University of North Florida
Browse the Citations
-OR-

Contact Info

Stuart Chalk, Ph.D.
Department of Chemistry
University of North Florida
Phone: 1-904-620-1938
Fax: 1-904-620-3535
Email: schalk@unf.edu
Website: @unf

View Stuart Chalk's profile on LinkedIn

Ben L. M. van Baar

Abbrev:
Van Baar, B.L.M.
Other Names:
Address:
TNO Prins Maurits Laboratory, P.O. Box 45, 2280 AA Rijswijk, The Netherlands
Phone:
NA
Fax:
NA
Email:

Citations 2

"Characterisation Of Cholera Toxin By Liquid Chromatography -Electrospray Mass Spectrometry"
Toxicon 1999 Volume 37, Issue 1 Pages 85-108
Ben L. M. van Baar, Albert G. Hulst and Eric R. J. Wils

Abstract: Cholera toxin, one of the toxins that may be generated by various strains of the bacterium Vibrio cholerae, can be considered as a substance possibly used in biological warfare. The possibilities of characterising the toxin by liquid chromatography electrospray mass spectrometry (LC-ES-MS) were investigated. The toxin can be detected by flow injection (FIA) ES-MS of a dialysed solution and observation of the charge envelope signals of its A-unit and B-chain protein; sufficient information for identification by the molecular mass of either protein could be obtained for quantities in the order of 10 fmol. Confirmatory analysis was carried out by 2-mercaptoethanol reduction and FIA-ES-MS detection of the product proteins or by tryptic digest LC-ES-MS with ion chromatogram detection of most of the tryptic fragments of the A-unit and B-chain from the singly, doubly or triply charged ion signals. The confirmatory tryptic digest LC-ES-MS analysis could be achieved with quantities as low as 1 pmol. Possible biovariations in the toxin can mostly be determined by sequencing, where the amino acid composition of tryptic fragments of the A1-chain, T5 and T15, and of the B-chain, T1, T4 and T5, cover all known biovariations. Partial sequencing of cholera toxin, originating from a classical strain, O1/569B, was achieved by LC-ES-MS/MS of most tryptic fragments larger than three amino acid residues.

"Identification Of Carbamates By Particle Beam/mass Spectrometry"
J. Mass Spectrom. 1997 Volume 32, Issue 1 Pages 43-54
Jaroslav Slobodník, Maria E. Jager, Sacha J. F. Hoekstra-Oussoren, Maarten Honing, Ben L. M. van Baar*, Udo A. Th. Brinkman

Abstract: The possibility of analyzing 33 carbamate pesticides and 14 of their transformation products was investigated utilizing flow injection particle beam/mass spectrometry (PBMS) with electron impact (EI) ionization and ammonia and methane positive and negative chemical ionization (CI). Optimum operating conditions of the interface and mass spectrometer in each mode were determined, with special attention given to spectrum quality; variables investigated included ion source temperature and ion source pressure in CI experiments. Ammonia, as a reagent gas, provided less fragmentation and better quantitative results than methane. The CI response was generally higher with positive ion detection (PCI) than with negative ion detection (NCI), but NCI was found to be highly selective for compounds such as aminocarb, asulam and thiophanate-methyl. As regards analyte detectability, EI performed best for most compounds, with the spectra providing relevant structure information. The response of more polar degradation products is generally larger by 2-3 orders of magnitude compared with the parent compounds. When analyzing real samples, the combined use of CI for molecular mass determination and EI for structure elucidation is required. The spectral information from this study and additional chromatographic data were used for the determination of low- and sub µg L-1 levels of the test carbamates in surface water.
Carbamates Surface Mass spectrometry