123871-EP2295422A2, 123871-EP2295439A1, Gentamicin complex consisting of factors gentamicin C1 and C2, 2-[4,6-diamino-3-[3-amino-6-(1-methylaminoethyl)oxan-2-yl]oxy-2-hydroxycyclohexyl]oxy-5-methyl-4-methylaminooxane-3,5-diol, 2-[4,6-diamino-3-[3-amino-6-[1-(methylamino)ethyl]tetrahydropyran-2-yl]oxy-2-hydroxy-cyclohexoxy]-5-methyl-4-(methylamino)tetrahydropyran-3,5-diol', 'total' => '4', 'inchi' => 'InChI=1S/C21H43N5O7/c1-9(25-3)13-6-5-10(22)19(31-13)32-16-11(23)7-12(24)17(14(16)27)33-20-15(28)18(26-4)21(2,29)8-30-20/h9-20,25-29H,5-8,22-24H2,1-4H3', 'inchikey' => 'CEAZRRDELHUEMR-UHFFFAOYSA-N', 'formula' => 'C21H43N5O7', 'oxstate' => 'Zero', 'url' => '', 'charge' => '0', 'class1' => '', 'class2' => '', 'class3' => '', 'class4' => '', 'class5' => '', 'isgroup' => 'no', 'checked' => 'no', 'citation_count' => '0', 'updated' => '2015-12-11 16:21:31', 'first' => 'G', 'nametotal' => 'Gentamicin**4', 'AnalytesCitation' => array( [maximum depth reached] ) ), (int) 20 => array( 'id' => '01266', 'name' => 'Inositol phosphate', 'iupac_name' => '[(2S,3R,5R,6R)-2,3,4,5,6-pentahydroxycyclohexyl] dihydrogen phosphate', 'casrn' => '46495-39-0', 'synonyms' => 'Ins6P, (2r,3r,5r,6s)-2,3,4,5,6-pentahydroxycyclohexyl dihydrogen phosphate, Ins(6)P, 46495-39-0, ((2R,3R,5R,6S)-2,3,4,5,6-pentahydroxycyclohexyl) dihydrogen phosphate, [(2R,3R,5R,6S)-2,3,4,5,6-pentahydroxycyclohexyl] dihydrogen phosphate, inositol phosphate, Myoinositol 4-phosphate, Inositol 4-monophosphate, AC1L4PAS, AC1Q6RWK, D-myo-inositol (6)-phosphate, SCHEMBL2508779, SCHEMBL3675513, CHEBI:64838, CTK4I9413, HMDB02985, D-myo-inositol (6)-monophosphate, KST-1A5740, KST-1A5741, AR-1A2904, AR-1A2905, myo-Inositol,4-(dihydrogen phosphate), 1D-myo-inositol 6-(dihydrogen phosphate), DL-myo-Inositol, 4-(dihydrogen phosphate), [ -2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphonicacid, (1R,2R,3R,4R,5R,6S)-2,3,4,5,6-pentahydroxycyclohexyl dihydrogen phosphate, 21667-10-7', 'total' => '2', 'inchi' => 'InChI=1S/C6H13O9P/c7-1-2(8)4(10)6(5(11)3(1)9)15-16(12,13)14/h1-11H,(H2,12,13,14)/t1-,2-,3-,4+,5-,6-/m1/s1', 'inchikey' => 'INAPMGSXUVUWAF-WWHKVMGRSA-N', 'formula' => 'C6H13O9P', 'oxstate' => 'Zero', 'url' => '', 'charge' => '0', 'class1' => '', 'class2' => '', 'class3' => '', 'class4' => '', 'class5' => '', 'isgroup' => 'no', 'checked' => 'no', 'citation_count' => '0', 'updated' => '2015-10-23 10:00:35', 'first' => 'I', 'nametotal' => 'Inositol phosphate**2', 'AnalytesCitation' => array( [maximum depth reached] ) ) ), 'Matrix' => array(), 'Keyword' => array( (int) 0 => array( 'id' => '0110', 'type' => 'Manifold component', 'keyword' => 'Detector', 'newKeyword' => '', 'synonyms' => '', 'fao' => '', 'total' => '354', 'first' => 'D', 'keytotal' => 'Detector**354', 'CitationsKeyword' => array( [maximum depth reached] ) ) ) ) $i = (int) 1 $path = '' $a = '' $url = 'http://dx.doi.org/10.1007/978-1-4899-3704-9_29' $aus = 'Terrence P. Tougas, Edwin G. E. Jahngen, Michael Swartz 'include - APP/View/Elements/citation.ctp, line 40 View::_evaluate() - CORE/Cake/View/View.php, line 971 View::_render() - CORE/Cake/View/View.php, line 933 View::_renderElement() - CORE/Cake/View/View.php, line 1224 View::element() - CORE/Cake/View/View.php, line 418 include - APP/View/Techniques/view.ctp, line 52 View::_evaluate() - CORE/Cake/View/View.php, line 971 View::_render() - CORE/Cake/View/View.php, line 933 View::render() - CORE/Cake/View/View.php, line 473 Controller::render() - CORE/Cake/Controller/Controller.php, line 968 Dispatcher::_invoke() - CORE/Cake/Routing/Dispatcher.php, line 200 Dispatcher::dispatch() - CORE/Cake/Routing/Dispatcher.php, line 167 [main] - APP/webroot/index.php, line 109
"Optimization Of Response Of The Silver Oxide Electrode For The Detection Of Carbohydrates And Related Compounds"
Electroanalysis
1998 Volume 10, Issue 12 Pages 836-841
Notice (8): Undefined variable: uid [APP/View/Elements/citation.ctp, line 40]James M. DeMott Jr., Terrence P. Tougas, Edwin G. E. JahngenCode Context?>
<?php
if($uid!='') {
$viewFile = '/home/stuchalk/public_html/fad/app/View/Elements/citation.ctp' $dataForView = array( 'data' => array( 'Technique' => array( 'id' => '0212', 'label' => 'Electrode', 'level1' => 'Electrode', 'level2' => 'silver oxide', 'level3' => '', 'level4' => '', 'level5' => '', 'synonyms' => '', 'champ' => '', 'total' => '4', 'updated' => '0000-00-00 00:00:00', 'name' => 'Electrode, silver oxide', 'nametotal' => 'Electrode, silver oxide**4', 'first' => 'E' ), 'Citation' => array( (int) 0 => array( [maximum depth reached] ), (int) 1 => array( [maximum depth reached] ), (int) 2 => array( [maximum depth reached] ), (int) 3 => array( [maximum depth reached] ) ) ), 'c' => array( 'id' => '016474', 'authors' => 'DeMott Jr., J.M.;Tougas, T.P.;Jahngen, E.G.E.', 'authorsweb' => 'James M. DeMott Jr., Terrence P. Tougas, Edwin G. E. Jahngen', 'title' => 'Optimization of Response of the Silver Oxide Electrode for the Detection of Carbohydrates and Related Compounds', 'journal' => 'Electroanalysis', 'journal_id' => '1003', 'fadid' => 'ELAN1998V0010P00836', 'year' => '1998', 'volume' => '10', 'issue' => '12', 'startpage' => '836', 'endpage' => '841', 'type' => 'Journal Article', 'analytes' => ';1057;', 'matrices' => 'NA', 'techniques' => ';0212;', 'keywords' => ';0110;', 'abstract' => 'The response of the silver oxide electrode to carbohydrates, polyhydroxy compounds and amines is dependent on several factors. These include the number of oxidizable groups on the substrate and the way in which the electrode surface is prepared, including the potential program, the thickness of the oxide layer, the surface area and the presence of other species in the solution during electrode conditioning. Studies of these factors led to a pulsed potential program for the conditioning and maintenance of electrode stability, with the incorporation of phosphate during the initial conditioning process. This method led to a response to 10^-4 M glucose, which was reproducible for at least forty repeated injections and stable for at least four hours with a relative standard deviation of 5.2 %. This response was also reproducible on successive days when the electrode was prepared in the same manner.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '2007-07-10 10:39:54', 'hits' => '8', 'urlcheck' => '2014-10-11 14:12:39', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => null, 'pauthor' => 'DeMott, J.M.', 'address' => 'Division of Arts and Sciences, Massachusetts College of Pharmacy and Allied Health Sciences, 179 Longwood Avenue, Boston, Massachusetts 02115, USA', 'email' => 'NA', 'notes' => null, 'url' => '10.1002/(SICI)1521-4109(199809)10:12<836::AID-ELAN836>3.0.CO;2-G', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Optimization of Response of the Silver Oxide Electrode for the Detection of Carbohydrates and Related Compounds', Electroanalysis, 1998 10(12) 836-841', 'firstchar' => 'O', 'twochars' => 'Op', 'CitationsTechnique' => array( 'id' => '015886', 'citation_id' => '016474', 'technique_id' => '0212' ), 'Analyte' => array( (int) 0 => array( [maximum depth reached] ) ), 'Matrix' => array(), 'Keyword' => array( (int) 0 => array( [maximum depth reached] ) ) ), 'i' => (int) 2 ) $data = array( 'Technique' => array( 'id' => '0212', 'label' => 'Electrode', 'level1' => 'Electrode', 'level2' => 'silver oxide', 'level3' => '', 'level4' => '', 'level5' => '', 'synonyms' => '', 'champ' => '', 'total' => '4', 'updated' => '0000-00-00 00:00:00', 'name' => 'Electrode, silver oxide', 'nametotal' => 'Electrode, silver oxide**4', 'first' => 'E' ), 'Citation' => array( (int) 0 => array( 'id' => '009870', 'authors' => 'Tougas, T.P.;De Benedetto, M.J.;Demott, J.M.', 'authorsweb' => 'Terrence P. Tougas, Mark J. Debenedetto, James M. Demott Jr.', 'title' => 'Postchromatographic electrochemical detection of carbohydrates at a silver oxide electrode', 'journal' => 'Electroanalysis', 'journal_id' => '1003', 'fadid' => 'ELAN1993V0005P00669', 'year' => '1993', 'volume' => '5', 'issue' => '8', 'startpage' => '669', 'endpage' => '675', 'type' => 'Journal Article', 'analytes' => ';0508;1057;2102;1020;2519;', 'matrices' => '', 'techniques' => ';0212;0054;0038;', 'keywords' => ';0339;', 'abstract' => 'An oxide surface was formed on a 2-mm Ag-wire electrode by conditioning in 0.1 M NaOH at +0.7 V for 30 min and then at 0.45 V vs. the SCE. The properties of the electrode were studied and it was applied to the electrochemical detection of simple sugars separated by HPLC on a Waters carbohydrate analysis column (30 cm x 3.9 mm) with mobile phase (1 ml/min) of acetonitrile/phosphate buffer of pH 8 (36:11) and by FIA. Calibration graphs were rectilinear for 1-100 µM-galactose, glucose, ribose and xylose.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '2007-07-10 10:39:47', 'hits' => '8', 'urlcheck' => '2014-10-11 14:09:28', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => null, 'pauthor' => 'DeMott, J.M.', 'address' => 'Department of Chemistry and Physics, Massachusetts College of Pharmacy and Allied Health Sciences, 179 Longwood Avenue, Boston, MA 02115, USA', 'email' => 'NA', 'notes' => null, 'url' => '10.1002/elan.1140050808', 'urltype' => 'doi', 'gotpdf' => 'no', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Postchromatographic electrochemical detection of carbohydrates at a silver oxide electrode', Electroanalysis, 1993 5(8) 669-675', 'firstchar' => 'P', 'twochars' => 'Po', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 1 => array( 'id' => '012147', 'authors' => 'Tougas, T.P.;Jahngen, G.E.;Swartz, M.', 'authorsweb' => 'Terrence P. Tougas, Edwin G. E. Jahngen, Michael Swartz ', 'title' => 'Flow stream detectors based on electrocatalytic oxidation of polyhydroxy compounds at silver oxide electrodes', 'journal' => 'Contemp. Electroanal. Chem.', 'journal_id' => '1139', 'fadid' => 'CTEA1990V0001P00275', 'year' => '1990', 'volume' => '1', 'issue' => '1', 'startpage' => '275', 'endpage' => '296', 'type' => 'Journal Article', 'analytes' => ';2102;1057;0071;1103;1002;2215;0066;0068;2519;2620;1020;0069;2621;2622;2623;2625;1134;2425;2624;1034;1266;', 'matrices' => 'NA', 'techniques' => ';0212;0001;', 'keywords' => ';0110;', 'abstract' => 'Many simple carbohydrates and other polyhydroxy compounds can be oxidized at a silver oxide surface. The oxidation is via an electrocatalytic mechanism involving a Ag(I) oxide. This forms the basis of a flow stream detector operated in an amperometric mode which may be used for either flow injection or high performance liquid chromatography (HPLC) applications. The title electrode has been applied to the detection of simple carbohydrates, triglycerides and nucleic acid components.', 'language' => 'English', 'updated' => '2020-12-28 11:11:09', 'sjccheck' => 'No', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '6', 'urlcheck' => '2014-10-24 19:39:00', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => null, 'pauthor' => 'Tougas, T.P.', 'address' => 'Department of Chemistry, University of Lowell, Lowell, Massachusetts, 01854, USA', 'email' => 'NA', 'notes' => 'Book chapter', 'url' => '10.1007/978-1-4899-3704-9_29', 'urltype' => 'doi', 'gotpdf' => 'no', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Flow stream detectors based on electrocatalytic oxidation of polyhydroxy compounds at silver oxide electrodes', Contemp. Electroanal. Chem., 1990 1(1) 275-296', 'firstchar' => 'F', 'twochars' => 'Fl', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 2 => array( 'id' => '016474', 'authors' => 'DeMott Jr., J.M.;Tougas, T.P.;Jahngen, E.G.E.', 'authorsweb' => 'James M. DeMott Jr., Terrence P. Tougas, Edwin G. E. Jahngen', 'title' => 'Optimization of Response of the Silver Oxide Electrode for the Detection of Carbohydrates and Related Compounds', 'journal' => 'Electroanalysis', 'journal_id' => '1003', 'fadid' => 'ELAN1998V0010P00836', 'year' => '1998', 'volume' => '10', 'issue' => '12', 'startpage' => '836', 'endpage' => '841', 'type' => 'Journal Article', 'analytes' => ';1057;', 'matrices' => 'NA', 'techniques' => ';0212;', 'keywords' => ';0110;', 'abstract' => 'The response of the silver oxide electrode to carbohydrates, polyhydroxy compounds and amines is dependent on several factors. These include the number of oxidizable groups on the substrate and the way in which the electrode surface is prepared, including the potential program, the thickness of the oxide layer, the surface area and the presence of other species in the solution during electrode conditioning. Studies of these factors led to a pulsed potential program for the conditioning and maintenance of electrode stability, with the incorporation of phosphate during the initial conditioning process. This method led to a response to 10^-4 M glucose, which was reproducible for at least forty repeated injections and stable for at least four hours with a relative standard deviation of 5.2 %. This response was also reproducible on successive days when the electrode was prepared in the same manner.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '2007-07-10 10:39:54', 'hits' => '8', 'urlcheck' => '2014-10-11 14:12:39', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => null, 'pauthor' => 'DeMott, J.M.', 'address' => 'Division of Arts and Sciences, Massachusetts College of Pharmacy and Allied Health Sciences, 179 Longwood Avenue, Boston, Massachusetts 02115, USA', 'email' => 'NA', 'notes' => null, 'url' => '10.1002/(SICI)1521-4109(199809)10:12<836::AID-ELAN836>3.0.CO;2-G', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Optimization of Response of the Silver Oxide Electrode for the Detection of Carbohydrates and Related Compounds', Electroanalysis, 1998 10(12) 836-841', 'firstchar' => 'O', 'twochars' => 'Op', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 3 => array( 'id' => '016475', 'authors' => 'DeMott Jr., J.M.;Jahngen, E.G.E.', 'authorsweb' => 'James M. DeMott Jr., Edwin G. E. Jahngen', 'title' => 'Determination of Amino Acids at a Silver Oxide/Silver Phosphate Electrode and the Analysis of Structure-Response Relationships', 'journal' => 'Electroanalysis', 'journal_id' => '1003', 'fadid' => 'ELAN2005V0017P00599', 'year' => '2005', 'volume' => '17', 'issue' => '7', 'startpage' => '599', 'endpage' => '606', 'type' => 'Journal Article', 'analytes' => ';0160;', 'matrices' => 'NA', 'techniques' => ';0212;', 'keywords' => ';0110;', 'abstract' => 'When a silver electrode is conditioned in a solution of 0.5 M sodium hydroxide with added sodium phosphate and using a dual pulse (500 mV/750 mV vs. Ag/AgCl), a stable silver(I)/silver(II) oxide surface is formed. It has been previously shown that various moieties react with the silver(II) oxide in a chemical oxidation at the outer surface of the oxide layer. This is then followed by re-oxidation of the silver with the generation of current at approximately 500 mV relative to the silver/silver chloride electrode. Previously we found the need to remove carbon dioxide from the base and condition the electrode in a solution containing phosphate ion in order to provide mechanical stability to the oxide layer. We have previously shown this electrode to be applicable to the detection of a variety of carbohydrates. The applicability of the silver oxide/silver phosphate electrode to the post-chromatographic amperometric detection of amino acids was investigated. Calibration studies of amino acids representative of the various classes demonstrated good sensitivity and linearity in the 1-100 M range. Responses of amino acids were measured using glucose as an external standard, in order to correct for variability of the oxide layer. Relative responses of the amino acids ranged from 3 down to 0.1. Correlation with structure suggested the importance of absorption in determining the rate of oxidation. Comparison of arginine with n-benzoyl-L-arginine ethyl ester indicated that side chains as well as the backbone amino group can be oxidized. A Levitch plot of alanine was shown to be linear from approximately 30 to 300 radians per second spin rate at a scan rate of 50 mV per second. Application to post-chromatographic detection was demonstrated.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '2006-07-18 21:19:50', 'hits' => '11', 'urlcheck' => '2014-10-11 14:15:55', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => null, 'pauthor' => 'Jahngen, E.G.E.', 'address' => 'Department of Chemistry, University of Massachusetts-Lowell, 1 University Avenue, Lowell, Massachusetts 01854, USA', 'email' => 'Edwin_Jahngen@unl.edu', 'notes' => null, 'url' => '10.1002/elan.200303128', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Determination of Amino Acids at a Silver Oxide/Silver Phosphate Electrode and the Analysis of Structure-Response Relationships', Electroanalysis, 2005 17(7) 599-606', 'firstchar' => 'D', 'twochars' => 'De', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ) ) ) $c = array( 'id' => '016474', 'authors' => 'DeMott Jr., J.M.;Tougas, T.P.;Jahngen, E.G.E.', 'authorsweb' => 'James M. DeMott Jr., Terrence P. Tougas, Edwin G. E. Jahngen', 'title' => 'Optimization of Response of the Silver Oxide Electrode for the Detection of Carbohydrates and Related Compounds', 'journal' => 'Electroanalysis', 'journal_id' => '1003', 'fadid' => 'ELAN1998V0010P00836', 'year' => '1998', 'volume' => '10', 'issue' => '12', 'startpage' => '836', 'endpage' => '841', 'type' => 'Journal Article', 'analytes' => ';1057;', 'matrices' => 'NA', 'techniques' => ';0212;', 'keywords' => ';0110;', 'abstract' => 'The response of the silver oxide electrode to carbohydrates, polyhydroxy compounds and amines is dependent on several factors. These include the number of oxidizable groups on the substrate and the way in which the electrode surface is prepared, including the potential program, the thickness of the oxide layer, the surface area and the presence of other species in the solution during electrode conditioning. Studies of these factors led to a pulsed potential program for the conditioning and maintenance of electrode stability, with the incorporation of phosphate during the initial conditioning process. This method led to a response to 10^-4 M glucose, which was reproducible for at least forty repeated injections and stable for at least four hours with a relative standard deviation of 5.2 %. This response was also reproducible on successive days when the electrode was prepared in the same manner.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '2007-07-10 10:39:54', 'hits' => '8', 'urlcheck' => '2014-10-11 14:12:39', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => null, 'pauthor' => 'DeMott, J.M.', 'address' => 'Division of Arts and Sciences, Massachusetts College of Pharmacy and Allied Health Sciences, 179 Longwood Avenue, Boston, Massachusetts 02115, USA', 'email' => 'NA', 'notes' => null, 'url' => '10.1002/(SICI)1521-4109(199809)10:12<836::AID-ELAN836>3.0.CO;2-G', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Optimization of Response of the Silver Oxide Electrode for the Detection of Carbohydrates and Related Compounds', Electroanalysis, 1998 10(12) 836-841', 'firstchar' => 'O', 'twochars' => 'Op', 'CitationsTechnique' => array( 'id' => '015886', 'citation_id' => '016474', 'technique_id' => '0212' ), 'Analyte' => array( (int) 0 => array( 'id' => '01057', 'name' => 'Glucose', 'iupac_name' => '(3R,4S,5S,6R)-6-(hydroxymethyl)oxane-2,3,4,5-tetrol', 'casrn' => '50-99-7', 'synonyms' => 'Corn sugar; D(+)-Glucopyranose; D-Glucose; D-(+)-Glucose; Dextrose; Glu; Glucose; Grape sugar;', 'total' => '540', 'inchi' => 'InChI=1S/C6H12O6/c7-1-3(9)5(11)6(12)4(10)2-8/h1,3-6,8-12H,2H2/t3-,4+,5+,6+/m0/s1', 'inchikey' => 'WQZGKKKJIJFFOK-GASJEMHNSA-N', 'formula' => 'C6H12O6', 'oxstate' => 'Zero', 'url' => '', 'charge' => '0', 'class1' => 'Organic compound', 'class2' => 'NA', 'class3' => 'NA', 'class4' => 'Molecule', 'class5' => 'Sugars', 'isgroup' => '', 'checked' => 'yes', 'citation_count' => '0', 'updated' => '2015-10-23 09:58:51', 'first' => 'G', 'nametotal' => 'Glucose**540', 'AnalytesCitation' => array( [maximum depth reached] ) ) ), 'Matrix' => array(), 'Keyword' => array( (int) 0 => array( 'id' => '0110', 'type' => 'Manifold component', 'keyword' => 'Detector', 'newKeyword' => '', 'synonyms' => '', 'fao' => '', 'total' => '354', 'first' => 'D', 'keytotal' => 'Detector**354', 'CitationsKeyword' => array( [maximum depth reached] ) ) ) ) $i = (int) 2 $path = '' $a = '' $url = 'http://dx.doi.org/10.1002/(SICI)1521-4109(199809)10:12<836::AID-ELAN836>3.0.CO;2-G' $aus = 'James M. DeMott Jr., Terrence P. Tougas, Edwin G. E. Jahngen'include - APP/View/Elements/citation.ctp, line 40 View::_evaluate() - CORE/Cake/View/View.php, line 971 View::_render() - CORE/Cake/View/View.php, line 933 View::_renderElement() - CORE/Cake/View/View.php, line 1224 View::element() - CORE/Cake/View/View.php, line 418 include - APP/View/Techniques/view.ctp, line 52 View::_evaluate() - CORE/Cake/View/View.php, line 971 View::_render() - CORE/Cake/View/View.php, line 933 View::render() - CORE/Cake/View/View.php, line 473 Controller::render() - CORE/Cake/Controller/Controller.php, line 968 Dispatcher::_invoke() - CORE/Cake/Routing/Dispatcher.php, line 200 Dispatcher::dispatch() - CORE/Cake/Routing/Dispatcher.php, line 167 [main] - APP/webroot/index.php, line 109
"Determination Of Amino Acids At A Silver Oxide/Silver Phosphate Electrode And The Analysis Of Structure-Response Relationships"
Electroanalysis
2005 Volume 17, Issue 7 Pages 599-606
Notice (8): Undefined variable: uid [APP/View/Elements/citation.ctp, line 40]James M. DeMott Jr., Edwin G. E. JahngenCode Context?>
<?php
if($uid!='') {
$viewFile = '/home/stuchalk/public_html/fad/app/View/Elements/citation.ctp' $dataForView = array( 'data' => array( 'Technique' => array( 'id' => '0212', 'label' => 'Electrode', 'level1' => 'Electrode', 'level2' => 'silver oxide', 'level3' => '', 'level4' => '', 'level5' => '', 'synonyms' => '', 'champ' => '', 'total' => '4', 'updated' => '0000-00-00 00:00:00', 'name' => 'Electrode, silver oxide', 'nametotal' => 'Electrode, silver oxide**4', 'first' => 'E' ), 'Citation' => array( (int) 0 => array( [maximum depth reached] ), (int) 1 => array( [maximum depth reached] ), (int) 2 => array( [maximum depth reached] ), (int) 3 => array( [maximum depth reached] ) ) ), 'c' => array( 'id' => '016475', 'authors' => 'DeMott Jr., J.M.;Jahngen, E.G.E.', 'authorsweb' => 'James M. DeMott Jr., Edwin G. E. Jahngen', 'title' => 'Determination of Amino Acids at a Silver Oxide/Silver Phosphate Electrode and the Analysis of Structure-Response Relationships', 'journal' => 'Electroanalysis', 'journal_id' => '1003', 'fadid' => 'ELAN2005V0017P00599', 'year' => '2005', 'volume' => '17', 'issue' => '7', 'startpage' => '599', 'endpage' => '606', 'type' => 'Journal Article', 'analytes' => ';0160;', 'matrices' => 'NA', 'techniques' => ';0212;', 'keywords' => ';0110;', 'abstract' => 'When a silver electrode is conditioned in a solution of 0.5 M sodium hydroxide with added sodium phosphate and using a dual pulse (500 mV/750 mV vs. Ag/AgCl), a stable silver(I)/silver(II) oxide surface is formed. It has been previously shown that various moieties react with the silver(II) oxide in a chemical oxidation at the outer surface of the oxide layer. This is then followed by re-oxidation of the silver with the generation of current at approximately 500 mV relative to the silver/silver chloride electrode. Previously we found the need to remove carbon dioxide from the base and condition the electrode in a solution containing phosphate ion in order to provide mechanical stability to the oxide layer. We have previously shown this electrode to be applicable to the detection of a variety of carbohydrates. The applicability of the silver oxide/silver phosphate electrode to the post-chromatographic amperometric detection of amino acids was investigated. Calibration studies of amino acids representative of the various classes demonstrated good sensitivity and linearity in the 1-100 M range. Responses of amino acids were measured using glucose as an external standard, in order to correct for variability of the oxide layer. Relative responses of the amino acids ranged from 3 down to 0.1. Correlation with structure suggested the importance of absorption in determining the rate of oxidation. Comparison of arginine with n-benzoyl-L-arginine ethyl ester indicated that side chains as well as the backbone amino group can be oxidized. A Levitch plot of alanine was shown to be linear from approximately 30 to 300 radians per second spin rate at a scan rate of 50 mV per second. Application to post-chromatographic detection was demonstrated.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '2006-07-18 21:19:50', 'hits' => '11', 'urlcheck' => '2014-10-11 14:15:55', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => null, 'pauthor' => 'Jahngen, E.G.E.', 'address' => 'Department of Chemistry, University of Massachusetts-Lowell, 1 University Avenue, Lowell, Massachusetts 01854, USA', 'email' => 'Edwin_Jahngen@unl.edu', 'notes' => null, 'url' => '10.1002/elan.200303128', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Determination of Amino Acids at a Silver Oxide/Silver Phosphate Electrode and the Analysis of Structure-Response Relationships', Electroanalysis, 2005 17(7) 599-606', 'firstchar' => 'D', 'twochars' => 'De', 'CitationsTechnique' => array( 'id' => '015887', 'citation_id' => '016475', 'technique_id' => '0212' ), 'Analyte' => array( (int) 0 => array( [maximum depth reached] ) ), 'Matrix' => array(), 'Keyword' => array( (int) 0 => array( [maximum depth reached] ) ) ), 'i' => (int) 3 ) $data = array( 'Technique' => array( 'id' => '0212', 'label' => 'Electrode', 'level1' => 'Electrode', 'level2' => 'silver oxide', 'level3' => '', 'level4' => '', 'level5' => '', 'synonyms' => '', 'champ' => '', 'total' => '4', 'updated' => '0000-00-00 00:00:00', 'name' => 'Electrode, silver oxide', 'nametotal' => 'Electrode, silver oxide**4', 'first' => 'E' ), 'Citation' => array( (int) 0 => array( 'id' => '009870', 'authors' => 'Tougas, T.P.;De Benedetto, M.J.;Demott, J.M.', 'authorsweb' => 'Terrence P. Tougas, Mark J. Debenedetto, James M. Demott Jr.', 'title' => 'Postchromatographic electrochemical detection of carbohydrates at a silver oxide electrode', 'journal' => 'Electroanalysis', 'journal_id' => '1003', 'fadid' => 'ELAN1993V0005P00669', 'year' => '1993', 'volume' => '5', 'issue' => '8', 'startpage' => '669', 'endpage' => '675', 'type' => 'Journal Article', 'analytes' => ';0508;1057;2102;1020;2519;', 'matrices' => '', 'techniques' => ';0212;0054;0038;', 'keywords' => ';0339;', 'abstract' => 'An oxide surface was formed on a 2-mm Ag-wire electrode by conditioning in 0.1 M NaOH at +0.7 V for 30 min and then at 0.45 V vs. the SCE. The properties of the electrode were studied and it was applied to the electrochemical detection of simple sugars separated by HPLC on a Waters carbohydrate analysis column (30 cm x 3.9 mm) with mobile phase (1 ml/min) of acetonitrile/phosphate buffer of pH 8 (36:11) and by FIA. Calibration graphs were rectilinear for 1-100 µM-galactose, glucose, ribose and xylose.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '2007-07-10 10:39:47', 'hits' => '8', 'urlcheck' => '2014-10-11 14:09:28', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => null, 'pauthor' => 'DeMott, J.M.', 'address' => 'Department of Chemistry and Physics, Massachusetts College of Pharmacy and Allied Health Sciences, 179 Longwood Avenue, Boston, MA 02115, USA', 'email' => 'NA', 'notes' => null, 'url' => '10.1002/elan.1140050808', 'urltype' => 'doi', 'gotpdf' => 'no', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Postchromatographic electrochemical detection of carbohydrates at a silver oxide electrode', Electroanalysis, 1993 5(8) 669-675', 'firstchar' => 'P', 'twochars' => 'Po', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 1 => array( 'id' => '012147', 'authors' => 'Tougas, T.P.;Jahngen, G.E.;Swartz, M.', 'authorsweb' => 'Terrence P. Tougas, Edwin G. E. Jahngen, Michael Swartz ', 'title' => 'Flow stream detectors based on electrocatalytic oxidation of polyhydroxy compounds at silver oxide electrodes', 'journal' => 'Contemp. Electroanal. Chem.', 'journal_id' => '1139', 'fadid' => 'CTEA1990V0001P00275', 'year' => '1990', 'volume' => '1', 'issue' => '1', 'startpage' => '275', 'endpage' => '296', 'type' => 'Journal Article', 'analytes' => ';2102;1057;0071;1103;1002;2215;0066;0068;2519;2620;1020;0069;2621;2622;2623;2625;1134;2425;2624;1034;1266;', 'matrices' => 'NA', 'techniques' => ';0212;0001;', 'keywords' => ';0110;', 'abstract' => 'Many simple carbohydrates and other polyhydroxy compounds can be oxidized at a silver oxide surface. The oxidation is via an electrocatalytic mechanism involving a Ag(I) oxide. This forms the basis of a flow stream detector operated in an amperometric mode which may be used for either flow injection or high performance liquid chromatography (HPLC) applications. The title electrode has been applied to the detection of simple carbohydrates, triglycerides and nucleic acid components.', 'language' => 'English', 'updated' => '2020-12-28 11:11:09', 'sjccheck' => 'No', 'sjccheckdate' => '0000-00-00 00:00:00', 'hits' => '6', 'urlcheck' => '2014-10-24 19:39:00', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => null, 'pauthor' => 'Tougas, T.P.', 'address' => 'Department of Chemistry, University of Lowell, Lowell, Massachusetts, 01854, USA', 'email' => 'NA', 'notes' => 'Book chapter', 'url' => '10.1007/978-1-4899-3704-9_29', 'urltype' => 'doi', 'gotpdf' => 'no', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Flow stream detectors based on electrocatalytic oxidation of polyhydroxy compounds at silver oxide electrodes', Contemp. Electroanal. Chem., 1990 1(1) 275-296', 'firstchar' => 'F', 'twochars' => 'Fl', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 2 => array( 'id' => '016474', 'authors' => 'DeMott Jr., J.M.;Tougas, T.P.;Jahngen, E.G.E.', 'authorsweb' => 'James M. DeMott Jr., Terrence P. Tougas, Edwin G. E. Jahngen', 'title' => 'Optimization of Response of the Silver Oxide Electrode for the Detection of Carbohydrates and Related Compounds', 'journal' => 'Electroanalysis', 'journal_id' => '1003', 'fadid' => 'ELAN1998V0010P00836', 'year' => '1998', 'volume' => '10', 'issue' => '12', 'startpage' => '836', 'endpage' => '841', 'type' => 'Journal Article', 'analytes' => ';1057;', 'matrices' => 'NA', 'techniques' => ';0212;', 'keywords' => ';0110;', 'abstract' => 'The response of the silver oxide electrode to carbohydrates, polyhydroxy compounds and amines is dependent on several factors. These include the number of oxidizable groups on the substrate and the way in which the electrode surface is prepared, including the potential program, the thickness of the oxide layer, the surface area and the presence of other species in the solution during electrode conditioning. Studies of these factors led to a pulsed potential program for the conditioning and maintenance of electrode stability, with the incorporation of phosphate during the initial conditioning process. This method led to a response to 10^-4 M glucose, which was reproducible for at least forty repeated injections and stable for at least four hours with a relative standard deviation of 5.2 %. This response was also reproducible on successive days when the electrode was prepared in the same manner.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '2007-07-10 10:39:54', 'hits' => '8', 'urlcheck' => '2014-10-11 14:12:39', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => null, 'pauthor' => 'DeMott, J.M.', 'address' => 'Division of Arts and Sciences, Massachusetts College of Pharmacy and Allied Health Sciences, 179 Longwood Avenue, Boston, Massachusetts 02115, USA', 'email' => 'NA', 'notes' => null, 'url' => '10.1002/(SICI)1521-4109(199809)10:12<836::AID-ELAN836>3.0.CO;2-G', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Optimization of Response of the Silver Oxide Electrode for the Detection of Carbohydrates and Related Compounds', Electroanalysis, 1998 10(12) 836-841', 'firstchar' => 'O', 'twochars' => 'Op', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ), (int) 3 => array( 'id' => '016475', 'authors' => 'DeMott Jr., J.M.;Jahngen, E.G.E.', 'authorsweb' => 'James M. DeMott Jr., Edwin G. E. Jahngen', 'title' => 'Determination of Amino Acids at a Silver Oxide/Silver Phosphate Electrode and the Analysis of Structure-Response Relationships', 'journal' => 'Electroanalysis', 'journal_id' => '1003', 'fadid' => 'ELAN2005V0017P00599', 'year' => '2005', 'volume' => '17', 'issue' => '7', 'startpage' => '599', 'endpage' => '606', 'type' => 'Journal Article', 'analytes' => ';0160;', 'matrices' => 'NA', 'techniques' => ';0212;', 'keywords' => ';0110;', 'abstract' => 'When a silver electrode is conditioned in a solution of 0.5 M sodium hydroxide with added sodium phosphate and using a dual pulse (500 mV/750 mV vs. Ag/AgCl), a stable silver(I)/silver(II) oxide surface is formed. It has been previously shown that various moieties react with the silver(II) oxide in a chemical oxidation at the outer surface of the oxide layer. This is then followed by re-oxidation of the silver with the generation of current at approximately 500 mV relative to the silver/silver chloride electrode. Previously we found the need to remove carbon dioxide from the base and condition the electrode in a solution containing phosphate ion in order to provide mechanical stability to the oxide layer. We have previously shown this electrode to be applicable to the detection of a variety of carbohydrates. The applicability of the silver oxide/silver phosphate electrode to the post-chromatographic amperometric detection of amino acids was investigated. Calibration studies of amino acids representative of the various classes demonstrated good sensitivity and linearity in the 1-100 M range. Responses of amino acids were measured using glucose as an external standard, in order to correct for variability of the oxide layer. Relative responses of the amino acids ranged from 3 down to 0.1. Correlation with structure suggested the importance of absorption in determining the rate of oxidation. Comparison of arginine with n-benzoyl-L-arginine ethyl ester indicated that side chains as well as the backbone amino group can be oxidized. A Levitch plot of alanine was shown to be linear from approximately 30 to 300 radians per second spin rate at a scan rate of 50 mV per second. Application to post-chromatographic detection was demonstrated.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '2006-07-18 21:19:50', 'hits' => '11', 'urlcheck' => '2014-10-11 14:15:55', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => null, 'pauthor' => 'Jahngen, E.G.E.', 'address' => 'Department of Chemistry, University of Massachusetts-Lowell, 1 University Avenue, Lowell, Massachusetts 01854, USA', 'email' => 'Edwin_Jahngen@unl.edu', 'notes' => null, 'url' => '10.1002/elan.200303128', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Determination of Amino Acids at a Silver Oxide/Silver Phosphate Electrode and the Analysis of Structure-Response Relationships', Electroanalysis, 2005 17(7) 599-606', 'firstchar' => 'D', 'twochars' => 'De', 'CitationsTechnique' => array( [maximum depth reached] ), 'Analyte' => array( [maximum depth reached] ), 'Matrix' => array([maximum depth reached]), 'Keyword' => array( [maximum depth reached] ) ) ) ) $c = array( 'id' => '016475', 'authors' => 'DeMott Jr., J.M.;Jahngen, E.G.E.', 'authorsweb' => 'James M. DeMott Jr., Edwin G. E. Jahngen', 'title' => 'Determination of Amino Acids at a Silver Oxide/Silver Phosphate Electrode and the Analysis of Structure-Response Relationships', 'journal' => 'Electroanalysis', 'journal_id' => '1003', 'fadid' => 'ELAN2005V0017P00599', 'year' => '2005', 'volume' => '17', 'issue' => '7', 'startpage' => '599', 'endpage' => '606', 'type' => 'Journal Article', 'analytes' => ';0160;', 'matrices' => 'NA', 'techniques' => ';0212;', 'keywords' => ';0110;', 'abstract' => 'When a silver electrode is conditioned in a solution of 0.5 M sodium hydroxide with added sodium phosphate and using a dual pulse (500 mV/750 mV vs. Ag/AgCl), a stable silver(I)/silver(II) oxide surface is formed. It has been previously shown that various moieties react with the silver(II) oxide in a chemical oxidation at the outer surface of the oxide layer. This is then followed by re-oxidation of the silver with the generation of current at approximately 500 mV relative to the silver/silver chloride electrode. Previously we found the need to remove carbon dioxide from the base and condition the electrode in a solution containing phosphate ion in order to provide mechanical stability to the oxide layer. We have previously shown this electrode to be applicable to the detection of a variety of carbohydrates. The applicability of the silver oxide/silver phosphate electrode to the post-chromatographic amperometric detection of amino acids was investigated. Calibration studies of amino acids representative of the various classes demonstrated good sensitivity and linearity in the 1-100 M range. Responses of amino acids were measured using glucose as an external standard, in order to correct for variability of the oxide layer. Relative responses of the amino acids ranged from 3 down to 0.1. Correlation with structure suggested the importance of absorption in determining the rate of oxidation. Comparison of arginine with n-benzoyl-L-arginine ethyl ester indicated that side chains as well as the backbone amino group can be oxidized. A Levitch plot of alanine was shown to be linear from approximately 30 to 300 radians per second spin rate at a scan rate of 50 mV per second. Application to post-chromatographic detection was demonstrated.', 'language' => 'English', 'updated' => '2020-12-28 11:25:15', 'sjccheck' => 'Yes', 'sjccheckdate' => '2006-07-18 21:19:50', 'hits' => '11', 'urlcheck' => '2014-10-11 14:15:55', 'urlcheckcode' => 'HTTP/1.1 302 Found', 'pauthor_id' => null, 'pauthor' => 'Jahngen, E.G.E.', 'address' => 'Department of Chemistry, University of Massachusetts-Lowell, 1 University Avenue, Lowell, Massachusetts 01854, USA', 'email' => 'Edwin_Jahngen@unl.edu', 'notes' => null, 'url' => '10.1002/elan.200303128', 'urltype' => 'doi', 'gotpdf' => 'yes', 'partial' => 'no', 'notanalyte' => '', 'citation' => ''Determination of Amino Acids at a Silver Oxide/Silver Phosphate Electrode and the Analysis of Structure-Response Relationships', Electroanalysis, 2005 17(7) 599-606', 'firstchar' => 'D', 'twochars' => 'De', 'CitationsTechnique' => array( 'id' => '015887', 'citation_id' => '016475', 'technique_id' => '0212' ), 'Analyte' => array( (int) 0 => array( 'id' => '00160', 'name' => 'Amino Acids', 'iupac_name' => '', 'casrn' => 'NA', 'synonyms' => 'alanine; arginine; asparagine; aspartic acid; cysteine; glutamine; glutamic acid; glycine; histidine; isoleucine; leucine; lysine; methionine; phenylalanine; proline; serine; threonine; tryptophan; tyrosin; valine', 'total' => '124', 'inchi' => '', 'inchikey' => '', 'formula' => '', 'oxstate' => null, 'url' => '', 'charge' => null, 'class1' => 'Biological', 'class2' => 'NA', 'class3' => 'NA', 'class4' => 'Molecule', 'class5' => 'Amino acids', 'isgroup' => 'yes', 'checked' => 'yes', 'citation_count' => '0', 'updated' => '2015-12-11 09:54:00', 'first' => 'A', 'nametotal' => 'Amino Acids**124', 'AnalytesCitation' => array( [maximum depth reached] ) ) ), 'Matrix' => array(), 'Keyword' => array( (int) 0 => array( 'id' => '0110', 'type' => 'Manifold component', 'keyword' => 'Detector', 'newKeyword' => '', 'synonyms' => '', 'fao' => '', 'total' => '354', 'first' => 'D', 'keytotal' => 'Detector**354', 'CitationsKeyword' => array( [maximum depth reached] ) ) ) ) $i = (int) 3 $path = '' $a = '' $url = 'http://dx.doi.org/10.1002/elan.200303128' $aus = 'James M. DeMott Jr., Edwin G. E. Jahngen'include - APP/View/Elements/citation.ctp, line 40 View::_evaluate() - CORE/Cake/View/View.php, line 971 View::_render() - CORE/Cake/View/View.php, line 933 View::_renderElement() - CORE/Cake/View/View.php, line 1224 View::element() - CORE/Cake/View/View.php, line 418 include - APP/View/Techniques/view.ctp, line 52 View::_evaluate() - CORE/Cake/View/View.php, line 971 View::_render() - CORE/Cake/View/View.php, line 933 View::render() - CORE/Cake/View/View.php, line 473 Controller::render() - CORE/Cake/Controller/Controller.php, line 968 Dispatcher::_invoke() - CORE/Cake/Routing/Dispatcher.php, line 200 Dispatcher::dispatch() - CORE/Cake/Routing/Dispatcher.php, line 167 [main] - APP/webroot/index.php, line 109