University of North Florida
Browse the Citations
-OR-

Contact Info

Stuart Chalk, Ph.D.
Department of Chemistry
University of North Florida
Phone: 1-904-620-1938
Fax: 1-904-620-3535
Email: schalk@unf.edu
Website: @unf

View Stuart Chalk's profile on LinkedIn

NIST 1641d

Classification: Reference Material -> NIST -> 1641d -> Mercury in water

Citations 1

"Development Of Isotope Dilution Cold Vapor Inductively Coupled Plasma Mass Spectrometry And Its Application To The Certification Of Mercury In NIST Standard Reference Materials"
Anal. Chem. 2001 Volume 73, Issue 10 Pages 2190-2199
S. J. Christopher, S. E. Long, M. S. Rearick, and J. D. Fassett

Abstract: An isotope dilution cold vapor inductively coupled plasma mass spectrometry (ID-CV-ICPMS) method featuring gaseous introduction of mercury via tin chloride reduction has been developed and applied to the quantification and certification of mercury in various NIST standard reference materials: SRM 966 Toxic Metals in Bovine Blood (30 ng mL-1); SRM 1641d Mercury in Water (1.6 µg mL-1); and SRM 1946 Lake Superior Fish Tissue (436 ng g-1). Complementary mercury data were generated for SRMs and NIST quality control standards using cold vapor atomic absorption spectroscopy (CVAAS). Certification results for the determination of mercury in SRM 1641d using two independent methods (ID-CV-ICPMS and CVAAS) showed a degree of agreement of 0.3% between the methods. Gaseous introduction of mercury into the ICPMS resulted in a single isotope sensitivity of 2 x 10(6) counts s-1 ng-1 g for Hg-201 and significantly reduced the memory and washout effects traditionally encountered in solution nebulization ICPMS. Figures of merit for isotope ratio accuracy and precision were evaluated at dwell times of 10, 20, 40, 80, and 160 ms using SRM 3133 Mercury Spectrometric Solution. The optimum dwell time of 80 ms yielded a measured Hg-201/Hg-202 isotope ratio within 0.13% of the theoretical natural value and a measurement precision of 0.34%, on the basis of three replicate injections of SRM 3133.
Mercury Mass spectrometry Mass spectrometry Spectrophotometry Amalgamation Volatile generation Reference material Method comparison